A Study of Pair Programming Enjoyment and Attendance using
Study Motivation and Strategy Metrics

Onni Aarne”
University of Helsinki
Helsinki, Finland
onni.aarne@iki.fi

Juho Leinonen
University of Helsinki
Helsinki, Finland
juho.leinonen@helsinki.fi

ABSTRACT

We explore educational pair programming in a university context
with high student autonomy and individual responsibility. The data
comes from two separate introductory programming courses with
optional pair programming assignments. We analyze lab attendance
and course outcomes to determine whether students’ previous pro-
gramming experience or gender influence attendance. We further
compare these statistics to self-reported data on study motivation,
study strategies, and student enjoyment of pair programming. The
influence of grading systems on pair programming behavior and
course outcomes is also examined.

Our results suggest that gender and previous programming ex-
perience correlate with participation in pair programming labs. At
the same time, there are no significant differences in self-reported
enjoyment of pair programming between any of the groups, and
the results from commonly used study motivation and strategy
questionnaires provide little insight into students’ actual behavior.

ACM Reference Format:

Onni Aarne, Petrus Peltola, Juho Leinonen, and Arto Hellas. 2018. A Study
of Pair Programming Enjoyment and Attendance using Study Motivation
and Strategy Metrics. In Proceedings of SIGCSE ’18: The 49th ACM Technical
Symposium on Computing Science Education (SIGCSE ’18). ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3159450.3159493

1 INTRODUCTION

In the last few decades programming has evolved from a small and
clear-cut line of work to a popular hobby and an important skill.
With this significant increase in popularity, programming courses
are being held at many institutes that do not primarily focus on
computing-related subjects. The growth of the IT sector [25] has
also resulted in booming enrollments for CS programmes [2].

*These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’18, February 21-24, 2018, Baltimore , MD, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5103-4/18/02...$15.00
https://doi.org/10.1145/3159450.3159493

Petrus Peltola
University of Helsinki
Helsinki, Finland
petrus.peltola@helsinki.fi

Arto Hellas
University of Helsinki
Helsinki, Finland
arto.hellas@cs.helsinki.fi

Programming can be intimidating to newcomers and requires
persistent practice to learn. Multiple studies have shown that tradi-
tional introductory programming courses suffer from high dropout
rates, with generally approximately 30% of the students failing the
course [11, 12, 18]. One pedagogical approach for combating the
drop-out problem is pair programming [36], where students pair
up when working on course assignments and alternating roles be-
tween one student writing and the other continuously reviewing
the code being produced. It has been shown that the use of pair
programming in introductory programming courses can improve
course retention rates [22, 37] as well as major retention rates [27].
Pair programming has also been shown to have a positive impact
on code quality and student enjoyment [10, 24].

Previous studies have identified multiple factors that can have a
significant effect on student enjoyment and the effectiveness of pair
programming [7, 13]. These factors include concerns such as the dif-
ference between students’ prior exposure to programming and the
instructor’s approach to pair programming. Our research presented
in this article complements the previous studies, providing new
data on pair programming attendance rates as well as attitudes and
whether these are connected to previous programming experience,
self-efficacy, gender and study motivation and strategies.

Moreover, our context is quite different from the context in which
pair programming studies have traditionally been conducted. Many
university classes have mandatory attendance, but at the University
of Helsinki where our study was conducted, more emphasis is
placed on a student’s freedom to study flexibly, with only a few
classes having compulsory attendance. This enables many students
to take a more independent approach to studying. In fact, many
students who never attended pair programming labs did well on
the course, despite extra points being offered for participating.

This article is organized as follows. In the next Section, we review
pair programming and its use in education. Then, in Section 3,
we outline our study methodology, data, and research questions,
which are followed by the results and discussion in Sections 4 and
5 respectively. Finally, in Section 6, we present our conclusions and
outline possible avenues for future work.

https://doi.org/10.1145/3159450.3159493
https://doi.org/10.1145/3159450.3159493

2 BACKGROUND

2.1 Pair programming

Pair programming is a programming technique where two pro-
grammers work together on a single task, typically from a single
workstation. It was first broadly adopted in professional use with
the rise of Extreme Programming [4], and it has since become a
common programming method in the software industry.

When a pair of programmers are working together on a task, one
programmer is writing code and the other is continously reviewing
the new code as it gets produced. The programmer writing the code
usually focuses on what is being written, while the observer can
review it in the broader context of the whole program. Generally
the programmers switch roles regularly.

Pair programming has been found to have multiple positive
effects on the coding process. A study by Cockburn & Williams
found that while pair programming increased development time
costs by about 15%, it produced all-around better code, which in
return reduced the amount of testing and bug fixing required [10].
In addition to raising the quality of the code, it spreads the under-
standing of what is being produced to at least two persons instead
of one, which makes the end product considerably easier to main-
tain. Programmers also generally seem to prefer pair programming
over solitary work [10, 21, 36].

Some factors that can have an unfavorable effect if ignored still
exist in the realm of pair programming. Begel & Nagappan found
that programmers consider having a complimentary skillset as
the most important attribute of a programming partner [5], while
the results of Choi et al. suggest that programmers with differing
personalities are more productive [9]. Thus, there should be a strong
emphasis on forming compatible pairs.

Scheduling is a problem for some [5], since pair programming
usually takes place at a set location and time. The problem can be
reduced by using online tools to collaborate. Correctly conducted
online pair programming can be as effective as collocated pair
programming [3, 29].

Another pitfall that was found by Vanhanen & Lassenius was
overconfidence in the pair-review process, which led to omitting
some of the testing process [32]. In their study, the end products
delivered by the pair programing teams actually contained more
defects than those that were created by a single person. Solo pro-
grammers were also more productive than pairs, but the effect
was caused by the pairs having to first get accustomed to the pair
programming procedure.

2.2 Pair programming in education

While pair programming made its debut in the software industry,
it has also gained popularity in education. Numerous studies have
shown its effectiveness as a learning activity [14, 20, 23, 24]. Pair
programming has also been used as part of or alongside various
pedagogical methods, such as the coding dojo [15], media compu-
tation, and peer instruction [27]. One of the largest demonstrated
benefits of pair programming is its approachability [33]. It makes
programming less intimidating to a newcomer, and by its nature
lowers the bar for asking questions. This results in higher retention
rates [6].

Pair programming also helps to curtail the so-called code warrior
mentality, where a student sees coding as a solo activity and them-
selves “as a sort of code warrior, fighting with the enemy compiler,
forcing it to assent to their glorious code and to produce a program
that obeys their every desire” [34]. Such a mentality is harmful,
since building the high-quality large-scale programs professional
programmers usually work on requires collaboration.

When a student is not just coding by themselves, it creates a pos-
itive “pair pressure”, which makes pair programming more effective
[39]. Williams & Kessler report students feeling more invested in
their work as a result of the shared responsibility, thus resulting in
fewer drop-outs [38]. Pair programming also forces the students to
continuously examine their views on programming and how it is
learned, since their pair might have differing views. This expands
the learning strategies students have for learning programming,
which helps to repel the fixed mindsets some students have [17].

Many studies that have been conducted on pair programming in
an educational context have studied the correlation between self-
reported preference and course performance, with other factors
occasionally explored. The previous studies were predominantly
from American universities, which results in a large cultural differ-
ence between our study and the ones preceding it. In the American
system, students sometimes do not choose their major before the
end of the first year, which leads to more participants trying out
different courses and later dropping them. In the Finnish educa-
tional system, students always apply for a specific programme, and
the programming courses are mandatory for computer science stu-
dents. Additionally, attendance is generally mandatory at American
universities, while our system generally only requires presence for
exams. Grading schemes do usually incentivize lab attendance, but
they vary from course to course and can influence student behavior
and outcomes considerably.

Student attitudes towards pair programming and the factors
that affect them still remain mostly unexplored, and some of the
existing studies have yielded mixed results. When examining the
relationship between student attitudes towards pair programming
and self-efficacy, Hanks found a positive correlation [13], whereas
Thomas et al. found an opposite effect [30]. The results obtained
by Thomas et al. may have however suffered from low sample size
and convoluted survey design. Hanks on the other hand noted that
different instructors also had a major impact on the results. He
also surveyed his students on their confidence in their returned
assignments, rather than on broader feelings of confidence and
programming skill.

Computer science has one of the largest gender gaps of all the sci-
ences, and the proportional number of women in computer science
has only been declining since the mid-1980s [28]. Reasons for the
apparent disparity and solutions for closing the gap have been stud-
ied, and although pair programming improves course performance
equally for both genders [22], it has been argued that it benefits
women more than men. In their article Werner et al. argue that
pair programming specifically addresses factors that limit women’s
participation in CS [35]. Hanks found that women generally enjoy
pair programming more than men, which tangentially supports the
argument presented by Werner et al. [13].

3 METHODOLOGY
3.1 Context

The data for this study comes from two introductory Java program-
ming courses organized in the fall of 2015 and the spring of 2016 at
the University of Helsinki. The course material was almost iden-
tical between the courses, but the population, grading and course
structure differed.

In the studied context, the students choose their major during
the admission phase. Thus, nearly all CS majors take the introduc-
tory programming course in the fall of their freshman year, and
therefore make up most of the population of the fall course. In the
spring on the other hand, very few CS majors are present. This
means that the course demographics differ between the semesters.
When only considering students included in this study, the percent-
ages of women were 32.1% and 46.2% in each course respectively.
Contrary to our expectations, the two course populations did not
differ significantly in terms of previous programming experience
according to the Pearson’s Chi-squared test (p < 0.01).

Both of the courses emphasized learning by doing, which meant
that they had more assignments and fewer lectures. Both of the
courses had lab sessions four times a week, where students could
freely complete the assignments with an instructor ready to help
them if needed. The instructors were students who had already
passed the course, and usually many instructors were present at
any given time. This meant that the influence of a single instructor
should not have a large effect on the students. The fall course also
had a weekly lecture, while the spring course only had one lecture at
the beginning of the course. The teaching methods used are further
explained by Kurhila & Vihavainen [19]. Both of the courses had
similar exams, but they used different grading. The fall course was
only graded as passed or failed. The spring course on the other
hand was graded as 5/pass/fail, where 5 signifies the highest grade
in the 1-5 grading system used at the university.

3.2 Data and Preprocessing

Data for this study was collected using three methods: (1) a feedback
survey that was administered as a part of the course exam, (2) a
voluntary Motivated Strategies for Learning Questionnaire (MSLQ)
[26], and (3) course grading system. The Motivated Strategies for
Learning Questionnaire [26] is used to assess students’ use and
preference of learning strategies such as peer learning and self-
regulation.

The feedback survey included questions on the time invested into
the course, amount of exercises completed, etc. as well as questions
on the pair programming activity in the course. The questions on
the pair programming activity were based on items used by Hanks
in [13]1. The full statements along with response statistics can be
found in Table 2. The items were scored using a Likert scale from 1
for completely agree, to 7 for completely disagree. A zero option
was available if the student felt they could not provide an answer.

In total, 138 students filled all the surveys and were included in
this study. This means that the overall inclusion rate was approxi-
mately 50%.

10ur survey differed from Hanks’ in that the scale was reversed and the zero option
was added. In addition, the question 5 was added for the spring course.

Prev. Exp. Mean n

None 3.14 78
A Little 1.90 31
By myself 1.55 11

With others on a course 4.20 11
With others on a job 6.00 2
Other 3.80 5

Table 1: Mean number of attended pair programming labs
and sample sizes of students of different levels of previous
experience.

3.3 Research Questions
Our research questions for this study are as follows.

e RQ1: How actively do students attend pair programming
labs?

e RQ2: What are student attitudes towards pair programming
like?

e RQ3: Do pair programming attendance rates or attitudes
vary by gender or previous programming experience?

e RQ4: How do students’ motivation and learning strategies
affect their preference towards pair programming?

e RQ5: Do students’ feelings of self-efficacy affect their atti-
tudes towards pair programming?

4 RESULTS

Unless otherwise noted, these results were obtained by treating
the two courses as a single population. Results were considered
statistically significant at p < 0.0025 due to a Bonferroni correction
for multiple comparisons. Seven students were missing data on pair
programming lab attendance, so they were not included in tests
where that information was relevant. Additionally, when studying
the effect of gender, five students were excluded as they did not
disclose their gender.

4.1 Pair programming attendance

Attendance in the pair programming labs was recorded by the
instructors to whom the pair programming assignments were re-
turned. When analyzing the attendance data, we found that 74.5%
of students participated in at least one pair programming lab of
the six held throughout each course. This percentage was 86.8% for
women and 67.3% for men.

The overall mean number of pair programming labs attended
was 3.02 out of six. Women attended 3.58 labs on average whereas
men only attended 2.69. In addition to being more likely to attend
at least once, women were more likely to attend every session.
A Kruskal-Wallis rank sum test indicated that the differences in
pair programming activity between male and female students were
statistically significant.

As shown in Table 1, students with no previous programming
experience were among the most active in attending pair program-
ming labs in addition to being the most numerous. The least active
were the students who reported having some programming experi-
ence by themselves. The most active pair programmers were the

Item Statement Mean Median Mode

Q1 I like pair programming. 3.28 3 2

I would like to pair program

Q2 again on another course or in 3.66 4 3
my job.
I'learned more on this course

Qs because I pair programmed. 378 4 3

I had more fun on this course
Q4) 4.06 4 4
because I pair programmed.

I would prefer to pair program

2.81 2 1
with someone I know.

05

Table 2: Mean, median and mode values from the Likert
items in the range from 1 to 7. Lower numbers signify
greater agreement. Any zero responses were excluded.

students who reported having previous experience programming
on a course or job. However, some of these results are undermined
by small samples for certain categories, especially “on a job”, as can
be seen from Table 1.

No statistically significant differences in exam scores between
the students with different levels of previous programming experi-
ence was identified. Similarly, pair programming activity was not
significantly correlated with exam scores on either course according
to Pearson’s product-moment correlation tests.

A Pearson’s Chi-squared test showed that there were statistically
significant differences in the distribution of previous programming
experience between male and female students with male students
being more likely to have at least some previous exposure to pro-
gramming.

When considering attendance in pair programming sessions,
female students significantly out-attended their male counterparts
on average (3.51 vs 2.42 for no previous programming experience
and 3.29 vs 1.47 for some programming experience). This indicates
that the differences in lab attendance between genders can not be
explained by differences in previous experience.

4.2 Attitudes towards pair programming

The survey questions and their respective mean, median and mode
values can be seen in Table 2. A detailed explanation of how these
results were acquired can be found in Section 3.2. For the Spearman
correlation tests, zero-level responses were removed from the data,
and the signs of the responses were flipped in the Likert data in
order to make more positive responses have higher ranks, thus
making the sign of the obtained p what one would expect it to be.

No statistically significant differences between men and women
were found in responses to Q1. It is worth noting, however, that
the response counts differed significantly between genders. For
this specific Likert item, the female students included in this study
had a response rate of 88.2%, with the same statistic being only
69.2% for men. These numbers closely mirror the aforementioned
differences in rates of students participating in at least one pair

programming lab. Interestingly, more students had opinions about
pair programming than ever attended the pair programming labs.

Associations between self-reported attitudes and performance
statistics were also examined. A Spearman’s rank correlation test
indicated that response levels to the question on liking pair pro-
gramming exhibited a statistically significant positive correlation
with lab attendance with p = 0.322. The same test showed no sta-
tistically significant correlation between the Likert responses and
exam scores.

Responses to Q5 were highly polarized, though most students
did agree with the statement.

Our and Hanks’ survey results by gender are summarized in
Table 3. Hanks’ results indicated clearly favorable attitudes toward
pair programming, whereas our students gave mixed responses.
None of our mean values were even one point off the neutral value
of four. It should be noted that Hanks only surveyed volunteers,
whereas our survey was shown to all students who came to the
final exam, and they were incentivized to fill it by offering a single
point toward their course score.

4.3 Student study motivation and strategies

We tested a handful of MSLQ motivation and learning strategies
scales for associations with pair programming lab attendance and
self-reported attitudes. These scales were as follows: peer learning,
metacognitive self-regulation, task value and self-efficacy. Corre-
lations between these values and lab attendance were checked
with Pearson’s product-moment correlation tests, whereas Spear-
man’s rank correlation tests were used to check correlations with
responses to Q1.

No statistically significant correlation was found between any of
the factors examined and the questionnaire items in Table 2, with
the exception of the MSLQ Peer Learning scale and lab attendance,
which had a moderate correlation. That is, the students with a
higher preference to learning with peers were also more likely to
attend the pair programming labs. However, at the same time, even
though peer learning correlated with pair programming attendance,
no statistically significant correlation between the Likert Responses
of the questions in Table 2 was identified.

5 DISCUSSION

Our results complement the previous mixed results between stu-
dent confidence metrics and their pair programming preferences.
Thomas et al. [30] and Hanks [13] both identified statistically sig-
nificant correlations between different student confidence and pair
programming preference metrics, though in opposing directions.
Our study provides a third viewpoint that suggests that there is
no statistically significant “global truth”, and that the results are at
least partially influenced by the context.

It is interesting to note that a positive correlation between exam
scores and pair programming attendance in the fall course would
have been considered statistically significant at p = 0.0064 if not
for our Bonferroni correction. This could be due to the fact that the
fall course was graded as pass/fail, whereas the spring course was
graded as 5/pass/fail, in a system where 5 is the highest achievable
grade.

01 02

03 04 Q5

Survey Gender Mean Median Mean Median Mean Median Mean Median Mean Median

Hanks Male 2.84 2 2.75 2 3 3 2.51 2 N/A N/A
Female 2.43 1 2.49 1 2.71 2 2.29 1 N/A N/A

This Male 3.27 2 3.69 4 3.91 4 4.01 4 2.67 2
Female 3.28 2 3.59 3 3.65 3 4.16 4 3 2

Table 3: A comparison between our and Hanks’ results from the same survey. Hanks’ results have been converted to our

reversed scale.

In the spring course that had the possibility for the highest
grade for students who amassed over 90% of the course points, no
correlation whatsoever was observed between lab attendance and
exam scores. This indicates that, in the spring course, the extra
points offered for participating in the labs were significantly more
valuable to the students than for the students in the fall course.
This means that it is possible that some students attended purely
to target the largest possible amount of points.

This suggests that the (non-significant) correlation observed in
the fall course can be attributed to more committed students both
attending more labs and performing better in the exam. Therefore,
one may question whether pair programming labs are the actual
factor that explains better course performance, or if there are some
underlying variables that we do not know of. In other words, in so
far as the exams are considered to be a valid test of skill acquisition,
pair programming does not appear to increase skill acquisition over
other methods of study.

The difference between our and Hanks’ results might be ex-
plained by reduced sampling biases, since we offered a point for
filling the survey whereas Hanks’ survey was only filled by vol-
unteering students. This could result in our sample being more
representative of the course population, since Hanks’ volunteers
might have very well been more active or opinionated students.
Hanks showed that instructors can have a significant impact on
student attitudes towards pair programming, which could explain
why our students exhibited more ambivalent attitudes.

Cultural differences in Likert response styles could also influence
some of our results, as for example, Chen et al.[8] showed that East
Asian participants were less likely to use the extremes of a Likert
scale when compared to American participants. They proposed
that differences on the individualism/collectivism spectrum might
explain some of these biases. Finnish culture could be considered to
be less individualistic compared to American culture, which might
be a contributing factor in the differences between our results and
others. It is also worth noting that because the course was conducted
in Finnish, the Likert items had been translated. This could have
led to subtle differences in how the statements were interpreted.
Most notably, the specific translation we used for “like” (pita) in
Q1 could be perceived as a slightly more serious expression than
the original. This could also have had a mild neutralizing effect on
the response levels.

When considering possible explanations for the low attendance
of those with a little experience, we hypothesize that at least some
had completed some basic programming tutorials online, which may

have led them to overestimate their own abilities and underestimate
their need for practice and instruction. Alternatively, students who
had programmed before on their own could have simply been more
independent learners and therefore perhaps did not prioritize the
lab sessions.

An environmental factor that could have influenced our sample
is that although the course the data comes from is mandatory for
all CS majors, our university provides experienced programmers
the option to skip the studied course if they are able to pass an
exam equivalent to the final exam of the course studied here. This
could have made our sample less representative of CS majors in
general, but perhaps better representative of those just starting to
learn programming.

6 CONCLUSIONS

In this work, we studied attitudes towards pair programming and
whether those attitudes are related to pair programming activity,
gender, and various study strategy and motivation metrics from the
MSLQ Questionnaire. Our work differs from the trend of pair pro-
gramming studies through the context in which it was conducted,;
in our context, students have high autonomy, lectures (or atten-
dance) is not mandatory, and students choose their major already
during enrollment to the studies at the university.

Our results indicate that students with little programming expe-
rience by themselves are less likely to attend lab sessions compared
to their peers who either have no previous programming experi-
ence or who have previous experience of programming with other
people. Furthermore, we found that women attended more sessions
on average than men, and that this effect was not explainable by
differences in previous programming experience. In addition, we
compared students’ attitudes towards pair programming in our
context with the results from previous research by Hanks [13] and
Thomas et al. [31] using the same questionnaire as Hanks.

Our results add to Hanks’ and Thomas et al’s results as — some-
what surprisingly — MSLQ answers did not have statistically signif-
icant correlations with pair programming attitudes in our context.
The conflicting results with B. Hanks [13] and Thomas et al. [30]
show that further research into student attitudes towards pair pro-
gramming, self-efficacy and the factors affecting them needs to be
done, since no consensus has been reached.

Moreover, when studying pair programming attendance from
the perspective of the grading of the course, we found that pair pro-
gramming is more likely to explain students’ exam performance if
the grading is simply pass and fail. That is, the external motivations

provided by mechanisms such as the pass / fail / best grade system
can increase lab attendance, but not necessarily in a productive
way.

Finally, the results presented in this work provide additional
evidence on the recent discussion in computing education research
that has highlighted the importance of replication studies [1, 16] for
examining whether results from one context generalize to others
as well as for building stronger theoretical foundations on which
to base future research as well as teaching.

REFERENCES

[1] Alireza Ahadi, Arto Hellas, Petri Ihantola, Ari Korhonen, and Andrew Petersen.
2016. Replication in computing education research: researcher attitudes and
experiences. In Proceedings of the 16th Koli Calling International Conference on
Computing Education Research. ACM, 2-11.

[2] Computing Research Association et al. 2017. Generation CS: Computer Science
Undergraduate Enrollments Surge Since 2006. (2017).

[3] Prashant Baheti, Edward Gehringer, and David Stotts. 2002. Exploring the effi-
cacy of distributed pair programming. Extreme Programming and Agile Meth-
ods—XP/Agile Universe 2002 (2002), 387-410.

[4] Kent Beck. 2000. Extreme programming explained: embrace change. addison-
wesley professional.

[5] Andrew Begel and Nachiappan Nagappan. 2008. Pair programming: what’s in
it for me?. In Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement. ACM, 120-128.

[6] Jeftrey C Carver, Lisa Henderson, Lulu He, Julia Hodges, and Donna Reese. 2007.
Increased retention of early computer science and software engineering students
using pair programming. In Software Engineering Education & Training, 2007.
CSEET’07. 20th Conference on. IEEE, 115-122.

[7] Edgar Acosta Chaparro, Aybala Yuksel, Pablo Romero, and Sallyann Bryant.
2005. Factors affecting the perceived effectiveness of pair programming in higher
education. In Proc. PPIG. 5-18.

[8] Chuansheng Chen, Shin-Ying Lee, and Harold W. Stevenson. 1995. Response

Style and Cross-Cultural Comparisons of Rating Scales among East Asian and

North American Students. Psychological Science 6, 3 (1995), 170-175. http:

//www.jstor.org/stable/40063010

Kyungsub S Choi, Fadi P Deek, and Il Im. 2008. Exploring the underlying aspects

of pair programming: The impact of personality. Information and Software

Technology 50, 11 (2008), 1114-1126.

Alistair Cockburn and Laurie Williams. 2000. The costs and benefits of pair

programming. Extreme programming examined (2000), 223-247.

[11] Mark Guzdial and Elliot Soloway. 2002. Teaching the Nintendo generation to

program. Commun. ACM 45, 4 (2002), 17-21.

Hossein Hakimzadeh and James Wolfer. 2009. Introducing a CS0 class to ease

transition to CS1: Another attempt at retention. In INTERTECH 2009-International

Conference on Engineering an Technology Education, Buenos Aires, Argentina.

[13] Brian Hanks. 2006. Student attitudes toward pair programming. In ACM SIGCSE
Bulletin, Vol. 38. ACM, 113-117.

[14] Brian Hanks, Charlie McDowell, David Draper, and Milovan Krnjajic. 2004. Pro-
gram quality with pair programming in CS1. In ACM SIGCSE Bulletin, Vol. 36.
ACM, 176-180.

[15] Kenny Heinonen, Kasper Hirvikoski, Matti Luukkainen, and Arto Vihavainen.

2013. Learning Agile Software Engineering Practices Using Coding Dojo. In

Proceedings of the 14th Annual ACM SIGITE Conference on Information Technology

Education (SIGITE ’13). ACM, New York, NY, USA, 97-102. https://doi.org/10.

1145/2512276.2512306

Petri Thantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jiirgen Borstler,

Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,

et al. 2015. Educational data mining and learning analytics in programming:

Literature review and case studies. In Proceedings of the 2015 ITiCSE on Working

Group Reports. ACM, 41-63.

[17] Shamim Khan, Lydia Ray, Aurelia Smith, and Angkul Kongmunvattana. 2010. A
pair programming trial in the cs1 lab. In Proc. Annual International Conference on
Computer Science Education: Innovation and Technology (CSEIT). 6-7.

[18] Paivi Kinnunen and Lauri Malmi. 2006. Why students drop out CS1 course?. In
Proceedings of the second international workshop on Computing education research.

=
X0

[10

[12

[16

ACM, 97-108.

Jaakko Kurhila and Arto Vihavainen. 2011. Management, Structures and Tools
to Scale Up Personal Advising in Large Programming Courses. In Proceedings of
the 2011 Conference on Information Technology Education (SIGITE '11). ACM, New
York, NY, USA, 3-8. https://doi.org/10.1145/2047594.2047596

Charlie McDowell, Brian Hanks, and Linda Werner. 2003. Experimenting with
pair programming in the classroom. In ACM SIGCSE Bulletin, Vol. 35. ACM,

60-64.
Charlie McDowell, Linda Werner, Heather E Bullock, and Julian Fernald. 2003. The

impact of pair programming on student performance, perception and persistence.
In Proceedings of the 25th international conference on Software engineering. IEEE
Computer Society, 602-607.

Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald. 2006.
Pair Programming Improves Student Retention, Confidence, and Program Quality.
Commun. ACM 49, 8 (Aug. 2006), 90-95. https://doi.org/10.1145/1145287.1145293
Emilia Mendes, Lubna Basil Al-Fakhri, and Andrew Luxton-Reilly. 2005. In-
vestigating pair-programming in a 2 nd-year software development and design
computer science course. In ACM SIGCSE Bulletin, Vol. 37. ACM, 296-300.
Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang,
Carol Miller, and Suzanne Balik. 2003. Improving the CS1 experience with pair
programming. ACM SIGCSE Bulletin 35, 1 (2003), 359-362.

Bureau of Labor Statistics. 2017. Careers in the growing field of in-
formation technology services. https://www.bls.gov/opub/btn/volume-2/
careers-in-growing-field- of-information-technology-services.htm. (2017). Ac-
cessed: 2017-08-28.

Paul R Pintrich et al. 1991. A manual for the use of the Motivated Strategies for
Learning Questionnaire (MSLQ). (1991).

Leo Porter and Beth Simon. 2013. Retaining Nearly One-third More Majors
with a Trio of Instructional Best Practices in CS1. In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education (SIGCSE ’13). ACM, New
York, NY, USA, 165-170. https://doi.org/10.1145/2445196.2445248

Linda J Sax, Kathleen J Lehman, Jerry A Jacobs, M Allison Kanny, Gloria Lim,
Laura Monje-Paulson, and Hilary B Zimmerman. 2017. Anatomy of an enduring
gender gap: The evolution of women’s participation in computer science. The
Journal of Higher Education 88, 2 (2017), 258—-293.

David Stotts, Laurie Williams, Nachiappan Nagappan, Prashant Baheti, Dennis
Jen, and Anne Jackson. 2003. Virtual teaming: Experiments and experiences with
distributed pair programming. In XP/Agile Universe. Springer, 129-141.

Lynda Thomas, Mark Ratcliffe, and Ann Robertson. 2003. Code warriors and code-
a-phobes: a study in attitude and pair programming. In ACM SIGCSE Bulletin,
Vol. 35. ACM, 363-367.

Lynda Thomas, Mark Ratcliffe, John Woodbury, and Emma Jarman. 2002. Learn-
ing styles and performance in the introductory programming sequence. In ACM
SIGCSE Bulletin, Vol. 34. ACM, 33-37.

Jari Vanhanen and Casper Lassenius. 2005. Effects of pair programming at the
development team level: an experiment. In Empirical Software Engineering, 2005.
2005 International Symposium on. IEEE, 10-pp.

V Venkatesan and A Sankar. 2010. Adoption of pair programming in the academic
environment with different degree of complexity in students perspective—an
empirical study. International Journal of Engineering Science and Technology 2, 9
(2010), 4791-4800.

Debora Weber-Wulff. 2000. Combating the code warrior: A different sort of
programming instruction. ACM SIGCSE Bulletin 32, 3 (2000), 85-88.

Linda L Werner, Brian Hanks, and Charlie McDowell. 2004. Pair-programming
helps female computer science students. Journal on Educational Resources in
Computing (JERIC) 4, 1 (2004), 4.

Laurie Williams, Robert R Kessler, Ward Cunningham, and Ron Jeffries. 2000.
Strengthening the case for pair programming. IEEE software 17, 4 (2000), 19-25.
Laurie Williams, Charlie McDowell, Nachiappan Nagappan, Julian Fernald, and
Linda Werner. 2003. Building pair programming knowledge through a family
of experiments. In Empirical Software Engineering, 2003. ISESE 2003. Proceedings.
2003 International Symposium on. IEEE, 143-152.

Laurie A Williams and Robert R Kessler. 2000. The effects of" pair-pressure”
and" pair-learning” on software engineering education. In Software Engineering
Education & Training, 2000. Proceedings. 13th Conference on. IEEE, 59-65.

Laurie A Williams and Robert R Kessler. 2001. Experiments with industry’s
“pair-programming” model in the computer science classroom. Computer Science
Education 11, 1 (2001), 7-20.

http://www.jstor.org/stable/40063010
http://www.jstor.org/stable/40063010
https://doi.org/10.1145/2512276.2512306
https://doi.org/10.1145/2512276.2512306
https://doi.org/10.1145/2047594.2047596
https://doi.org/10.1145/1145287.1145293
https://www.bls.gov/opub/btn/volume-2/careers-in-growing-field-of-information-technology-services.htm
https://www.bls.gov/opub/btn/volume-2/careers-in-growing-field-of-information-technology-services.htm
https://doi.org/10.1145/2445196.2445248

	Abstract
	1 Introduction
	2 Background
	2.1 Pair programming
	2.2 Pair programming in education

	3 Methodology
	3.1 Context
	3.2 Data and Preprocessing
	3.3 Research Questions

	4 Results
	4.1 Pair programming attendance
	4.2 Attitudes towards pair programming
	4.3 Student study motivation and strategies

	5 Discussion
	6 Conclusions
	References

