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Background and Context. The increasing integration of large language models (LLMs) in computing education presents an emerging
challenge in understanding how students use LLMs and craft prompts to solve computational tasks. Prior research has used both
qualitative and quantitative methods to analyze prompting behavior, but these approaches lack scalability or fail to effectively capture
the semantic evolution of prompts.
Objective. In this paper, we investigate whether students’ prompts can be systematically analyzed using propositional logic constraints.
We examine whether this approach can identify patterns in prompt evolution, detect struggling students, and provide insights into
effective and ineffective strategies.
Method. We introduce Prompt2Constraints, a novel method that translates students’ prompts into logical constraints. The
constraints are able to represent the intent of the prompts in succinct and quantifiable ways. We used this approach to analyze a
dataset of 1,872 prompts from 203 students solving introductory programming tasks.
Findings. We find that while successful and unsuccessful attempts tend to use a similar number of constraints overall, when students
fail, they often modify their prompts more significantly, shifting problem-solving strategies midway. We also identify points where
specific interventions could be most helpful to students for refining their prompts.
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2 Ali Alfageeh et al.

Implications. This work offers a new and scalable way to detect students who struggle in solving natural language programming
tasks. This work could be extended to investigate more complex tasks and integrated into programming tools to provide real-time
support.

Additional Key Words and Phrases: generative artificial intelligence, large language models, prompting, prompt engineering, prompt
analysis

ACM Reference Format:
Ali Alfageeh, Sadegh AlMahdi Kazemi Zarkouei, Daye Nam, Daniel Prol, Matin Amoozadeh, Souti Chattopadhyay, James Prather, Paul
Denny, Juho Leinonen, Michael Hilton, Sruti Srinivasa Ragavan, and Mohammad Amin Alipour. 2025. From Prompts to Propositions:
A Logic-Based Lens on Student-LLM Interactions. 1, 1 (April 2025), 18 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

With the increasing accuracy and usability of large language models (LLMs), there has been a remarkable surge in the
popularity of LLMs among students. Students have reported using LLMs in a wide variety of applications relevant to
their academic life [1], e.g., in writing and editing essays, generating graphics, brainstorming, etc. Since programming
is an important part of the computer science (CS) curriculum, CS students use LLMs to solve various programming
activities, such as debugging [19], code explanation [17], and helping to solve programming assignments [8].

Users interact with LLMs in a sequence of textual queries known as prompts. Prompts elaborate a user’s intention
through words. The main differentiating factor between traditional information gathering, e.g., Google search, and LLM
systems is that the conversational interaction modality affords an iterative process wherein users can refine and revise
prompts based on the response from LLM. Due to the opacity of LLMs and their stochasticity, it is difficult to provide
users with a mental model to predict the behavior of the LLMs with certainty, which makes general recommendations
for good prompting a difficult task.

Understanding how students develop and use prompts in their academic tasks is necessary for developing effective
techniques and methodologies to encourage positive LLM uses or identify and deter maladaptive scenarios. There have
been several studies to understand students’ prompting behavior in solving programming tasks, e.g., [2, 6, 16, 20]. They
often include manual sensemaking of the prompts that would require extracting the meaning of the prompt. Existing
qualitative approaches often rely on manual sensemaking, which is both time-consuming and hard to scale to large
datasets of student prompts. Quantitative techniques, on the other hand, tend to reduce prompts to mere word counts
or keyword searches, overlooking the deeper semantic changes that occur during a multi-turn interaction.

In this paper, we introduce Prompt2Constraints, a systematic framework for translating each prompt into a
set of logical constraints that capture its core requirements, such as language choices, function naming, parameter
specifications, and output format. By viewing prompts through the lens of propositional logic, researchers and ed-
ucators can directly compare how students evolve their problem-solving strategies: which constraints they add or
remove, how they respond to failures, and the extent to which they backtrack or shift focus mid-session. In doing
so, Prompt2Constraints not only accelerates large-scale prompt analysis but also offers meaningful insights into
where students may need targeted hints or interventions. Moreover, the framework’s ability to distill prompts into
interpretable constraints allows for more robust benchmarking, facilitating comparisons of different tasks, cohorts, or
LLM models.

We apply Prompt2Constraints to a dataset of 1872 prompts collected from 203 students working on three intro-
ductory Python problems. Our findings reveal distinct patterns of prompt evolution among successful and unsuccessful
learners, illuminate how and when learners refine or abandon constraints, and highlight potential opportunities for
Manuscript submitted to ACM
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Table 1. Motivating Example

Prompt# Prompt text Translation to constraints Prompt2Constraints-generated justi-
fication for the changes

P1 Write me a Python function that returns
howmany elements in a given list is the
integer 0

𝐶1 ∧𝐶2 ∧𝐶3

P2 Write me a Python function called
counter(test_input) that returns how
many elements in a given list is the in-
teger 0

𝐶1 ∧𝐶4 ∧𝐶2 ∧𝐶3 𝐶4: The function must now be named
counter and take a parameter named
test_input.

P3 Write me a Python function called
counter(user_input) that returns the
amount of times a element in a given
list is the integer 0

𝐶1 ∧𝐶5 ∧𝐶2 ∧𝐶3 C5 evolves from having a parameter
named test_input to user_input.

early detection of cognitive struggles. These insights point to the transformative potential of Prompt2Constraints in
the development of intelligent tutoring systems, the improvement of prompt-based pedagogy, and the advance of our
greater understanding of human-AI interactions in computing education.

Contributions. The main contributions of this paper is twofold.

• It proposes an automated technique for mapping prompts to logical constraints.
• It uses this technique to analyze student prompting behavior in solving three programming problems.

In this paper, we seek to answer the following research questions.

• RQ1: How robust and accurate is Prompt2Constraints for automatically extracting constraints from prompts?
• RQ2: How do students’ prompts evolve when solving programming tasks?
• RQ3: How do successful and unsuccessful prompting strategies differ?

2 MOTIVATING EXAMPLE

Table 1 shows an example of the application of this approach on a sequence of prompts in a student interaction to solve
a programming task in the [5] dataset. It shows a high-level view of the student’s problem solving steps that can be used
in other analyses. Each row of Table 1 contains the prompt’s text, and Prompt2Constraints-generated corresponding
propositional logic constraints and justification for the changes in the constraints compared to the previous prompt.
Prompt2Constraints also generates the details of constraints that we removed for brevity. The first prompt “Write
me a Python function that returns how many elements in a given list is the integer 0 ” into three constraints: 𝐶1 aims
to constrain the LLM response to Python functions, and 𝐶2 and 𝐶3 aim to constrain the behavior of the function to
producing the number of elements in the list (𝐶2), that are zero (𝐶3). In the subsequent prompt, P2, the student adds a
new constraint about the signature of the function (𝐶4). Next, in P3, the student modifies the parameter name in the
signature, where Prompt2Constraints successfully captures it, modifying the constraint 𝐶4 to 𝐶5.
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3 RELATEDWORK

3.1 LLMs for code generation and programming tasks

Recent studies have explored how LLMs like GitHub Copilot and ChatGPT support programming. Denny et al. [4]
evaluated Copilot’s performance on 166 CodeCheck exercises, finding that while 79 (47.6%) of problems were solved
on the first attempt, 53 (31.9%) required modified prompts, and 34 (20.5%) remained unsolved. This highlights both
the potential and limitations of LLMs as programming assistants. Beyond code generation, Nam et al.[18] investigated
how LLMs aid code comprehension. Their IDE plugin, GILT, allows users to query LLMs for explanations, API details,
and usage examples without explicit prompts. A user study showed significant improvements in task completion rates
compared to web search, though benefits varied by experience level. Similarly, Etsenake and Nagappan[10] analyzed
human-LLM interactions and found that LLMs boost productivity but with mixed results depending on task complexity
and user expertise. To enhance programming education, Denny et al.[7] explored using LLMs to evaluate students’
natural language explanations of code, reinforcing both comprehension and prompt engineering skills. In another study,
they introduced "Prompt Problems"[5], a novel exercise type where students craft prompts to generate functional code,
using a web-based tool called Promptly. Evaluations showed that students found this method engaging and valuable for
developing computational thinking. Taking a different approach, Lane and VanLehn [15] proposed coached program
planning, a dialogue-based tutoring method guiding novice programmers through natural language pseudocode before
coding. Their study found that students using this approach wrote more comments, made fewer structural mistakes,
and programmed more systematically.

3.2 Students’ interaction patterns with LLMs

Amoozadeh et al. [2] studied how students interact with LLMs during programming tasks, identifying three key
interaction points (beginning, middle, and after completion) and six problem-solving activities: reading, thinking,
writing code, modifying code, prompting, and debugging. They also observed three task decomposition strategies:
copying full task descriptions, breaking tasks into subtasks, and a hybrid approach where students solved parts
independently while seeking LLM assistance for others. The 60 prompts collected fell into four categories: requesting
full solutions, conceptual explanations, program logic clarifications, and debugging help. Building on this, Smith et
al. [22] explored using student responses to Explain in Plain English (EiPE) questions as prompts for code generation
with LLMs. Using GPT-3.5 and unit tests, they evaluated how well student-written descriptions translated into correct
code, finding this approach effective for teaching precise prompt-writing and improving code comprehension. To
assess LLM performance on student-generated prompts, Babe et al. [3] developed StudentEval, a benchmark of 1,749
prompts written by novice programmers. Unlike expert-crafted benchmarks, StudentEval captures real-world student
interactions, revealing significant variation in prompting techniques and highlighting how LLM nondeterminism can
sometimes mislead students about their prompting effectiveness.

3.3 Developer-LLM conversation patterns

Hao et al. [11] manually investigated how developers structure their prompts in multi-turn conversations with LLMs.
They identified six patterns in developer-ChatGPT interactions, with five patterns beginning with disclosure of the initial
task, followed by iterative follow-up, prompt refinement, requests for clarification, negative feedback, or introduction of
a new task. This highlights the dynamic nature of human-LLM interactions in programming contexts. Similarly, Ehsani
et al. [9] analysed 433 GitHub conversations between developers and ChatGPT, focusing on how prompt knowledge
Manuscript submitted to ACM
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gaps and conversational style affect issue resolution. They found that unresolved issues tend to require more prompts
than resolved issues, suggesting that complex issues require longer interactions. The most common conversation styles
were directive prompting, chain of thought, and responsive feedback. Notably, prompts with knowledge gaps were
more common in open issues (334) than in closed issues (107), with “Missing Context” being the most common gap type
in both categories. Zamfirescu-Pereira et al. [23] provided further insights by examining how non-AI experts approach
prompt design when using LLM-based tools. Using a design probe—a prototype chatbot design tool that supports
development and systematic evaluation—they found that participants explored prompt design opportunistically rather
than systematically and faced challenges similar to those in end-user programming systems. They identified two key
barriers to effective prompt design: expectations shaped by human-to-human instructional experiences and a tendency
to overgeneralize from limited examples.

3.4 Prompt engineering strategies for LLM evaluation

In the area of prompt engineering effectiveness, Kim et al. [13] examined how different prompting strategies impact
LLM evaluation of natural language generation. They compared Human Guideline (HG) prompts, which mimic human
annotation instructions, with Model Guideline (MG) prompts, which provide explicit evaluation steps. Their findings
showed that HG prompts aligned more closely with human judgments, while MG prompts, though systematic, were
less intuitive. They also found that demonstration examples often introduced bias rather than improving performance
and that direct score aggregation correlated best with human evaluations. Expanding on user interactions with LLMs,
Srinivasa Ragavan and Alipour [21] explored how information foraging theory applies to chatbot-based information
seeking. They compared traditional web search with chatbot interactions, proposing that users adopt different cost-
benefit strategies when engaging with LLMs. Their findings suggest that trust is a key factor shaping how users seek
and evaluate information, offering insights for designing more effective LLM-based systems.

4 PROMPT2CONSTRAINTS

In this section, we describe how Prompt2Constraintsworks.We first present the general framework of Prompt2Constraints
that can be applied to any dataset, then we discuss the realization of Prompt2Constraints for a dataset.

4.1 Prompt2Constraints framework

Prompting in LLM can be understood as a search through a large multidimensional space of potential responses, where
each prompt guides the LLM’s traversal. Prompts essentially constrain the response state. A successful prompting
session will navigate the LLM towards correct response, while a failing prompting fails to do so. Prompt2Constraints
takes prompts in a user prompting session and uses few-shot learning to translate each prompt to its corresponding
constraints.

Prompt2Constraints uses simple propositional logic formula to capture the semantic representation of the prompts.
Each formula consists of propositions that denote a statement as well as logical connectives, such as the connective
described in and (∧), which serve to construct more complex propositions from simpler components. Basic first-order
propositional formulas serve as flexible instruments for expressing various constraints encountered in real-life scenarios.

In using LLM to solve programming problems, the prompts express constraints that limit the space of responses that
LLMs can generate. For example, if a prompt contains “write a Python function”, it funnels LLM to generate code in the
Python programming language and not Javascript or Haskell. The prompts express the requirements of the problem
that can further constrain the ways that LLM can generate the code that solves the problem.

Manuscript submitted to ACM
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A Few Shot Prompt

Input: Prompt 1, Output:
Constraints in Prompt 1

Input: Prompt 2, Output:
Constraints in Prompt 2

Input: Prompts un-
der analysis, Output:

LLM (GPT-4)
Constraints for
the Prompts
under analysis

Fig. 1. Workflow in Prompt2Constraints

Prompt 1 (P1) Write me a Python function that counts the number of ’0’s in the list.
Formalization of P1:
𝐶1: A Python function is written.𝐶2: The function counts the number of ’0’ (as a string) in the list.𝐶3: The input to the
function is a valid list. We can formalize P1 as: 𝑃1 → (𝐶1 ∧𝐶2 ∧𝐶3 )
Prompt 2 (P2) Write me a Python function that counts the number of 0 in the list.
Formalization of P2:
𝐶1: A Python function is written.𝐶4: The function counts the number of 0 (as an integer) in the list.𝐶3: The input to the
function is a valid list. We can formalize P2 as: 𝑃2 → (𝐶1 ∧𝐶4 ∧𝐶3 )
Logical Relationship Between P1 and P2
– Semantic Refinement:𝐶2 evolves from counting ’0’ (string) to𝐶4 counting 0 (integer).
– Core Continuation:𝐶1 ∧𝐶3: The existence of a Python function and the assumption of a valid list remain unchanged.

Fig. 2. Few-shot learning examples used in this paper for analysis of the [5]’s dataset.

Figure 1 depicts the overall workflow in Prompt2Constraints. Prompt2Constraints uses few-shot learning [12]
to learn the structure of prompts in a given dataset and how to translate them into logical constraints. To this end, it
requires few samples of sequences of prompts in the dataset along with their corresponding constraints (yellow boxes
in Figure 1). In our experiments, only two consecutive prompts from one user interaction sufficed to generate reliable
constraints for the entire dataset. Then, sequence of prompts that we want to analyze (red box) is appended and send to
an LLM (purple box) to predict the constraints of each prompt in the sequence. We used OpenAI’s GPT-4 in our results,
which performed sufficiently well. Other LLMs can be used as well.

4.2 Realization of Prompt2Constraints for programming tasks

We realize the Prompt2Constraints framework for analyzing students’ prompts in programming tasks in a study by
Denny et al. [5]. We thank the authors for sharing their data with us. This dataset includes students’ prompt sequences
for three CS1-level programming tasks in Python programming language. Figure 2 shows the template that we used to
instruct LLM how to analyze the prompts. This template is structured by the following grammar:

Prompt 1 (P1) <text of first prompt> Formalization of P1 <description of individual constraints in P1> We
can formalize P1 as: 𝑃1 → <logical expression for P1>
Prompt 2 (P2) <text of second prompt> Formalization of P2 <description of individual constraints in P2>
We can formalize P2 as: 𝑃2 → <logical expression for P2>

Manuscript submitted to ACM
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Logical Relationship Between P1 and P2
– Semantic Refinement: <differences in P1 and P2 constraints>
– Core Continuation: <similaities in P1 amd P2 constraints>
prompts <new prompts> formalization:

In this template, we first provide the LLM, with an example of two consecutive prompts P1 and P2 (picked from the
dataset), their corresponding constraints , descriptions of each constraint, and the logical relationship between two
prompts. Prompt2Constraints then instructs the LLM, GPT-4 in this case, to generate constraints for a new sequence
of prompts. We use OpenAI’s API to automate the entire workflow. GPT-4 returns, description of constraints in each
prompt, the propositional logic constraints that represents the prompts, and their relationships.

4.2.1 Dataset. We use Promptly dataset [5] in this paper. This dataset contains 1872 prompts from 203 CS1 students
where they attempted to solve three programming tasks in the Python programming language. The students were
supposed to generate the solution merely by prompting–they were not allowed to edit the LLM’s response.

Table 2 summarizes these tasks. The tasks were presented sequentially: only participants who successfully completed
counter were permitted to attempt initials, and similarly only participants who completed initials could proceed to
repeat. Participants were also explicitly encouraged to reduce the length of their prompt as much as possible after
successfully arriving at the correct prompt. The dataset offers insight into how students develop and optimize their
prompts.

Table 2. Prompt Problems used in the three studies

Name Description Example
1. counter Given a list of integers, return how many times the

value 0 appears.
counter[(10, 20, 30)] =>
0

2. initials Given a string containing multiple words, return the
concatenation of the uppercase first letters of each
word.

initials("abd def ghi")
=> "ADG"

3. repeat Given a list of integers, for each integer 𝑛 in the list,
repeat that integer 𝑛 times in the output list.

repeat([5]) => [5, 5, 5,
5, 5]

4.2.2 Constraint Statistics. Table 3 shows the distribution of the number of constraints for each task. Task 1 had the
highest average of the number of constraints (5.77) and task 3 had the lowest average number of constraints (4.6).
Figure 3 shows the distribution of the number of constraints per users. It shows that most students have an average
constraint count in the range of about 4 to 5 constraints per task, indicating a moderate level of complexity in their
responses. However, there is a noticeable tail of students who use double more constraints (up to around 12), implying
that while most students converge on a relatively small to moderate number of constraints, a very small number of
students use more complicated constraints in their prompting.

Manuscript submitted to ACM



8 Ali Alfageeh et al.

Table 3. Summary statistics of the number of constraints in students prompts for each task

Task #Users Mean Std Min Q1 Median Q3 Max
1 203 5.77 2.28 1 4 5 7 19
2 159 5.16 1.64 1 4 5 6 11
3 146 4.60 1.32 0 4 4 5 13

Fig. 3. Distribution of Constraints per User

5 EVALUATION METHODOLOGY

In this section, we describe the evaluation methodology. To answer the research questions, we evaluate a realization of
Prompt2Constraints as described in Section 4.2 as a case study.

5.1 RQ1: Measure the accuracy of Prompt2Constraints

To answer RQ1 and measure the accuracy of Prompt2Constraints, we first randomly sample a representative sample
of prompts and manually inspect the accuracy of constraints of each prompt. To obtain 95% confidence interval with 6%
margin of error, we manually randomly sample and inspect 234 prompts.

5.2 RQ2: Prompt evolution analysis

To understand how students develop and optimize their prompts, we compare the constraints in consecutive prompts
for the changes.

Since all logical expressions in the prompts were in conjunctive normal form, we could categorize the changes into
the following four categories.

• Adding Constraints: A prompt refines the previous prompt if it adds additional constraints to the previous
prompt. That is, its constraint is stricter than the previous one.
• Modifying Constraints: A prompt revises the previous prompt if it does not contain all the prompts in the
previous prompt. It can seem as backtracking in problem solving.
• Rewording: If two consecutive prompts have identical constraints but differ in text, we categorize this as
Rewording. It happens when students paraphrase the previous prompt.

Manuscript submitted to ACM
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Table 4. Evolution Example

Prompt# Prompt text Translation to constraints Type of change
P1 Write me a Python function that counts

how many zeros are in a list of X num-
bers

𝐶1 ∧𝐶2 ∧𝐶3

P2 Write me a Python function that counts
how many zeros are in a list of X num-
bers, using the .count() function

𝐶1 ∧𝐶4 ∧𝐶2 ∧𝐶3 Adding a constraint to P1. (A require-
ment for using .count was added.)

P3 Write me a Python function that would
respond with counter([0, 2, 3, 4,
5, 6, 0]) => 2 when given a list of
numbers. This should be counting the
number of zeros given.

𝐶1 ∧𝐶5 ∧𝐶2 ∧𝐶3 Constraints in P2 have been modified.
(The requirement for using .count was
removed, and the requirement for func-
tion signature was added.)

• Resubmission: The previous prompt without any textual changes is submitted.

Table 4 shows an example of changes in a sequence of prompts. Since P1 is the initial prompt, no modification
type is assigned. P2 introduces a new requirement that the .count() function must be used. Since this adds a stricter
condition to the previous prompt without altering other aspects, it is categorized as a adding constraints. P3 introduces
a requirement for a new function name counter with specific output behavior. Furthermore, the requirement to use
.count() (𝐶4) is removed. Since this change modifies previous conditions rather than simply adding constraints, it is
categorized as a modifying constraints.

As an example of the rewording case, Prompt2Constraints generated 𝐶1 ∧ 𝐶2 ∧ 𝐶3 ∧ 𝐶4 constraints for the
following prompt,

“Write me a python function name counter which contain a list of numbers and return me how many
number 0 in the list”

The user submitted the following prompt, replacing “return me how many number 0 in the list” with “count(0)”

“A python function counter with a list of numbers and return count(0)”

As a result, Prompt2Constraints generated the same constraints as in the previous prompt, since they are
semantically equivalent. It shows an interesting case where a user attempts to reduce the length of a prompt by
replacing a part of natural language specification with a more succinct equivalent in a formal language.

5.3 RQ3: Comparison of the difference between successful and unsuccessful prompt sessions

To understand the difference between successful and unsuccessful prompts, we count the number of changes in
constraints between consecutive prompts. We then use a statistical test to compare the number of changes in students’
successful and unsuccessful promptings.

6 RESULT

6.1 RQ1: Correctness and robustness of the generated constraints

To evaluate the accuracy of the translation of the prompts to correct logical expressions, we calculated the z score for
95% confidence interval with a 6% margin of error for this dataset [14]. We randomly sampled and manually inspected
234 prompts. Of 234 samples, Prompt2Constraints translated 225 prompts correctly to propositional logic constraints,
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Table 5. Results of Pearson correlation between changes in the constraints and problem solving length

Activity Correlation p-value
Adding Constraints -0.338464 0.000004
Modifying Constraints 0.177237 0.018612
Rewording 0.181198 0.016098
Resubmission 0.157528 0.036797

and for 9 prompts, the number of constraints generated by Prompt2Constraints was fewer than what an expert
would extract. For example, Prompt2Constraints found three constraints for the following prompt: “Write a Python
function that counts the number of zeros in a list and prints it”, that is, 𝐶1 for a Python function, 𝐶2 counts the number
of zeros, 𝐶3 prints it. Although plausible, 𝐶2 contains two equally important constraints for analysis (1) counting and
(2) zero values. Therefore, we expected Prompt2Constraints to generate four constraints, not three.

During our manual inspection, we found that Prompt2Constraints and GPT-4 are remarkably robust to reordering
the text in the prompts. For example, it outputs𝐶1∧𝐶4∧𝐶2∧𝐶5∧𝐶3 for “Write me a Python function named counter.
The counter function takes a list as its input and returns the number of zeros in that list.” It also generates an equivalent
logical expression 𝐶1 ∧𝐶2 ∧𝐶5 ∧𝐶3 ∧𝐶4, for a subsequent prompt that preserves the correspondence of constraints
with reordered text: “Write me a Python function that counts the number of 0 in a list of integers and returns the value
as its output. The function is called counter.”

6.2 RQ2: Prompt evolution analysis

Figure 4 shows the types of changes in the successful prompt sequences of the students. First, the student starts with
an initial prompt. Second, if the student does not get the right solution from the first prompt, they will begin adding
more requirements (adding constraints), or modifying existing requirements in the prompt (modifying constraints).
Additionally, some students resubmit the same prompt (resubmission) or rephrase it (rewording). The figure shows that
the students prompted more in the first task compared to the subsequent tasks. We investigated a potential correlation
between the type of changes, and the length of prompting sessions.

6.2.1 Correlation of Constraint Changes and the Length of Prompting. Table 5 presents the results of the Pearson
correlation analysis between percentages of the number of constraint changes in each sequence of prompts with the
length of the sequences. It suggests a moderate negative correlation between the percentage of adding constraints
with the length of prompting, which means that students who frequently add constraints, their prompting sequence
tends to be shorter. This may suggest that adding constraints helps students converge on a solution faster and can
be due to their core refining of their prompts. On the other hand, weak positive correlation between the length of
prompting and the other constraint changes: modifying constraints, rewording, and resubmission, which may suggest
that these constraints changes slightly increase the prompting sequence. This can be an indication of trail and error
where students try to remove part of the prompt and introduce a new part in modifying constraints, trying rewording
the same prompt, or just resubmit the same prompt.

6.2.2 Prompt2Constraints for Understanding Problem Solving Steps. Using Prompt2Constraints, the constraints in
each prompt can provide insight into how students try to guide the LLM to the solution. In this section, we demonstrate
how the constraints can be used to analyze student prompting strategies at the level of constraints and how they could
Manuscript submitted to ACM
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(a) Task 1

(b) Task 2

(c) Task 3

Fig. 4. Changes in the constraints for each prompting task for students who finished all three tasks
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(a) Successful (b) Failed Prompting

Fig. 5. Changes in constraints

potentially be used to find where an intervention to help students can be helpful. We note that we will use two examples
to motivate the potential solution. In future work, a thorough evaluation of the generalizability and usefulness of the
proposed approach in pedagogy will still be needed.

Figure 5 shows examples of changes in the constraints of two users in problem 1, Figures 5a and 5b show a successful
and a failed attempt to solve the problem successfully, respectively. Each axis in the spider graph represents a constraint,
and scales represent prompt orders where the innermost scale represents the first prompt and the outermost scale
represents the last prompt. Figure 5a shows that the student starts with a couple of constraints initially. The constraints
in the second and third prompts suggest that the student evaluates different approaches, by trying 𝐶3 in the second
prompt, then replacing it in the third prompt with 𝐶5 ∧𝐶7. From the fourth prompt, the student picks pieces from
the last two prompts 𝐶3 ∧ 𝐶5 and incrementally adds more constraints in prompts 5 and 6. In the last prompt, the
last prompt is slightly modified (removing 𝐶4) and adding 𝐶8. Overall, except for initial prompts, the changes in the
constraint are limited to a limited number of constraints.

In contrast, Figure 5b shows an example of a failed attempt to solve problems. Unlike the previous problem solving
approach, we see that while the student incrementally adds more constraints to the initial prompts until prompt 8, there
is a sudden large change in the number of prompts in prompt 6 that suggests that the student may have changed their
solution approach. Moreover, the rate of change in the subsequent prompt increases substantially, with two or three
constraints that may suggest the student struggle in formulating a solution.

Opportunity. The sudden changes in the constraints in Figure 5b may suggest students assumes that they’re exhausted
the current approach and a drastic change in the problem solving or prompting strategy. It may suggest that such points
can be good candidates for an intervention, e.g., generating hints. For example, manual inspection of the prompts in
Figure 5b showed that the student was very close to the solution in their third prompt, and only misplaced the name of
the function. As the frustration of the students grows, their sixth prompt becomes: “it is stupid”, and afterward the user
explores other parts of the solution space. Therefore, Prompt2Constraints can suggest the appropriate times for an
intervention.
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Table 6. Relation between constraints in the reduced prompts and original prompts

Relation Identical constraints Less constraints More constraints
Number 35 5 1

6.2.3 Understanding Prompt Length Reduction with Constraints. In the prompt problem study [5], students were
encouraged to minimize their successful prompts. Applying Prompt2Constraintswould allow us to see if the students
made substantial changes to the semantics of the prompts or merely tried to reduce the length of the prompts by
rewording. These two approaches would entail two different approaches. In the first one, the student would need to
rethink the constraints in the solution, while the second approach may mostly focus on wordsmithing.

Table 6 shows the results. We identified the first successful prompt and the subsequent smaller successful prompts
and compared their constraints. Out of 41 pairs, we found that 35 smaller prompts have the same constraints as the
original correct prompts, five reduced prompts had fewer constraints than the original prompts, and only one had more
constraints than the original prompts. It suggests that most of the students resorted to rewording and wordsmithing to
reduce the length of the prompts.

During the analysis, we found an interesting case in which a significant reduction in word count did not affect the
number of identified constraints. Specifically, some users used underscores to combine multiple words into a single
token, reducing the overall word count to just one word without altering the prompt’s content, task requirements, or
constraints.

6.2.4 Number of constraints. Figure 6 shows the average number of words (blue line), the number of users (green line),
and the average number of constraints (orange line) in each prompt step. In the original prompt problem study only
the first two were reported, which would only provide a partial view of the textual representation of the prompts and
the solutions that they expressed. Prompt2Constraints can enrich it by adding a sematic view of the prompts using
constraints. For example, while the figures show some increases in the length of prompts in the long tail of the graphs,
the average number of prompts remain relatively steady.

Furthermore, we can see in Figure 6c that a student continues to submit 38 prompts and the number of constraints
and words is almost the same in most submissions. When we look back at the sequence of strategies in Figure 4, we
found that most of the time this student was submitting the same prompt without any changes in the language and
constraints.

6.3 RQ3: Comparing size of constraint changes in successful and unsuccessful prompt sequences

Figure 7 shows the size of the changes between constraints in consecutive prompts, the green line represents the
average size of the differences in successful prompt sequences (0.83), while the red line represents the average size of
the differences in unsuccessful prompt sequences (0.71). The black line denotes the average size of differences in all
prompt sequences (0.81). Mann-Whitney U-test failed to find a statistically significant difference between the size of
changes in consecutive prompts in in the successful and unsuccessful prompt sequences (p-value = 0.416).

7 PROMPT2CONSTRAINTS FOR MEASURING THE PROGRESS

In this section, we describe a potential application of Prompt2Constraints in the support of intelligent tutoring
systems in the era of generative AI and LLMs. In particular, we show that the constraints can be applied to measure
how far or close students are from the correct answer. We outline an algorithm and motivate it in a working example.
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(a) Task 1 (b) Task 2

(c) Task 3

Fig. 6. The average number of words in each subsequent submission compared to the average number of constraints and the number

of participants that submitted

7.1 Algorithm

Suppose 𝑆 is a successful prompt and a sequence 𝑃 of prompts written by students/users. The algorithm 1 outlines an
algorithm for measuring the progress of the students toward a solution. The measure can potentially be used to direct
an intelligent tutor system or hint generator.

First, we create a new set 𝑇 that contains 𝑆 the prompts in 𝑃 . Then, we use Prompt2Constraints as previously
described to extract the constraints of the prompts 𝐶 . In the next step, the difference (𝑑𝑖 𝑓 𝑓 ) between the constraints of
𝑆 (𝐶 [𝑆]) and the constraints of the user prompts are calculated. The result of 𝑑𝑖 𝑓 𝑓 function can be used to measure how
far is the students’ prompts to the solutions. We note that many different prompts can be a solution to a programming
task, in such cases, all representative solution prompts can be collected in a set 𝑆 , and the algorithm will need to compute
the difference between the prompts and each of the representative solutions.

Algorithm 1 An algorithm for measuring the success
𝑇 ← 𝑃 ∪ 𝑆
𝐶 ← Prompt2Constraints(𝑇 )
for 𝑝 ∈ (𝐶 \ 𝑆) do

𝐷 [𝑝] ← diff (𝐶 [𝑆],𝐶 [𝑝])
end for
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Fig. 7. Size of changes in consecutive prompts

A Case Study. Here we demonstrate the application of 1 to failed prompting. We use the failed prompts in Figure 5b
along with the last prompt in Figure 5a which is a successful prompt. Figure 8 depicts the resulting constraints for the
failed prompts (prompts 1 to 15) along with constraints in the successful prompt (prompt 16–green lines). Note that the
constraints’ names changed because we added prompt 16.

This student was very close to the solution in the third prompt (P3) as it is only one constraint different from the
proposed solution in P16. The text for P3 is “Write me a Python function that uses the counter function and counts the
number of elements in the list which have the value ’0’.” After P3 the distance between the student’s solution and the
proposed solution increases, which leads to changing the direction in problem solution approach from P7. The text for
P15 is “you are given a list in python. use the for in range loop to traverse this list. within that list, if there is a 0, add 1
to a variable named counter. once you are done traversing the list, print the variable which is storing the number of 0s
found” and the corresponding constraints that Prompt2Constraints suggests are 1 ∧𝐶2 ∧𝐶3 ∧𝐶9 ∧𝐶10 ∧𝐶13. P16
is “Write me a Python function that defines the function ’counter’ so the output finds and print the number of times an
object in the list equals 0” with the corresponding constraints 𝐶1 ∧𝐶4 ∧𝐶2 ∧𝐶3 ∧𝐶13. Using the built-in explanation
for the logical differences of two prompts, Prompt2Constraints explains “The functionality remains consistent with
P15, without the specific loop and variable requirements.” A future hint generator can either encourage the student to
continue refining P3.
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Fig. 8. Using constraints to guide failing prompting

8 THREATS TO VALIDITY

An important limitation of our work is the extent to which findings generalize across different tasks, domains, and
learner populations. Because we evaluated Prompt2Constraints using prompts from introductory Python problems,
its performance may vary when applied to more advanced programming tasks or to subjects outside computing.
Second, the approach relies heavily on LLMs—particularly GPT-4 –for its constraint extraction, which introduces
potential bias or instability due to the proprietary and continually evolving nature of these models. Changes in LLM
behavior or differences between models could lead to inconsistent results over time. Third, any errors in the few-shot
learning examples or prompts used to train Prompt2Constraints can propagate through the system, impacting
accuracy in ways that are difficult to detect without additional human review. Finally, like most automated methods,
Prompt2Constraints may fail to capture nuanced or context-specific information not readily translatable into
propositional constraints. These factors could limit the technique’s ability to fully capture the diverse ways learners
conceptualize and express problem requirements. Careful consideration of these threats, and additional validation efforts,
such as manual annotation or triangulation with other data sources, are critical for ensuring robust and trustworthy
results.

9 DISCUSSION

In this section, we discuss the results and potential applications presented in the paper.

Accelerating research. In our experiments, the GPT-4 few-shot learning performed very well in identifying the
constraints with only two examples from the dataset. A major benefit of Prompt2Constraints lies in its potential to
rapidly scale analyses that would otherwise require exhaustive manual annotation. By automatically extracting logical
constraints from student prompts, researchers can efficiently sift through large datasets, pinpointing trends or anomalies
with minimal human intervention. This automation not only saves considerable time, but also reduces potential human
errors or inconsistencies in classification. Moreover, because it employs few-shot learning, Prompt2Constraints
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can quickly adapt to new tasks or domains, further broadening its applicability. As a result, researchers can explore
hypotheses more easily, conduct comparative studies, and refine their experiments in an iterative manner, ultimately
accelerating progress and innovation in both computing education and broader LLM-based investigations.

Finding when students struggle. Prompt2Constraints provides a way to systematically track a student’s evolving
prompt constraints over time, revealing moments where significant or erratic shifts occur. These abrupt changes in
constraints—such as suddenly discarding previously used requirements or drastically revising the approach—often signal
confusion or frustration, suggesting the student has reached an impasse. By mapping each prompt to propositional
logic, educators or automated tutoring systems can quantify the “distance” between a student’s current prompt and a
known solution or optimal set of constraints. In practice, this enables real-time detection of where students stray too far
from an effective strategy or repeatedly circle back without making meaningful progress. Consequently, instructors can
provide targeted interventions, such as clarifying conceptual misunderstandings or offering smaller, more manageable
sub-goals. This proactive assistance reduces students’ trial-and-error cycles, leading to a more efficient and supportive
learning process.

Potential use in hint generation. Another advantage of the Prompt2Constraints framework is that it can be
integrated into real-time hint generation. By mapping student prompts to logical constraints, the system can measure
how closely these constraints align with, or diverge from, a known correct solution’s constraints. This difference can
directly inform targeted hints: for instance, identifying when a necessary condition–such as checking list bounds or
returning the right data type–is missing, or when two constraints conflict. Moreover, by tracking how a student’s
constraints change between prompts, Prompt2Constraints helps pinpoint exactly where they might need support,
allowing the system to offer context-aware nudges that guide them back on course. These timely, tailored hints can
ultimately help learners refine their problem-solving strategies, reduce trial-and-error cycles, and deepen conceptual
understanding.

10 CONCLUSION

In this work, we introduced the Prompt2Constraints approach to systematically analyze students’ prompting behavior
in programming tasks. The approach is based on the few-shot prompting LLMs to extract constrains that users have
specified in the prompt. Our results show that the approach is robust, and provides a multitude of different options for
analyzing prompting behavior. Moreover, struggling students tend to modify their prompts more suggesting shifts in
the problem-solving strategies.

This work contributes to scalable prompts analysis which we used to analyze more than 1500 prompts of students
interaction with LLM to generate codes for programming tasks. The Prompt2Constraints has potential in real-time
LLM educational tools to guide students throughout the prompting journey, and trigger the need for assistance for
struggling students when they shift to explore another area than the solution space. In future research, we could extend
the Prompt2Constraints to more complex programming tasks.
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