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Motivation: Students learning to program often reach states where they are stuck and can make no forward
progress – but this may be outside the classroom where no instructor is available to help. In this situation, an
automatically generated next-step hint can help them make forward progress and support their learning. It is
important to know what makes a good hint or a bad hint, and how to generate good hints automatically in
novice programming tools, for example using Large Language Models (LLMs).
Method and participants: We recruited 44 Java educators from around the world to participate in an online
study. We used a set of real student code states as hint-generation scenarios. Participants used a technique
known as comparative judgement to rank a set of candidate next-step Java hints, which were generated by
Large Language Models (LLMs) and by five human experienced educators. Participants ranked the hints
without being told how they were generated. The hints were generated with no explicit detail given to the
LLMs/humans on what the target task was. Participants then filled in a survey with follow-up questions. The
ranks of the hints were analysed against a set of extracted hint characteristics using a random forest approach.
Findings: We found that LLMs had considerable variation in generating high quality next-step hints for
programming novices, with GPT-4 outperforming other models tested. When used with a well-designed
prompt, GPT-4 outperformed human experts in generating pedagogically valuable hints. A multi-stage prompt
was the most effective LLM prompt. We found that the two most important factors of a good hint were length
(80–160 words being best), and reading level (US grade 9 or below being best). Offering alternative approaches
to solving the problem was considered bad, and we found no effect of sentiment.
Conclusions: Automatic generation of these hints is immediately viable, given that LLMs outperformed
humans – even when the students’ task is unknown. Hint length and reading level were more important than
several pedagogical features of hints. The fact that it took a group of experts several rounds of experimentation
and refinement to design a prompt that achieves this outcome suggests that students on their own are
unlikely to be able to produce the same benefit. The prompting task, therefore, should be embedded in an
expert-designed tool.

CCS Concepts: • General and reference → Empirical studies; Evaluation; • Computing methodologies
→ Artificial intelligence; Classification and regression trees; • Social and professional topics→ Computer
science education.

Additional Key Words and Phrases: LLMs, AI, Java, Next-step hints, comparative judgement

1 INTRODUCTION
Students who are learning programming often get into a stuck state where they cannot make
progress [79]. This may be because they cannot solve a compiler error [65], a run-time error [18, 77],
or other more general issues with problem solving [9, 64]. There has been work to try to offer hints
to students based on intelligent tutors [10] or crowd-sourced hints [20] or explanations [21], but
the new growth of generative Artifical Intelligence (AI) tools offers new possibilities for generating
these hints.
Offering hints to students is a subtle art [50, 78]. Just giving the answer offers little or no

pedagogical benefit, but being too coy or obscure is not helpful and may frustrate the student
further. Choosing the right level of hint is typically more difficult than offering the actual solution.
∗Howzat is a contraction of “How’s that?”, used in cricket to appeal to the umpire for a judgement on whether a batter is out.
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Human teachers have the advantage of often knowing more context about the student and rich
knowledge from the student’s reaction when attempting an explanation – but teachers are often in
large classes and cannot be present at every moment (including when the student works separately
outside class) to give hints, so automated approaches to hinting are of interest to provide scale and
constant availability.
Generative AI systems such as Large Language Models (LLMs) offer ways to aid students [13],

such as generating hints. Students can already directly interact with such LLM systems, but this has
two key problems. The first is that students will often ask for the answer, not for a hint, which is less
pedagogically beneficial. The second is that students who struggle may be ill equipped to write good
prompts to the LLM [12]. Therefore it may be best for a tool, such as an Integrated Development
Environment (IDE), to provide the prompt on behalf of the student, in order to generate a hint [62].
It is this approach that we investigate in this paper.
The task we are setting the LLM here is more complex than that of solving a programming

problem (which LLMs have been shown to be capable of [36, 48]). The model has to work out what
the intended solution is, and it has to do this from limited information: in our context, instead of
being given a specification of the programming task, the input consists solely of an erroneous,
work-in-progress snapshot of an inexperienced programming novice’s source code. The task has to
be inferred. When the LLM has deduced the solution, it is expected to not give it to the student, but
instead devise a pedagogically useful hint that creates a learning experience in which the student
makes progress towards a solution.

Generating the hint automatically leads to a set of questions: What makes a good prompt for our
purpose? And even with the best prompts and the best LLM: Are the hints generated good enough
to be worth showing to novices? Can we consistently generate hints of good enough quality that
they help students more than they confuse them? Attempts to investigate these issues reveal two
fundamental questions we need to answer as part of this work: What makes a good hint, anyway?
And how do we judge whether a hint is “good enough”?

To answer the first of these two questions, we use a method called comparative judgement to rank
a number of hints (see section 3) according to their quality. This allows us to extract characteristics
of good hints in general. To judge whether the hints are of sufficient quality to be shown to students,
we use a benchmark: we compare generated hints to those given by expert humans. If the generated
hints are judged better than those from humans, they provide an improvement on the status quo
and are therefore useful. The details of the methodology are described in section 3.

In summary, this work provides the following major contributions:

(1) We evaluate which LLM currently performs best in providing next-step hints for novice
programmers.

(2) We determine the best prompts for generating hints using the state-of-the-art LLMs at
the time of the experiment.

(3) We investigate whether optimal LLM/prompt combinations can perform as well as (or
better than) humans in generating hints.

(4) We describe and demonstrate a repeatable method for determining the best prompts and
evaluating their performance, which could be re-used when LLM systems update in future.

(5) We investigate whether comparative judgement is a viable method for providing
rankings in computing education research studies.

(6) We summarise the characteristics of the best hints (as rated by educators) to determine
what makes a good hint: what length, what kind of language, what pedagogical features.
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2 RELATEDWORK
We divide related work into two main parts: prior work on hint-generation that did not use LLMs,
and the use of LLMs in programming education. We also review related work on when hints should
be given, as that is a basis for selecting data for our paper.

2.1 Non-AI hinting for novice programmers
The idea of giving automated hints to stuck novice programmers has a long history that pre-
dates LLMs, and thus there have been multiple reviews on the topic. Crow et al. [10] conducted
a review of intelligent programming tutors, from the 1980s to 2018, and found that they were
very varied in the features they provide, including whether hinting support is present or not.
Keuning et al. [34] performed a systematic literature review of feedback generation in general in
programming education. They found that relatively little feedback generation focused on next-step
hints. McBroom et al. [53] surveyed hint generation systems from 2014–2018 and introduced a
framework that synthesised work on hint generation. Interestingly, it is not clear that LLM-based
hinting would fit into McBroom et al.’s framework (which revolves around constructing hints by
starting with sets of hint data to narrow down or transform), suggesting that generative AI is
quite distinct from existing work on automated hint generation. Perhaps surprisingly, little work
is available on human hint generation, or investigating what makes a good hint independent of
automation – the closest work is Suzuki et al. [78] which categorised types of hints, but without
evaluating their usefulness. Most of the hint literature is concerned with discussing the various
ways to automate the activity.

In terms of non-AI techniques to generate hints, one way to generate them is to imitate the hints
that teachers would give [29, 78]. Another is to use techniques such as program repair to generate
fixes [2, 60], or hand-written rules [28, 80]. Existing solutions to a specific programming problem
can be used to infer hints for future attempts [58].

Several aspects of automated hinting see no overall agreement in the literature, and evidence is
inconclusive or contradictory. While some studies are largely positive about the value of automated
hint generation, other studies provide some evidence to suggest that hints themselves may not be
useful [69], or that they may not help learning [52]. One approach to hinting is to show multiple
possible hints, at the different appropriate points in the code where each hint could be enacted,
although some students found this overwhelming [68] – and similar research on suggested fixes for
errors found that students tended not to use the fixes even when they were appropriate [6]. Students
report difficulties using hints that are vaguer [68]. Hints which have an explanation are perceived
as more helpful and more interpretable but do not necessarily result in better performance or
learning [50, 51]. Overall, it appears that hints must be carefully designed in order to be useful.

2.2 Timing of hints
There is a large body of work to identify struggling students across the duration of a whole
course [1, 16, 23]. However, this is a distinct problem from trying to identify which students need
hints and, crucially, when precisely they would benefit from a hint.

A programming environment can provide a hint when students attempt to run the program [60]
or when they receive a compiler error [2]. The most common approach is to wait until the student
explicitly requests a hint [24, 28, 58, 80]. Alternatively, some tools suggest hints automatically as
the user enters code [22, 66].

Jeuring et al. [29] performed a study asking experts when they would intervene to provide hints,
and found “a frequent conflict caused by different pedagogical approaches: (a) an early intervention
prevents a student from writing unnecessary code and spending extra time on an assignment, which
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may lead to student confusion and frustration, versus (b) a delayed intervention gives a student a
chance to struggle productively, which may improve student learning.” In a follow-up study, Lohr
et al. [46] found similarly mixed results over when educators chose or chose not to provide feedback:
“sometimes one expert uses a reason at a step to explain why they do intervene, and another expert
uses the same reason at the step to not intervene.” Thus there is no clear recommendation from the
literature for when is the best time to give a hint.

2.3 Generative AI and Large Language Models in programming education
Since the release of ChatGPT in late 2022 there has been an explosion of interest in LLMs, including
in programming education teaching and research. The result has been a dizzying rate of publication;
all of the LLM studies cited in this section (of which there are more than thirty) were published
in the last two years. In an early 2023 study, educators were found to be split between those
who wanted to resist AI tools and those who wanted to embrace them [41]. However, the recent
explosion in popularity seems to imply that resistance may well be futile [19, 31], and it may be
best to consider adapting our pedagogy [14, 33, 75] and assessment [70] instead. In this section we
survey different aspects of LLMs in programming education in turn: students using them directly,
students using them via tools, and their use in generating hints and explanations.

2.3.1 Students’ direct use of Large Language Models. A natural first step in studying LLMs in
programming education was to study what happens when students used LLMs directly, without
scaffolding, in a manner of their choosing.

Prather et al. [66] performed a study of how novices worked with Copilot, a generative AI tool
that is designed to aid in program construction. They found that novices struggle to understand
and use the tool. A later study by Prather et al. [67] suggested that LLMs may widen the divide
between students at the top and bottom of the class. Zamfirescu-Pereira et al. [83] observed users
without experience in LLM prompts as they designed a chatbot. They found that the users struggled
to modify LLM prompts to achieve the desired effect, although they were not using the LLM to
directly modify program code. Fiannaca et al. [17] found that users could struggle with what
made an effective prompt, and worried about syntax issues within prompts such as line breaks,
and the presence or absence of question marks. Denny et al. [12] explored how students write
prompts in order to solve programming exercises, when the exercises themselves could not simply
be copy-and-pasted into the prompt. They found that “many students, even ones many years into
their programming education, do not necessarily understand how to write effective prompts [for
LLM systems].” Nguyen et al. [57] similarly found that many novices struggled to write effective
prompts when using LLMs for the first time.
Thus the initial research in the area suggests that novices struggle to directly use LLMs in an

effective manner. This chimes with other research considering the pedagogical implications: Xue
et al. [82] and Kazemitabaar et al. [32] found that direct use of LLMs did not produce any significant
effect on learning (although the latter suggest that students with higher prior knowledge may
have received greater benefits from using the generator than students with less prior knowledge),
while Mailach et al. [49] concluded that “we cannot just give vanilla [LLM] chatbots to students
as tools to learn programming, but we additionally need to give proper guidance on how to use
them—otherwise, students tend to use it mainly for code generation without further reflection on
or evaluation of generated code.”

2.3.2 Student use of tools powered by Large Language Models. An alternative mode of use suggested
by several researchers [55, 74, 81] is to build tools powered by LLMs. This can avoid issues with
students’ inability to create prompts, and give more control over the tools’ output.
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Liffiton et al. [44] created a tool where users could fill in four items: which programming language
is being used, the relevant code, the error (if any), and the question they want help with. This
is then structured into a single larger prompt to the LLM, and the response is shown in the tool.
They concluded that students liked the tool, including the fact that it did not just “give away
the answer”. In a follow-up study, Sheese et al. [76] found that students tended to ask for help
with their immediate problem and would not typically ask more general queries, such as seeking
understanding of a wider concept.

Birillo et al. [4] combined LLMs with static analysis in order to create a tool that provides next-
step hints. A brief evaluation with students suggested that the tool showed promise. Denny et al.
[13] studied students’ use of an LLM-powered assistant, and found that students engaged it with
extensively, and also found that students preferred scaffolding and guidance rather than simply
being told the final answer. This suggests that hint-generation may be a more useful and more
popular tool for students than simply providing correct program code.

2.3.3 Use of Large Language Models for hinting and explanation. Several studies have investigated
the use of LLMs for feedback, explanation or hinting – the latter being the precise topic of the
current research.
Leinonen et al. [43] used some early LLMs to generate enhanced programming error message

explanations. The researchers rated the error message explanations as high quality. More recently,
Cucuiat and Waite [11] investigated secondary school teachers’ views on LLM-generated program-
ming error message explanations. They used feedback literacy theory to analyse interviews and
found that educators preferred LLM explanations that guided and developed understanding rather
than tell (emphasis indicates terms defined by feedback literacy theory [54]).

Hellas et al. [24] investigated the use of LLMs to solve historic student help requests. They used
data from a course where students could ask for help from human teachers. They used the code that
students asked for help on, combining it with a boilerplate AI prompt, then analysed the responses
that came back from the AI, in terms of features such as “identifies at least one actual issue” and
“includes code” in order to compare two different AIs (Codex and GPT-3.5), each in English and in
Finnish. They found that the AI would frequently provide code despite being instructed not to, and
that LLMs could make the same mistakes as students when trying to help them. Roest et al. [72]
created a tool to give next-step hints for novice Python programmers, by providing the problem
description and current code, and evaluated them with three students and two educators. They
similarly found that it was difficult to control the LLM output and that the hints were sometimes
misleading. Kiesler et al. [35] also used a similar technique of using historic incorrect student code
submissions and analysed the responses using the feedback categorisation of Keuning et al. [34].
They again found LLMs could be misleading but that the quality was generally good.

MacNeil et al. [47] included code explanations generated by LLMs into an online course and
found that students rate AI-generated explanations useful for their learning, and that students
preferred concise, high-level explanations over line-by-line explanations of the code. Leinonen et al.
[42] found that LLMs produced explanations of program code that were rated as more accurate
and easier to understand than explanations generated by students on the course. This suggests that
AI hints may be very valuable for learners.

Pankiewicz and Baker [59] investigated students’ affective states when receiving hints from GPT
for solving compiler error messages, and found an increase in focus and decrease in confusion,
although more generally they found a mixed pattern as to whether students reported that the
results were useful for not, and a mixed result in performance. Xiao et al. [81] investigated students’
opinions of using an LLM-powered tool to generate hints. They found that the hints were high
quality, but students commented on the lack of flexibility in the interface, and they were confused
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by some of the higher-level hints which they could find vague. Nguyen and Allan [56] used few-shot
learning to train GPT-4 to generate hints and had two instructors evaluate them for accuracy and
usefulness, finding that the model performed well and was useful.
Overall, previous studies have suggested that LLMs can produce good quality hints, but there

are challenges to tightly control the output (in particular, to avoid giving too much program code
or too much of the solution) and avoid misleading hints. As we will detail in the next section, our
study differs from previous work in the following ways:

• We focus on stuck students with no information about the problem description that they
are working on – a harder but more flexible domain than when the problem is known.

• We use a larger-scale educator evaluation in contrast to the prior evaluations that use 2–3
educators (often the researchers themselves).

• We provide a detailed assessment of hint characteristics in multiple dimensions (length,
readability, pedagogy, correctness, sentiment) that combine the disparate subsets into one.

• We ask the educators to use comparative judgement in order to form a ranking of hints
which allows us to infer links between these hint characteristics and relative hint quality.
This provides useful information about hint attributes that is orthogonal to how they were
generated.

• We include human-generated hints to allow us to compare performance of human experts
to LLMs.

• We assess multiple prompts with multiple models to see how much effect prompts have on
model performance.

3 METHOD
From our survey of prior work in subsection 2.1, it seems that work on non-AI hints has shown
mixed results as to its effectiveness. Many hint approaches rely on knowledge derived from existing
solutions to the problem and thus target that specific problem. Generative AI, LLMs in particular,
has the potential to be more flexible and powerful when generating a hint for an unseen problem.
Studies of LLMs find that students can struggle to formulate prompts, with an alternative approach
emerging of using a tool to construct the prompt based on constrained, guided information from
the user.

Our approach in this paper is to use source code data from real-world programming sessions from
stuck students. We will use the term Snapshot for a code sample of a student during a programming
session at a point in their work when they were stuck.

We then present each snapshot to a set of Generators. We use the term Generator to refer to the
producer of the hint: this is either a combination of a specific LLM with a specific prompt, or an
individual human.

Next, we show these resulting hints to a set of experienced educators. The educators tell us which
hints they consider to be the best. This gives us five results: the best hints, the best-performing
LLMs, the prompt templates to generate the best hints, a comparison of human and LLM hints, and
the general characteristics of the best hints.

Our method thus has four main parts: the acquisition and selection of the student Snapshots; the
manner of creation of the set of LLM prompts to evaluate, leading to the generation of the hints;
the manner to evaluate the resulting hint quality using human experts; and the evaluation of the
attributes of interest of these hints. The overall method is shown in Figure 1 and explained further
in the following subsections.

6



Howzat? Expert Judgement of Human and AI Hints

Fig. 1. The design of the study: We take a Snapshot of student code from Blackbox, generate 25 hints for
this Snapshot (four LLMs each with five prompts, plus a hint from each of five human experts), and then ask
eight or more expert educators to compare the hints to form a ranking.We repeat this whole process with
four different Snapshots and different educators, resulting in 100 hints ranked by more than 32
educators. This allows us to infer what characteristics make a good hint, and which Generator (LLM+prompt,
or human) generates the best hints.

3.1 Student Snapshots
To find Snapshots (stuck student states) for our study, we randomly sampled sessions from the
Blackbox dataset [7] from an arbitrary week-day late in the typical northern hemisphere first
semester (21st November 2023), manually selecting states where we inferred that the students
were stuck and in need of a hint, as evidenced by making no productive progress for some time
after that point. Previous research has found that educators disagree about when is the best time
to intervene [29, 46], so in lieu of clear recommendations from the literature, we used our own
judgement. The exact point chosen is not crucial to the study, as long as it provides an interesting case
for which to generate hints. As described later in subsection 4.6, multiple participants commented
on the choice of student code being good, and realistic.

One example of a Snapshot is shown later in the paper in Figure 7 on page 19.

3.2 Prompt formation
Current literature does not yet suggest potential successful prompt templates for hint generation.
Furthermore, as AI models evolve, which prompts are effective may change over time. To try
to future-proof our methodology as much as possible when models continue to evolve, we used
the following approach. Five researchers, who are also experienced programming educators with
significant teaching experience, experimented with four LLMs to formulate prompts. The four
models were Mixtral-8x7B, GPT-3.5, GPT-4 and Gemini. Each model was used by a different
researcher, but with the most recent model, GPT-4, used by two. As suggested by research into
brainstorming [71], the researchers first brainstormed multiple prompts individually by using some
sample Snapshots (these were distinct from those used in the actual study). Then the prompts were
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combined and refined experimentally, during iterative cycles of collaborative discussion, resulting
in a final set of five distinct prompts.

3.3 Human-generated hints
Alongside the AI-generated hints, we also supplied human-generated hints. Each of the five
researchers was tasked with constructing one hint for each Snapshot in the experiment. This
was an attempt to produce the optimal hint that they, as experienced educators, could provide
to the student at that point, and it provided us with a benchmark in our results: we can not only
compare automatically generated hints against each other, but compare them to hints produced
by experienced humans. Constructing these hints was done independently; no researchers saw
another researcher’s hints until they had completed writing their own.

3.4 Educator evaluation
One way to rank hints is to ask educators to rate each one on an absolute scale, say 1–10. It can be
difficult to evaluate how good a hint is on such an absolute scale. Is a particular hint a 5/10 or a
6/10? Is everything just 7/10? Can participants remain internally consistent, and can the scale be
consistent between participants?
An alternative method to produce a ranking is a technique called comparative judgement. The

key idea behind comparative judgement is that people (termed judges) produce more reliable
judgements when repeatedly asked to compare two items and pick the best one, than to rate each
one individually on an absolute scale. Instead of “rate this hint 1–10”, the problem becomes “which
of these two hints is better”. By asking judges to pick the best item from a set of random pairs,
the judges act like the comparison function in a bubble sort, to sort the hints into an ordered list
from best to worst. This form of judgement is more consistent across different judges, as it does
not rely on an abstract absolute scale that would be influenced by different standards of individual
participants.

Comparative judgement has been improved upon in an algorithm known as adaptive comparative
judgementwhichminimises the number of comparisons needed [61]. Intuitively, if one hint is chosen
several times as always worse than others, you can leave it near the bottom of the list and focus on
the more borderline comparisons, to sort the list with fewer comparisons. Adaptive comparative
judgement has been widely used for assessment in education and found to be reliable [3], and has
been used in other areas of education research [30].
Each educator (judge) is first shown the Snapshot, and then asked to repeatedly rate which

of two presented hints are better in this circumstance, with the pairs generated by an adaptive
comparative judgement algorithm. San Verhavert and Maeyer [73] performed a meta-analysis on
non-adaptive comparative judgement and found that the number of judges did not impact reliability,
so we will not specify a minimum sample size of judges. If the judges are experts, San Verhavert
and Maeyer [73] found that for 90% reliability, 26 to 37 presentations per item are needed. Since
each comparison is between two items, ranking of 𝑁 items requires 13𝑁 judgements to achieve 26
presentations of each item. Given that adaptive comparative judgement aims to reduce the number
of comparisons, fewer should be needed. We use the No More Marking [38] platform to present
the hints and collect the judges’ choices. This platform uses a Progressive Adaptive Comparative
Judgement algorithm1 and recommends 10 comparisons per item2. In our study, we ranked 25 hints

1See https://blog.nomoremarking.com/progressive-adaptive-comparative-judgement-dd4bb2523ffe, visited 4 November
2024.
2See https://blog.nomoremarking.com/using-comparative-judgement-in-different-subjects-at-ks3-4415195f8947, visited 4
November 2024
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for each Snapshot, so we required ≈ 250 comparisons, which we split across 8 judges doing 31
comparisons each.

For our experiment, we needed the expert educators who evaluated the hint quality to familiarise
themselves with the Snapshot for which the hints were evaluated. To reduce the overhead incurred
by educators, we chose to expose each participant to only one Snapshot. In order to help the
participants all understand the Snapshot (which we took to be a prerequisite of the task of judging
the hints, rather than something left to the educators to succeed or fail at) we provided brief notes
with our interpretation of what the problem with the student code was. These notes were not given
to the LLMs when generating the hints.

We chose not to provide a detailed rubric for judging what makes the best hint. Our instruction
to educators was “Imagine that you are helping a student who is somewhere within their first year
of programming instruction, around the ages of 16-18. They are working on a problem and have
become stuck and asked for help. Imagine that the computer they are working on could give them
an automatic hint at this stage. We want you to determine which is the best hint to give in each
circumstance."

3.5 Measuring characteristics of hints
To characterise the best hints, we measure the following attributes: length of the hint (in number
of words), complexity of the vocabulary (i.e. reading level), (these first two are suggested in
guidelines by Denny et al. [15] as used by Prather et al. [63] for error message readability), sentiment,
correctness, and type of feedback (as per Cucuiat and Waite [11]).

3.6 Pre-registration and ethical approval
The study was approved according to the ethics procedures of King’s College London, approval
number MRA-23/24-41449.

We pre-registered the design of this study on the Open Science Foundation (OSF) website3. The
main changes since pre-registration are:

• We decided to show each educator-participant only one Snapshot rather than several, to
reduce the load on each participant.

• We refined the exact process that we used to generate the hints, as described in subsection 3.2
and had the idea to add human-generated hints.

• We chose a new way to characterise hints using feedback literacy after reading the paper
by Cucuiat and Waite [11] that was published after we pre-registered.

4 RESULTS
The study was carried out in 2024, with the hints generated in April 2024 and educators recruited
to perform the comparative judgement in August and September 2024.

4.1 Open data
All of the [anonymised] materials and data from this study are available publicly in an OSF
repository: https://osf.io/p436s/?view_only=048063e28b474fa7a8d5fa776985f39b 4 including: all of
the stages of prompt creation and merging, all of the Snapshots, all of the generated hints, all of
the processing performed on the hints, our participant instructions, our survey design, all of our
survey results and all of the results of the hint comparison, plus the full processing pipeline for all

3See https://osf.io/x8u3t/?view_only=2cdfa22b8dc542d6850e0cd8ce0ad6ff – this link is anonymised and is safe for anonymous
review.
4This is an anonymous link for review which is safe for reviewers to visit without revealing the identity of the authors.
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of our statistical analysis and figures. We hope that this is useful for anyone interested in verifying
or replicating our work.

4.2 Prompt creation
The five LLM prompts, shown in Table 1, were created as described in subsection 3.2. Two of these
are multi-stage prompts, which involves asking the LLM for an answer and then feeding it back to
the LLM. This may seem odd to those unfamiliar with using LLMs, but LLMs are not idempotent:
when asked for information or an answer, and subsequently asked to use or improve it, – even
without giving any new information in the second request – an LLM will generate a different and
potentially improved answer.

4.3 Hint generation
The prompts were fed to the models in April 2024 to generate the hints. We manually unified the
formatting between the resulting hints, to make sure the code snippets were all highlighted in
the same manner regardless of which model generated them. We also made one minimal pass to
remove boilerplate greetings from the very start or end of the hint, but we did not process the hint
any further, to retain authenticity of machine generation. Examples of things we did remove:

• Phrases responding to our prompt request such as “Certainly!” or “Absolutely!”, or in the
case of multi-stage prompts: “Here’s an improved version of my initial response”.

• Leading salutations such as “Hey there” or “Alright, student!”5.
• Trailing salutations such as “Best regards.” or final remarks such as “If you need anything
else, just ask.”

We felt that all of these phrases could be removed automatically in future by refining the prompt
or using a second processing pass, and they distracted from the hint content we wanted to evaluate.

Examples of things we did not remove:
• Encouraging phrases such as “Good luck!” or “Keep it up.”
• Emoji, e.g. an airplane emoji in a response about a student stuck calculating air miles points.
• Use of first-person phrases, e.g. “I noticed that there are a few things worth looking into”.
• Cases where the AI has addressed the educator such as “Now, to assist your student further,
I recommend...”

The final item is essentially the prompt “misfiring” and we felt it was important to penalise the
prompt and model for this behaviour.
All of the exact changes made to the generated versus presented hints can be seen in our OSF

repository.
The final set of hints included 25 per Snapshot: four AI models (Mixtral-8x7B, Gemini, GPT-3.5,

GPT-4) with all combinations of the 5 constructed prompts (see Table 1), plus five human-generated
hints. All hints were formatted similarly and given arbitrary identifiers to obscure how they might
have been generated.

4.4 Judges
We recruited participants to act as judges via mailing lists, forums and social media. We asked for
“Java educators” to complete an online task plus survey. There was no reward for participation. 85
participants signed up; three started but did not finish the task, 41 completed the task, and 35 of
those completed the survey (we discuss these numbers further in the threats to validity in section 7).
Participants were assigned in a round-robin fashion to try to ensure that as many Snapshots as

5One of the authors plans to use the latter to communicate with their students in future.
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# Prompt
1 I’m learning to program. Without giving the solution, can you

guide me into the next step to fix the problem in this code?
$CODE

2 You are an experienced programming instructor teaching a
course in Java. I will provide you student code and your task
is to generate a hint for the student. Please do not provide the
full solution, but try to generate a hint that would allow the
student to proceed in the task. Please address your response to
the student. Here is the code: $CODE

3a You are an experienced programming instructor teaching a
course in Java. I will provide you student code and your task is
to try infer what the task the student is working on is. Here is
the code: $CODE

3b You are an experienced programming instructor teaching a
course in Java. I will provide you student code and an expla-
nation of the task they are working on, and your task is to
generate a hint for the student. Please do not provide the full so-
lution, but try to generate a hint that would allow the student to
proceed in the task. Please address your response to the student.
Explanation of the task: $PREVIOUS_ANSWER Here is the code:
$CODE

4 You are a tutor who is helping a student who is stuck while
writing code for an introductory programming course. To help
the student, you must generate a hint that will identify their
mistake and help themmake progress continuing with their code.
If there is a serious error, please point that out first. Please be
helpful and encouraging, but do not reveal the answer - instead,
make one concrete suggestion to help them progress. Here is
their code: $CODE Please identify the most serious error in this
code and suggest a hint to the student to help them. Just show
the "Hint", suitable for immediate display to the student. Please
do not include any other explanatory text.

5a I have written the following code: $CODE I need help. Act like a
good teacher and give me some help. Respond in no more than
three sentences.

5b Do you think the hint you just gave was a good hint? Critique it,
including consideration of accuracy, friendly tone, helping the
student to learn and not giving too much of the answer away.

5c In light of your criticism, improve the response you first gave.
Table 1. The five prompts given to the AI to generate the hints. The Snapshot is substituted wherever “$CODE”
appears. Prompts are separated by double-lines. Some (3a+3b, 5a+5b+5c) are multi-stage prompts, separated
by a single line; each prompt part is given in sequential order; the marker “$PREVIOUS_ANSWER” indicates
that the full answer to the preceding part of the prompt should be inserted.
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Fig. 2. A frequency histogram based on how many participants made a given percentage of “left” decision
when asked to make a left-vs-right judgement. The blue bars show the actual values; the grey hashed bar
overlay is the theoretical distribution if the decisions were completely random (i.e. drawn from a binomial
distribution with probability of 50% for each decision).

possible had the necessary 8 completions, which proved difficult with the low completion rate.
Ultimately, four Snapshots reached the required 8 completions (with 8, 10, 8, 9 completions). Two
more Snapshots had only three completions each so are excluded from all the analysis of the
comparative judgements and hint rankings – but survey results of the judges of these Snapshots
are retained for the purpose of analysing judges’ reflections on performing the task.

4.5 Validity of Judging
Given that our results are reliant on the comparative judgement task, it is important to check that
the participants took the task seriously. We employed several metrics for this purpose.
The first check was how often the participants selected the left option as the best hint when

given the left-vs-right decision to pick the best hint of a presented pair. If any/many participants
consistently just clicked the same button it could indicate boredom during the task. Figure 2 shows
this data, compared to the theoretical binomial distribution that should occur if the percentage was
50-50%. A chi-squared test (𝜒2 = 44.0, 𝑝 = 0.06) between the two was not significant, suggesting the
observed data was not significantly different from a 50-50 distribution of left-right clicks – there
was no bias.

The second check was how long participants took to make the judgements, to see if this suddenly
dropped off during the judging, which would again suggest boredom during the task. Figure 3
shows these results. The participants take a long time for their first (≈75 seconds) and second (≈50
seconds) judgements as they acclimatise to the task, and this is followed by a gradual speeding
up (from around 40 seconds to around 20 seconds) as they work through the task. This gradual
pattern suggests becoming more accomplished at the task rather than giving up.
Those results suggest that judges took the task seriously, but we must also examine a core

assumption of comparative judgement: that there is an underlying ranking of items that is shared
among the judges. In a perfect case, such as a task asking judges to pick the largest number, it
should be possible (excepting human error) to perform a perfect ordering. Most real-world tasks,
however, will have some expected disagreements just because people have differing opinions. This
is acceptable as long as the disagreements are not too wide-scale. To investigate this, two measures
for inter-rater reliability in comparative judgement may be used: Reliability (a per-task measure)
and Infit (a per-judge or per-item measure).

Our Reliability scores for the four Snapshots were 0.73, 0.76, 0.76 and 0.60. A reliability of 0.7 is
generally considered sufficient [73] so the majority of our Snapshots showed outcomes with a high
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Fig. 3. The median (line) and interquartile range (shaded area) of time taken to make each judgement, ordered
by the decision order (first judgement made on the left, through to the last on the right).

Fig. 4. The frequencies of different Infit ratings, one rating per participant.

Fig. 5. A plot of Infit ratings (each plotted point is a participant) against median judgement time, to see if
less consistent judges were judging faster.
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level of inter-rater consistency. Our Infit scores are shown in Figure 4. Note that inconsistency in
Infit scores refers to inter-judge consistency not intra-judge: it is about whether the judge agrees
with their peers, not whether their own decisions were self-consistent. An inconsistent judge in
this sense does not necessarily mean a “wrong” or “bad” judge, just one whose opinions differ
from the other judges. We therefore did not exclude these judges. We did check if inconsistency
was associated with faster judgements (suggesting a kind of speed-accuracy trade-off; maybe the
inconsistent judges were choosing arbitrarily in a rush) but this was not the case (see Figure 5,
confirmed by a linear regression being non-significant, 𝑝 = 0.693).
Given that several previous studies of educators [5, 29, 46] have found that educators do not

always reach good agreement on pedagogical issues, it was slightly surprising that the agreement
level was so high.
Finally, we checked the speed of the hint judging against reading speed. A statistical model

(linear regression of log-transformed time taken vs combined word count and participant, 𝑝 < 0.001
for the combined word count factor) found that the average time taken to choose between two
hints by combined word count was as follows:

• 100 words: 28 seconds
• 200 words: 31 seconds
• 300 words: 36 seconds
• 400 words: 41 seconds
• 500 words: 46 seconds

Given that the average reading speed for non-fiction is 238 words per minute [8], it is likely that
participants were not fully reading most of the hints. However, this does not mean the judging was
invalid, for several reasons:

• It is valid for a participant to immediately assess that a hint is too long and that students
will not have the patience to read it, without reading it themselves.

• Participants saw the same hints multiple times, so they may have begun to recognise hints
without reading them through a second time.

• The participants are likely highly educated, and therefore used to skimming complex text
effectively.

In summary, all our checks suggest that the judges took the task seriously, and that there is good
if imperfect agreement among educators as to which hints are good.

4.6 Method and stimuli evaluation
In our survey we asked participants whether they found the comparative judgement task easy or
hard via a free-text response. 18 of 35 said they found it easy, 7 indicated a medium difficulty, 8
indicated they found it hard. Only one participant mentioned boredom.
We asked participants for their observations about the Snapshot example that they saw, in a

free-text response. Not all participants gave a response. Five mentioned that the Snapshots were
well-chosen, eight said they thought they were realistic, and two said they thought they were
unrealistic or outliers.

4.7 Hint characteristics
To evaluate which characteristics of hints were associated with their ranking, we extracted various
attributes of the hints, shown in Table 2.

The word count is straightforward, while the sentiment analysis [27] and reading level [37] used
existing techniques. We did not initially plan to use Model as a factor given that the participants
should be unaware of which model was used. However, since the Mixtral-8x7B model generated
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Attribute Type Method of extraction
Word count Integer Count number of words, including words in code, but

ignoring punctuation, symbols and emoji.
Reading level Real Flesch-Kincaid Reading Grade Level [37].
Sentiment Real VADER Sentiment Analyzer [27], compound polarity

score.
Model Category The name of the AI model or the term “Human” to indi-

cate how the hint was generated.
Telling Boolean Feedback-literacy-inspired category. See subsection 4.7.
Guiding Boolean Feedback-literacy-inspired category. See subsection 4.7.
Developing understand-
ing

Boolean Feedback-literacy-inspired category. See subsection 4.7.

Opening up a new per-
spective

Boolean Feedback-literacy-inspired category. See subsection 4.7.

Partially incorrect Boolean Flag indicating whether a hint was partially incorrect.
Table 2. All of the hint attributes that were examined, and how the attributes were extracted.

longer and less readable hints in a particular style, we were unsure if an effect of word count would
be related to the word count, the readability, or the model’s individual style, so we included Model
as a factor to evaluate if it had an effect not captured by the other factors.

All of the other attributes were categorised by the researchers. The “Partially incorrect” flag is a
relatively unambiguous technical check for incorrect parts of the hints (if any part was incorrect
this flag was true, even if the rest was correct). Consider, for example, this [erroneous] student
code from one of our Snapshots in the study:

String letter=sc.nextLine();
if (letter.equals(a|| c|| e ||g)))

Multiple hints suggested a fix that included code similar to the following:

if (letter.equals('a') || letter.equals('c') ...

However, because letter is a String and 'a' is a character, they will never be equal in Java
even if letter has the value "a", because the types (String and Character) do not match. Most
of the incorrectness was subtle in this way, but we included it as a factor to see if it affected the
relevant hints’ placing.

The final four factors in Table 2 are inspired by feedback literacy theory, introduced by McLean
et al. [54] and made known to us by its use in the study of programming error messages by Cucuiat
and Waite [11]. We adapted the four themes into categories of the same name by creating a set of
definitions that applied the concepts to next-step hints, as follows. Two researchers initially tagged
some hints which were unused for the study, in order to calibrate. Then they both categorised
all 100 hints that were judged by educators for the four completed Snapshots. All hints were
tagged as yes/no for the four dimensions, giving 24 = 16 possible overall categories. In their initial
independent tagging the researchers reached an agreement of 65%. The disputes were resolved in
a meeting between the two researchers, and primarily revolved around clarifying the definition
of the “Developing understanding” tag. The resulting definitions after clarification are shown in
Table 3.
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Concept Description
Telling The hint contains instructions on exactly what to change in the

code. This could be actual code (e.g. “insert x = 0;”) or words that
reach the same outcome (e.g. “You need to assign 0 to x before
the loop” or “you should start the loop at 0 not 1”). The feedback
requires no or little extra thought from the student other than
to follow the instruction. The instruction is either exact (delete
this line) or close-to-exact (move this line to after the loop). It
does NOT include feedback that requires more thought or has
ambiguity in exactly what needs doing (e.g. “You need to update
the loop variable somewhere within the loop” or "The function
call should not be inside the loop").

Guiding The hint contains explicit feedback about the original code above
and beyond just direct accompaniment of what to change. So if it
says “your loop is incorrect; you should start from 0” this is only
telling, not guiding. This might include statements like “your
loop will run forever” or “you are not updating x anywhere after
its declaration” or “consider whether the loop will terminate” –
provided it does not also include an ensuing exact instruction
on the fix (which would be categorised just as telling). It can
include positive specific feedback like “Your loops are the correct
structure”. It does NOT include generic feedback like “you’re so
close” or “this is a great start” which could be applied to any
piece of code.

Developing understanding The hint contains a more general explanation of a concept or of
the needed change to the code. For example, it might explain why
List cannot be indexed with square brackets in Java. It may also
point to places where students could find out more information
for themselves (e.g. a URL or what concept to research). The key
is that it is explaining the general rule which would also apply
to future coding, not just the specific issue with the current code
(which would only be guiding). This may be phrased as a general
tip or tip-for-the-future, the key is that it is more general than
just this specific code example.

Opening up a different per-
spective

The hint contains a suggestion of a different approach to solving
the problem (e.g. using a find method rather than manually loop-
ing through the list to search, or using a different programming
language altogether). This does NOT include cases where the
student has not even made a coherent start; it needs to be in
contrast to the student’s current thinking or approach to the
problem. If they have done nothing, the suggestion might be
telling or guiding depending how specific it is.

Table 3. The complete definitions of the four concepts derived from feedback literacy theory [54] that were
used to manually characterise the hints.
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Telling Guiding Developing OpeningUp Frequency
✓ 56
✓ ✓ 17

✓ ✓ 7
✓ 6
✓ ✓ 3
✓ ✓ ✓ ✓ 3
✓ ✓ 2

✓ ✓ 2
✓ ✓ ✓ 2

✓ 1
✓ ✓ ✓ 1

0
✓ 0

✓ ✓ ✓ 0
✓ ✓ 0

✓ ✓ ✓ 0
Table 4. The frequencies of all possible different combinations of the four feedback literacy concepts (see
Table 3) in the 100 hints, ordered by their frequency. ✓indicates the presence of the concept.

The frequencies of the different combinations of concepts are shown in Table 4. More than half
the hints contain “Guiding” with no other concepts. With the hints being so similar in this regard,
it will naturally reduce the discriminability that these feedback categories can provide.

4.8 Hint scoring
To arrive at a ranking, all Generators are applied across all Snapshots, and hints are scored for each
Snapshot. Comparative judgement, as implemented in the NoMoreMarking platform that we used,
supports two different ways of scoring hints. One is a simple ranking: best hint, second-best, and
so on. The other is a “scaled score” which estimates how far apart the items are on a normalised
scale (0 being the worst item, 100 being the best). We had intended to use the latter as it was more
informative. However when we looked at the data we realised a problem. As Figure 6 shows, in
the case of Snapshot 2 (and to a lesser extent 3), one hint (or three hints) are so poor that the rest
of the hints have their scores pushed up the scale. Therefore a weak performance on Snapshot
2 is penalised less than on Snapshots 1 or 4 when we collapse a Generator’s performance across
Snapshots. This would artificially skew the results, and thus we opted against using the scaled
scoring.
This problem is to some extent present even in the hint rankings. Since we have no cross-

Snapshot normalisation (each participant only judged one Snapshot) we cannot determine whether,
for example, all the hints on Snapshot 1 are better than all the hints on Snapshot 2. But since each
Generator provided a hint in all contexts, it at least counter-balances across the Snapshots. We felt
that using the ranks was a better choice than scaled score to minimise the effect of this warping
within Snapshot.

4.9 Hint rankings
Based on the reasoning in the previous section, we thus used the ranks of the hints within their
Snapshot as our dependent variable. The ranks were mapped to ascending scores to be more
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Fig. 6. The scaled scores of the hints, split by Snapshot on the X-axis. Each dot is a hint, and the violin plot
shows the same data as the hint dots, but is added to aid visualisation. Snapshot 2 (and to a lesser extent
Snapshot 3) have clear outliers at the bottom of the graph.

intuitive, so that a rank score of 25 was the best hint for a Snapshot, 24 the second-best, down to
1 for the worst hint. Thanks in part to comparative judgement being a forced-choice paradigm,
there were no ties. The scores are thus “zero sum”; there are 4 scores of 1 (one for each Snapshot), 4
scores of 2, etc, up to 4 scores of 25. The scores are all relative: if one hint is better, the others must
be correspondingly worse. The midpoint (both mean and median) hint is thus 13 by definition, and
what is of interest is which factors lead to higher placings. This metric is termed RankScore and is
the way we compare the quality of the hints for the remainder of the paper.

The rankings of the specific hints by themselves are not of direct interest in this paper (although
the full set of hints and their ranks can be seen in our OSF repository); the interest lies in the
accompanying factors, such as which Generator produced the best hints, or which attributes (see
subsection 4.7) were associated with high-ranking hints. To give a sense of the hints, Figure 7
shows the code and the best and worst hint for Snapshot 1.

4.10 Hint rankings by generation mechanism
Figure 8 shows the RankScore of the hints grouped by the Generator that produced them (with all
five prompts collapsed into a single score for each LLM). As can be seen, GPT-4 has the highest
mean rank, followed by humans, with Mixtral-8x7B the worst. For the AI-generated hints, Figure 9
shows the rank scores split by the prompt used to generate them. The prompt numbers correspond
to Table 1. Prompt 3 produces the best results, and prompt 4 produces the worst results.
We have 100 hints overall: (5 AI models × 4 prompts + 5 human hints = 25 Generators) × 4

Snapshots. Thus for each AI model we have 20 data points (5 prompts × 4 Snapshots), for each
prompt we similarly have 20 data points (5 models × 4 Snapshots) but for each Generator we only
have 4 data points (one per Snapshot). Therefore we must be very cautious in interpreting this data
because we may be interpreting noise; nevertheless it is shown in Figure 10. This seems to indicate
there may be an interaction between prompt and model as to which is best. For example, although
prompt 3 is generally best, it interacts very poorly with the Mixtral model. Similarly, GPT-4 is the
best model but does poorly with prompt 4. The five humans who generated hints are shown in the
same graph; it would appear that there is less variation between humans than between models or
between prompts.
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Student code:

public static boolean isPalindrome(String input)
{

int length = input.length()-1;
String palindrome="";
for (int i = length; i == 0; i--) {

System.out.println(i);
char letter = input.charAt(i);
palindrome = palindrome + letter;
System.out.println(i);

}
if (palindrome == input)
return true;
else
return false;

}

Notes:
There are two core problems in this code. One is that the for-loop condition for continuing is
wrong: it should be i >= 0 rather than i == 0, which means the loop will not run at all for
most inputs. The other problem, even if the loop did run, is that the code uses == to compare
strings after the loop, rather than .equals().

Best hint (GPT-4, Prompt 2):
There are a few things you might want to reconsider in your code.

1. Look at your for loop condition. You’ve set it to i == 0, which means the loop will only
execute if i is equal to 0. Is that what you intended?

2. You’re comparing strings using == operator. In Java, == checks if two references point to
the exact same object, not their equality in terms of content. You might want to use a
different method for string comparison.

3. Also, consider the case sensitivity of your input string. Does your method handle both
lower and upper case letters?

Keep these points in mind and try to revise your code. Good luck!

Worst hint (GPT-3.5, Prompt 5):
Your loop condition should be i >= 0 to iterate over the characters correctly. Remember to use
.equals() method instead of == for string comparison, as == checks for reference equality.
Additionally, consider using StringBuilder for efficiency when building the palindrome string
inside the loop. This will help you understand why string comparison doesn’t work as expected
and improve the performance of your code.

Fig. 7. The top shows the code from Snapshot 1 (which was reproduced exactly, including the student’s
original spacing and indentation), followed by the notes which we gave to participants to explain the problems
with the code. Below that we show the best hint and the worst hint (and their source) as ranked by the
participants in our study.
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Fig. 8. The rank score of the hints (higher is better) split by the model that produced them, with different
prompts averaged to a single value for each LLM. Each dot is a hint; the violin plot shows the same data
as the hint dots and is added to aid visualisation. The black horizontal line is the mean rank of the hints
generated by that model.

Fig. 9. The rank score of the AI-generated hints (higher is better) split by the prompt used to generate them.
Each dot is a hint; the violin plot shows the same data as the hint dots and is added to aid visualisation. The
black horizontal line is the mean rank of the hints generated by that model.

4.11 Hint rankings by hint characteristics
The analysis by hint characteristics is potentially completely orthogonal to the analysis of the hint
generation mechanism. Here we are interested in attributes of the hints themselves regardless of
how they were generated. We used the hint attributes described in subsection 4.7 to see what effect
they had on the hints’ RankScore.
To perform the analysis we used random forests [26]. Decision trees are a classic data mining

method where the data is used to create a binary tree that classifies the outcome variable, by
splitting the values around a point (e.g. perhaps hints having a word count above 300 leads to a
lower RankScore). The problem with decision trees is that they tend to overfit the data. Random
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Fig. 10. A heatmap of AI model vs prompt (plus the five humans), showing the mean rank for that Generator.
Each entry is derived from only four points (one per Snapshot) so it should be interpreted with caution.

forests solve this problem by extracting 500 random subsets of the data and then fitting a decision
tree to each subset, yielding 500 trees. The results of these 500 trees are then averaged in a “forest”
to form a classifier. This classifier could potentially be used to predict new rank scores based on a
new hint, but here we are solely interested in introspecting which hint attributes were important
for the classification of best hints and in what way (e.g. is higher better).
The advantage of a random forest over classical statistical methods is that they can identify

complex non-monotonic patterns. Regressions are generally monotonic: for example, longer hints
are worse or longer hints are better, but not a pattern in a U-shape or other non-linear pattern.
Random forests can identify arbitrary variation in patterns.

The first output to check in a random forest is the importance of each input attribute. Importance
(technically, the percentage increase in mean squared error of the outcome when the input factor is
omitted from the model, higher means the factor is more important, 0 or negative means totally
unimportant) tells us which factors most influenced the outcome variable, although it does not
indicate whether it was a positive or negative or mixed influence. The ranking by importance is
given in Table 5.
By far the two most important factors were word count and reading level, followed by the

feedback literacy item of “Opening up a different perspective”. Note that Model was relatively
unimportant, suggesting there are few lasting effects of how the hint was generated, once the other
factors are taken into account.
To visualise the effect of the important attributes, in Figure 11 we graph partial dependency

plots, which show the effect on RankScore for each value of the attribute. The dotted line across
each shows the baseline, with each value of the hint attribute potentially increasing RankScore
(better hint, above the dotted line) or decreasing it (worse hint, below the dotted line).

The results for word count reveal a “sweet spot” where hints that are 80–160 words long are
ranked highly, around 4–5 places higher than hints with word counts below or above this range.
Short hints are rated particularly poorly.

The results for reading level show that a lower grade reading level is better. The grade level scale
here corresponds to grade levels in US schools, so for example a reading grade level of 9 (where the
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Input factor Importance
WordCount 23.9
FleschKincaidGradeLevel 17.9
OpeningUp 10.7
Guiding 5.6
PartiallyIncorrect 5.5
Model 3.0
Telling 0.5
Sentiment 0.2
DevelopingUnderstanding -0.7

Table 5. The factors in the random forest model (outcome variable: RankScore) and their importance (per-
centage increase in mean squared error of the outcome if omitted from the model). Higher importance means
the attribute was more important in predicting the RankScore of each hint. Zero or negative means that the
factor was unimportant.

hint quality suffers a sudden drop) corresponds to 14 year-olds. So any hints not understandable by
fourteen year olds are rated around 5 places lower than hints understandable by thirteen year olds
(grade 8) and younger students.

The results for opening up different perspectives show that hints which suggest an alternative
approach to the problem are ranked 2 places lower than hints which do not. Whereas guiding hints
which offer additional guidance beyond exactly what to change are ranked around 2 places higher.
See Table 3 for the definitions of these items.

5 EDUCATOR SURVEY
As well as performing the comparative judgement task, we asked participants to complete a short
survey.
We asked about their experience of teaching Java. Our past experience in other studies had

suggested that a simple numeric field (e.g. “Howmany years have you taught Java?”) was insufficient
to capture the wealth and variety of experience. We asked them for a free text entry describing
their experience of teaching Java. We then ranked these responses (using comparative judgement,
but with the researchers as judges) on a loosely defined “Java educator experience” basis. This
allowed us to sort the participants by experience and thus we can summarise their experience with
an upper quartile, median and lower quartile:

• Upper quartile: “I have started teaching Java in 1998 and have 30+ years of teaching experi-
ence as a TA, scientific researcher, and educator. Most of it was done in Java.”

• Median experience: “Teaching Java for more than twenty years, have taught Pascal, C, C++
before...”

• Lower quartile: “I have taught Java programming to High School students about 8 years. I
also teach Scratch, HTML, Javascript...”

The comparative judgement also gave us a scaled score (as described earlier in subsection 4.8)
from 0 to 100. We could then plot this against the (described earlier in subsection 4.5) Infit to see if
there was a relationship between experience and agreement with peers, as shown in Figure 12. A
linear regression confirmed there was no effect (𝑝 = 0.60) of experience on Infit.

One important survey question related to the overall opinions of the hints. Because our compar-
ative judgement task is entirely relative, it cannot tell us whether all the hints were good or all
the hints were bad, or somewhere inbetween. For this purpose we asked the participants how the
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Fig. 11. Partial dependency plots for the four most important factors in predicting which hints are best. The
plots are in vertical pairs; the top-plot shows the effect on the RankScore on the Y axis (above the orange
line: better than average) by value of the attribute on the X axis. The bottom plot of each pair is a histogram
showing the frequencies of those values in the 100 hints.

Fig. 12. A participant’s experience (a scaled score ranked by researchers using comparative judgement) against
their Infit (how much they agree with fellow participants: lower values of Infit indicate higher agreement
with their peers).
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Theme Participant count
Help not hinder independent learning: Participants men-
tioned that hints should aid independent learning (e.g. by giving
cause for the students to think) rather than hinder it (e.g. by
providing the exact solution to the student with no need for
further thought).

10

Context matters: Participants mentioned that they needed to
understand more about the context of the student receiving the
hint in order to decide whether the hint was appropriate or
whether it needed further adjustment.

6

One at a time: Participants expressed a dislike for hints which
addressed many errors at once, and stated they would prefer a
hint which identified and focused on solving only one problem
with the code.

6

Too long or complicated: Participants stated that some hints
were too long or complicated to provide any benefit to a student,
and expressed doubt that the students would read and/or under-
stand such hints.

5

Table 6. The themes we identified in participants’ responses about why the hints they saw would (or would
not) be better than having no hint, plus the count of unique participants (out of 35) who mentioned this
theme. The table is sorted by frequency.

hints compared to having no hint, and the results are shown in Figure 13 – the judges generally
thought that most of the hints would be helpful. We asked the participants why they thought the
hints were helpful (or not) as a free-text response, and performed a miniature thematic analysis to
analyse these responses – the counts of different themes are given in Table 6.
Participants could also offer their opinion on what they thought was important in a good hint,

as a free text response. We similarly performed a miniature thematic analysis to analyse these
responses, and the counts of different themes are given in Table 7.

We also asked participants to state whether they felt they could do better themselves. The results
are shown in Figure 14. It is important to interpret this finding in light of the experience result
described earlier in this section. Over half of our participants had the equivalent of 20+ years of
Java teaching experience, and yet the vast majority of them felt their hints would be around the
median hint in the study. This matches with our results which show that the human-generated
hints from the researchers (several of whom would be in the top half of experience in the study)
were around the median. We interpret that the hints in the study were generally considered high
quality.

In a slight oversight on our part, we did not explicitly ask the participants whether they thought
the hints were AI-generated. This was not part of our research questions but in retrospect it may
have been useful to ask. Four participants spontaneously made reference to AI or LLMs in their
responses; one said the hints “feel like more of what an AI might respond with”, one said “One hint
seemed to contain a bit of a [LLM] prompt.”, one said “LLM / ChatGPT levels of positivity would be
irritating over time”, and one suggested that another research group “is also experimenting with
AI-generated hints”. We suspect that most participants inferred or assumed that the hints were
AI-generated; the surprise for them might instead have been that some were human-generated,
rather than all being AI-generated.
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Theme Participant count
Conciseness: Participants preferred short, concise, to-the-point
hints.

22

Hint not solution: Participants wanted hints that did not pro-
vide the exact solution, but rather a pointer or suggestion or
thought-provocation that would involve the student thinking
further.

19

Not over-praising: Participants disliked hints that over-
emphasised praise or positive language.

11

Specificity: Participants preferred hints that were specific rather
abstract and vague.

9

Correctness: Participants mentioned wanting correct, accurate
hints (usually mentioned because they had spotted a hint they
felt was incorrect).

9

Positive tone: Participants liked a positive or encouraging tone
to the hint.

8

Not too short: Participants mentioned disliking very short hints
as being unhelpful or lacking in useful detail.

5

Unhelpful summary: Participants mentioned disliking the
tendency for hints to contain a summary of what the code was
doing or trying to do, because they felt this was unhelpful.

4

Table 7. The themes we identified in participants’ responses about which characteristics of hints were
important to their ranking choices, plus the count of unique participants (out of 35) who mentioned this
theme. The table is sorted by frequency.

Fig. 13. Results of asking the participants whether the hints would better than having no hints on a 5-point
Likert scale.
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Fig. 14. Results of asking the participants whether they felt they could make better hints than those in the
study, on a 5-point Likert scale.

6 DISCUSSION
This study has findings in multiple dimensions, which we will discuss in turn.

6.1 Hint characteristics
We analysed the ranking of hints against their characteristics in order to investigate which charac-
teristics of the hints were most important. We found that the two most important aspects were
length of the hint (with 80–160 words being ideal) and the reading level (with US grade level 9 or
lower, i.e. understandable by 14 year-olds or younger being ideal). Pedagogical aspects of the hints,
based on feedback literacy theory [11, 54] were less important; inclusion of alternate approaches
to the solution were found to decrease a hint’s rating, while including guidance beyond stating
the answer increased a hint’s rating – but the last item was the least influential of the four. We
found no effect of sentiment on the hints’ rating (most hints were positive, but in a wide range
from slightly to very positive), and whether the hint highlighted a general rule (e.g. why the ==
operator cannot be used for string comparison in Java) also had no effect.
These results can provide useful lessons for educators and tool-makers about the best kind of

hints to provide in contexts where short written hints are appropriate.

6.2 Hint generation
We asked educators to compare AI-generated hints from different AI models and different AI
prompts, as well as human hints, without knowing which hints were generated by which method.
We found that the best model in our study, GPT-4, produced hints that were rated more highly
than hints produced by the [human!] researchers. This is promising for future research into adding
hints in novice programming environments.

We found that there was as large a variation among prompts as there was among AI models. This
is important for the automatic generation of hints, but also has implications for students’ individual
use of LLMs for help. Previous research [83] has found that non-experts can struggle to design
prompts, so students may struggle to create a prompt themselves that produces a hint as good as
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the best hints in this study. This suggests that there is room for tools to “package up” pre-written
prompts and automatically deliver hints using these, rather than exposing the raw LLM prompt
interface to users.
AI is currently undergoing rapid development, with new models being introduced every few

months. In that regard, the specific models will outdate, and some of our results along with it.
To ensure ours is a lasting contribution, we have detailed a reproducible method that allows a
replication of the study to be run in future. Specifically: we described our process of hint creation,
we detailed a methodology of running multiple prompts with multiple models, and how to use
comparative judgement to evaluate these hints. All of our analysis scripts are in our OSF repository
(see subsection 4.1) to allow for easy replication.

Neither the researchers nor the AI models knew the exact context of the Snapshot (since this is
not available in Blackbox), i.e. what precisely the student was aiming to do. All of them inferred the
student’s task based solely on the student’s source code. This is in contrast to large portions of the
hint-generating literature which rely on knowing the problem context to provide hints [10, 34, 53].

6.3 The missing student perspective
This study has only looked at educators’ ranking of hints. Naturally, it would make sense to also
investigate the student perspective of hints since they would be the ultimate consumers. We did
not feel that students were likely to be able to rate hints in the same way given the complexity of
the task: participants first need to read someone else’s poorly-written code, understand what the
code does and what the code is trying to do, understand the notes on the current problems with the
code, and then read two hints and compare them to decide which would be the most useful. Our
educator participants seemed able to complete this task (backed by their decades of experience).
We were, however, not convinced that students could do the same, so we did not ask students to
also perform this task.
A better design for evaluating hint quality for students might be to ask them to complete a

given programming task, and when they get stuck, to be able to ask for a hint. Students could
be shown two hints and be asked to select the preferred one. This would remove the complexity
of understanding someone else’s code. Students would already know what they are trying to do,
making evaluation of the usefulness of the hint more straightforward. It is possible to build the
best prompt and model from this study into a tool to conduct such a second study.
With our current study design, it remains a possibility that our experienced educators are not

very good at the task of deciding which hints would be most useful to students. For example, it
may be that students prefer even shorter hints, or perhaps they favour more explanation. Perhaps
students prefer being told the answer to receiving a hint. This is a classic educational conflict: who
is best-placed to decide which hint is better? A student who perhaps wants the easy option of being
told the answer or given a detailed explanation, or the educator who believes they are best-served
by receiving a more circumspect hint? It is not obvious that either the student or the educator alone
can provide the perfect assessment of which hint is best. In this study we have provided a large
piece of the puzzle by asking educators.

6.4 The nature of hints
In this study we have chosen to focus on “one-shot” next-step hints which are provided to the
student by a programming environment to help them move forwards. We have not considered any
aspects of interface design, for example whether students should be able to manually request these
hints at any time or whether they should be automatically offered or at what point. We consider
these aspects to be outside the scope of this work, but they may be investigated in separate research.
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Jeuring et al. [29] and Lohr et al. [46], for example, investigated when to provide hints, but found
low agreement among educators.

We have also not considered the possibility of an ongoing dialogue between the student and the
hint mechanism. One of the distinctive features of systems such as ChatGPT is the ability to converse
with the LLM, asking for more detail, for clarification, or working in tandem together. Although
part of our analysis was taken from feedback literacy theory [54], there are entire dimensions we
omitted which are important for human contact but non-applicable in this kind of one-shot hint
generation work, such as agency, direction, and temporality. All of these might be relevant in an
ongoing dialogue. This is a potential avenue for future research.

6.5 The personal connection
The idea of an ongoing dialogue leads us back to the personal touch. We have focused on a very
specific context: one-off next-step hint generation. Although we found that humans were not as
good as the best AI on this task, this does not mean that human educators are redundant. The
personal connection in education is still important. Portions of the hype around AI in education
are reminisicent of the excitement around Massive Open Online Courses (MOOCs) a decade ago.
Having the educational resources freely and widely available did not lead to a massive uptake
or improvement in education, or to educators losing their jobs. There remains value in formal
education based around human contact.

6.6 Relation to prior work
Our work provides interesting contrasts with some prior work. Compared to much previous work
we found few issues with incorrect or misleading hints being generated by LLMs, which may reflect
a difference in how we prompted the LLMs, or more likely general technological advancement in
LLMs. Like prior work, we did find that LLMs did not always obey our instructions. Despite asking
for only a hint, several “hints” provided exact solutions, and many would list out all the problems
in the code despite explicitly being asked for a single hint relating to a one selected problem.
Our prompts were quite different to some previous work. For example, Roest et al. [72] used

very minimal requests of 1–2 sentences alongside the problem description and code. Our prompts
are much longer, but also have no problem description to work with, which is in contrast to the
majority of previous work.
In their analysis of enhanced error explanations using feedback literacy theory, Cucuiat and

Waite [11] found that explanations using guiding were preferred to telling (feedback literacy
theory term [54]) which matched with our results. However they found that educators considered
developed understanding as positive, but under our operationalisation (where this meant that the
hint explained the general rule, e.g. why you cannot use the == operator for string comparison in
Java) it made no difference to how the hints were evaluated. This is particularly interesting because
Sheese et al. [76] found that students would not typically seek out the general rule for themselves,
and educators seem to think that it is also not worthwhile to include it in a next-step hint.

Opening up a different perspective, the highest level of abstraction in feedback literacy theory as
used by Cucuiat and Waite, was considered negative in our hints. This may suggest that educators,
when considering concrete examples of next-step hints, consider this too overwhelming to be
helpful overall.

6.7 Comparative judgement as a research method
There were multiple research methods which could have been used to get educators’ opinions on
the hints. One option would be to interview them, as done by Cucuiat and Waite [11]. This has the
advantage of getting deeper answers about the why, but it would also not have allowed us to end up
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with precise guidance over the hint length or the reading level. The use of comparative judgement
(plus a survey to fill in or corroborate the why) plus a random forest for analysis allowed us to
exact specific guidelines on what made a good hint. Our checks verified that, at least for this length
of task, participants took the task seriously, showed essentially no signs of boredom or giving up,
and produced reliable results. No participant mentioned being confused by the requirements of the
task. We believe comparative judgement may be a useful research method for the future for asking
participants to rank a set of stimuli.
Another advantage of asking participants to rank hints is as follows. It is possible that there

is a discrepancy of an educator’s preference expressed in the abstract and their opinion when
confronted with a concrete representation of the concept. For example, educators may express
a general preference to opening up perspectives when interacting with students, but rate hints
attempting to do just that lower, because the associated drawbacks (length, complexity, distraction)
become more obvious. In this light, comparative judgement as used here can offer more concrete
results, by observing what participants “do” (how they rank) rather than what they “say” (when
asked in an interview).

7 THREATS TO VALIDITY
Our completion rate was relatively low: only around 50% of those who signed up to participate in
the ranking task went on to complete it. One possible explanation is that the task itself was too
boring or hard for participants. However, the comparative judgement platform allows us to see who
began the task, and only three participants began the task and did not finish, so the non-completers
did not even start the task.
It is possible the task description was off-putting. However, it consisted of only 2-3 relatively

sparse pages (available in our OSF repository, see subsection 4.1). We believe the most likely
explanation is the time of year we recruited and the general business of academics and teachers. We
had aimed to recruit before teaching began but we ended up recruiting in August and September
when many high school and university teachers in the northern hemisphere are very busy with the
start of their teaching terms.

In this study we have only surveyed educators for their opinions on hints and not students. As
described in subsection 6.3 we felt that students may struggle to understand someone else’s code,
the problem(s) with it, and then judge which hints they would prefer in that case. It is possible
that educators’ opinions on which hints would be best for students may not accord with students’
opinions. Of course, it is not clear that the student opinion is necessarily better than the educator
opinion even if that were the case: Students may prefer hints that optimise efficiency of creating
the solution, while educators may prefer hints that maximise the learning effect.

The LLMs we used will naturally outdate as technology progresses, but we have tried to mitigate
this through our research design that used multiple models and multiple prompts. Our findings can
also inform the hints literature independently of the technology used to generate the hints for the
study.

8 FUTUREWORK
One clear future direction is to ask students to evaluate hints. We believe the best study design
will be to implement automatic hint generation in a novice programming environment and then
ask students to use it and rate or rank the hints they are given, and/or monitor their programming
activity immediately after receiving the hint.
Although we believe we have shown that comparative judgement is a viable experimental

technique, the fact remains that recruiting participants (especially busy teachers and academics)
is a difficult process; we had eight Snapshots prepared but only recruited enough completing
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participants to evaluate four of them. Some recent work [25, 45] has investigated whether LLMs can
emulate human participants in social science experiments in order to generate synthetic data. On
the one hand, this risks AI “marking its own work”, with LLMs evaluating the output of LLMs (as
done, for example, by Koutcheme et al. [39, 40]). On the other hand there may be ways to use this
technique to boost evaluation of new behavioural interventions such as identifying better hints.
The hint generation in this work was done with a set of brainstormed prompts. We not only

know which prompt produced the best hints, we also now have extra information about the
characteristics of best hints, in terms of length, reading level and other aspects (e.g. that offering
alternative approaches is rated negatively). This opens the possibility to design a new prompt that
takes these insights into account in order to improve hint generation. This minor step forward is
one possible avenue to deploy LLM evaluation, rather than recruiting 85 human participants again
just to test a minor improvement on the prompts.
One further direction for related work is to analyse our existing data under other hint classifi-

cations. Although we chose to focus on feedback literacy theory, other classifications have been
proposed, such as by Keuning et al. [34] and separately by Suzuki et al. [78]. Categorising the
existing hints using those schemes and relating the results to our ranking is a possible next step.
With our data being open, this can also be done by other research teams.

9 CONCLUSION
In this paper we asked human educators to rank sets of hints generated by AI models and human
researchers using comparative judgement. This provided findings in several different dimensions.
One finding is that GPT-4 was found to produce better hints than experienced humans. It is

particularly important to note that the hints were generated without providing any context of
the task that the student was performing. The data was taken from the Blackbox dataset, which
provides examples from arbitrary novice programmers, without knowledge of the exact task being
performed. In this GPT-4-better-than-humans sense, this paper is one in a recent line of “LLMs
beat humans at < programming education task >”. Prior results in this line examined creating code
explanations [42], small programming exercises [36] or full programming exams [48]. However,
we provide several further contributions beyond this latest LLM feat.

Some do relate specifically to the operation of LLMs. We evaluated five different LLM prompts
which are quite different in their construction, including two multi-stage prompts. Although the
prompts do have an interaction with the choice of LLM, one was clearly better than the others
(prompt 3 in Table 1). This prompt first asked the LLM to summarise the task the student was
inferred to perform and then fed the result back to a second request to provide a hint. (Our prompts,
methods and analysis scripts are all open to allow easy replication in future as LLMs advance.)
Furthermore, although GPT-4 was better than humans, all the other models were not. There is a
pronounced effect of model, prompt and their interaction, which showed much greater variation in
average performance than we found between the five human researchers who created hints. It is
still the case that LLMs beat humans only with the right model and the right prompt.

We also provide contributions that are entirely orthogonal to AI. Our study can be seen solely as
an investigation into the characteristics of hints that are most important to judge the hint useful –
with the fact that some hints were generated by AI merely acting as a convenient artifact generation
mechanism. We have found that the most important attributes predicting a hint’s ranking was its
length and reading level. Experienced Java educators (more than half with an equivalent of over 20+
years of experience) rated hints most highly where the word count was 80–160 words, the reading
level was typically understandable by those in US grade 9 (age 14) or below, where guidance was
provided beyond just stating the answer, but alternative approaches to solving the problem were
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avoided. We found no effect of sentiment or of explaining a more general underlying principle on
the perceived quality of a hint.
We have also demonstrated the use of comparative judgement (previously primarily used for

assessing writing skills) as a research methodology, showing that, at least for a 20 minute task,
participants took it seriously and did not get bored, and the results produced were reliable and
interpretable. Comparative judgement is useful when participants are required, individually or
collectively, to rank a number of experimental stimuli than can be placed alongside each other on
one screen. There are several free comparative judgement websites; we used NoMoreMarking6,
with details on how we set up the task available in our OSF repository (along with all of our data
and analysis code) as described in subsection 4.1.

ACKNOWLEDGMENTS
We are very grateful to all of the participants in the study. We are additionally grateful to Arto
Hellas for advice during the design stage, to Jane Waite for advice on feedback literacy theory, to
Barbara Ericson for her help with recruitment, and to the NoMoreMarking team for supporting
research projects on their platform. This research was supported by the Research Council of Finland
(Academy Research Fellow grant number 356114).

REFERENCES
[1] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015. Exploring Machine Learning Methods to

Automatically Identify Students in Need of Assistance. In Proceedings of the Eleventh Annual International Conference on
International Computing Education Research (Omaha, Nebraska, USA) (ICER ’15). Association for Computing Machinery,
New York, NY, USA, 121–130. https://doi.org/10.1145/2787622.2787717

[2] Umair Z. Ahmed, Nisheeth Srivastava, Renuka Sindhgatta, and Amey Karkare. 2020. Characterizing the Pedagogical
Benefits of Adaptive Feedback for Compilation Errors by Novice Programmers. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering Education and Training (Seoul, South Korea)
(ICSE-SEET ’20). Association for Computing Machinery, New York, NY, USA, 139–150. https://doi.org/10.1145/3377814.
3381703

[3] S Bartholomew and Emily Yoshikawa-Ruesch. 2018. A systematic review of research around adaptive comparative
judgement (ACJ) in K-16 education. Council on Technology an Engineering Teacher Education: Research Monograph
Series 1, 1 (2018). https://doi.org/10.21061/ctete-rms.v1.c.1

[4] Anastasiia Birillo, Elizaveta Artser, Anna Potriasaeva, Ilya Vlasov, Katsiaryna Dzialets, Yaroslav Golubev, Igor Gerasi-
mov, Hieke Keuning, and Timofey Bryksin. 2024. One Step at a Time: Combining LLMs and Static Analysis to Generate
Next-Step Hints for Programming Tasks. In Proceedings of the 24th Koli Calling International Conference on Computing
Education Research (Koli Calling ’24). Association for Computing Machinery, New York, NY, USA, Article 9, 12 pages.
https://doi.org/10.1145/3699538.3699556

[5] Neil C. C. Brown and Amjad Altadmri. 2017. Novice Java Programming Mistakes: Large-Scale Data vs. Educator
Beliefs. ACM Trans. Comput. Educ. 17, 2, Article 7 (May 2017), 21 pages. https://doi.org/10.1145/2994154

[6] Neil C. C. Brown, Jamie Ford, Pierre Weill-Tessier, and Michael Kölling. 2023. Quick Fixes for Novice Programmers:
Effective but Under-Utilised. In Proceedings of the 2023 Conference on United Kingdom & Ireland Computing Education
Research (UKICER ’23). Association for Computing Machinery, New York, NY, USA, Article 3, 7 pages. https:
//doi.org/10.1145/3610969.3611117

[7] Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting. 2014. Blackbox: A Large Scale Repository of
Novice Programmers’ Activity. In Proceedings of the 45th ACM Technical Symposium on Computer Science Education
(Atlanta, Georgia, USA) (SIGCSE ’14). Association for Computing Machinery, New York, NY, USA, 223–228. https:
//doi.org/10.1145/2538862.2538924

[8] Marc Brysbaert. 2019. How many words do we read per minute? A review and meta-analysis of reading rate. Journal
of Memory and Language 109 (2019), 104047. https://doi.org/10.1016/j.jml.2019.104047

[9] Francisco Enrique Vicente Castro and Kathi Fisler. 2020. Qualitative Analyses of Movements Between Task-Level and
Code-Level Thinking of Novice Programmers. In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education (Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 487–493.
https://doi.org/10.1145/3328778.3366847

6https://www.nomoremarking.com/

31

https://doi.org/10.1145/2787622.2787717
https://doi.org/10.1145/3377814.3381703
https://doi.org/10.1145/3377814.3381703
https://doi.org/10.21061/ctete-rms.v1.c.1
https://doi.org/10.1145/3699538.3699556
https://doi.org/10.1145/2994154
https://doi.org/10.1145/3610969.3611117
https://doi.org/10.1145/3610969.3611117
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1016/j.jml.2019.104047
https://doi.org/10.1145/3328778.3366847
https://www.nomoremarking.com/


Brown et al.

[10] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent Tutoring Systems for Programming
Education: A Systematic Review. In Proceedings of the 20th Australasian Computing Education Conference (Brisbane,
Queensland, Australia) (ACE ’18). Association for Computing Machinery, New York, NY, USA, 53–62. https://doi.org/
10.1145/3160489.3160492

[11] Veronica Cucuiat and Jane Waite. 2024. Feedback Literacy: Holistic Analysis of Secondary Educators’ Views of LLM
Explanations of Program Error Messages. In Proceedings of the 2024 on Innovation and Technology in Computer Science
Education V. 1 (Milan, Italy) (ITiCSE 2024). Association for Computing Machinery, New York, NY, USA, 192–198.
https://doi.org/10.1145/3649217.3653595

[12] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie Amarouche, Brett A. Becker, and Brent N.
Reeves. 2024. Prompt Problems: A New Programming Exercise for the Generative AI Era. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1 (Portland, OR, USA) (SIGCSE 2024). Association for
Computing Machinery, New York, NY, USA, 296–302. https://doi.org/10.1145/3626252.3630909

[13] Paul Denny, Stephen MacNeil, Jaromir Savelka, Leo Porter, and Andrew Luxton-Reilly. 2024. Desirable Characteristics
for AI Teaching Assistants in Programming Education. In Proceedings of the 2024 on Innovation and Technology in
Computer Science Education V. 1 (Milan, Italy) (ITiCSE 2024). Association for Computing Machinery, New York, NY,
USA, 408–414. https://doi.org/10.1145/3649217.3653574

[14] Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas, Juho Leinonen, Andrew Luxton-Reilly,
Brent N. Reeves, Eddie Antonio Santos, and Sami Sarsa. 2024. Computing Education in the Era of Generative AI.
Commun. ACM 67, 2 (Jan. 2024), 56–67. https://doi.org/10.1145/3624720

[15] Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer, Zachary C Albrecht, and Garrett B. Powell.
2021. On Designing Programming Error Messages for Novices: Readability and Its Constituent Factors. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for
Computing Machinery, New York, NY, USA, Article 55, 15 pages. https://doi.org/10.1145/3411764.3445696

[16] Nickolas J.G. Falkner and Katrina E. Falkner. 2012. A Fast Measure for Identifying At-Risk Students in Computer
Science. In Proceedings of the Ninth Annual International Conference on International Computing Education Research
(Auckland, New Zealand) (ICER ’12). Association for Computing Machinery, New York, NY, USA, 55–62. https:
//doi.org/10.1145/2361276.2361288

[17] Alexander J. Fiannaca, Chinmay Kulkarni, Carrie J Cai, and Michael Terry. 2023. Programming without a Programming
Language: Challenges andOpportunities for DesigningDeveloper Tools for Prompt Programming. In Extended Abstracts
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI EA ’23). Association for
Computing Machinery, New York, NY, USA, Article 235, 7 pages. https://doi.org/10.1145/3544549.3585737

[18] Sandy Garner, Patricia Haden, and Anthony Robins. 2005. My Program is Correct but It Doesn’t Run: A Preliminary
Investigation of Novice Programmers’ Problems. In Proceedings of the 7th Australasian Conference on Computing
Education - Volume 42 (Newcastle, New South Wales, Australia) (ACE ’05). Australian Computer Society, Inc., AUS,
173–180.

[19] Aashish Ghimire and John Edwards. 2024. Coding with AI: How Are Tools Like ChatGPT Being Used by Students
in Foundational Programming Courses. In Artificial Intelligence in Education, Andrew M. Olney, Irene-Angelica
Chounta, Zitao Liu, Olga C. Santos, and Ig Ibert Bittencourt (Eds.). Springer Nature Switzerland, Cham, 259–267.

[20] Elena L. Glassman, Aaron Lin, Carrie J. Cai, and Robert C. Miller. 2016. Learnersourcing Personalized Hints. In
Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing (San Francisco,
California, USA) (CSCW ’16). Association for Computing Machinery, New York, NY, USA, 1626–1636. https://doi.org/
10.1145/2818048.2820011

[21] Philip J. Guo, Julia M. Markel, and Xiong Zhang. 2020. Learnersourcing at Scale to Overcome Expert Blind Spots
for Introductory Programming: A Three-Year Deployment Study on the Python Tutor Website. In Proceedings of the
Seventh ACM Conference on Learning @ Scale (Virtual Event, USA) (L@S ’20). Association for Computing Machinery,
New York, NY, USA, 301–304. https://doi.org/10.1145/3386527.3406733

[22] Luke Gusukuma, Dennis Kafura, and Austin Cory Bart. 2017. Authoring feedback for novice programmers in a block-
based language. In 2017 IEEE Blocks and Beyond Workshop (B&B). 37–40. https://doi.org/10.1109/BLOCKS.2017.8120407

[23] Arto Hellas, Petri Ihantola, Andrew Petersen, Vangel V. Ajanovski, Mirela Gutica, Timo Hynninen, Antti Knutas, Juho
Leinonen, Chris Messom, and Soohyun Nam Liao. 2018. Taxonomizing Features and Methods for Identifying At-Risk
Students in Computing Courses. In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education (Larnaca, Cyprus) (ITiCSE 2018). Association for Computing Machinery, New York, NY,
USA, 364–365. https://doi.org/10.1145/3197091.3205845

[24] Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää, and Juha Sorva. 2023. Exploring the
Responses of Large Language Models to Beginner Programmers’ Help Requests. In Proceedings of the 2023 ACM
Conference on International Computing Education Research - Volume 1 (Chicago, IL, USA) (ICER ’23). Association for
Computing Machinery, New York, NY, USA, 93–105. https://doi.org/10.1145/3568813.3600139

32

https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/3649217.3653595
https://doi.org/10.1145/3626252.3630909
https://doi.org/10.1145/3649217.3653574
https://doi.org/10.1145/3624720
https://doi.org/10.1145/3411764.3445696
https://doi.org/10.1145/2361276.2361288
https://doi.org/10.1145/2361276.2361288
https://doi.org/10.1145/3544549.3585737
https://doi.org/10.1145/2818048.2820011
https://doi.org/10.1145/2818048.2820011
https://doi.org/10.1145/3386527.3406733
https://doi.org/10.1109/BLOCKS.2017.8120407
https://doi.org/10.1145/3197091.3205845
https://doi.org/10.1145/3568813.3600139


Howzat? Expert Judgement of Human and AI Hints

[25] Luke Hewitt, Ashwini Ashokkumar, Isaias Ghezae, and RobbWiller. 2024. Predicting Results of Social Science Experiments
Using Large Language Models. Technical Report. Working Paper. https://samim.io/dl/Predicting%20results%20of%
20social%20science%20experiments%20using%20large%20language%20models.pdf

[26] Tin Kam Ho. 1995. Random decision forests. In Proceedings of the Third International Conference on Document Analysis
and Recognition (Volume 1) - Volume 1 (ICDAR ’95). IEEE Computer Society, USA, 278.

[27] C. Hutto and Eric Gilbert. 2014. VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social
Media Text. Proceedings of the International AAAI Conference on Web and Social Media 8, 1 (May 2014), 216–225.
https://doi.org/10.1609/icwsm.v8i1.14550

[28] Michelle Ichinco and Caitlin Kelleher. 2018. Semi-Automatic Suggestion Generation for Young Novice Programmers
in an Open-Ended Context. In Proceedings of the 17th ACM Conference on Interaction Design and Children (Trondheim,
Norway) (IDC ’18). Association for Computing Machinery, New York, NY, USA, 405–412. https://doi.org/10.1145/
3202185.3202762

[29] Johan Jeuring, Hieke Keuning, Samiha Marwan, Dennis Bouvier, Cruz Izu, Natalie Kiesler, Teemu Lehtinen, Dominic
Lohr, Andrew Peterson, and Sami Sarsa. 2022. Towards Giving Timely Formative Feedback and Hints to Novice
Programmers. In Proceedings of the 2022 Working Group Reports on Innovation and Technology in Computer Science
Education (Dublin, Ireland) (ITiCSE-WGR ’22). Association for Computing Machinery, New York, NY, USA, 95–115.
https://doi.org/10.1145/3571785.3574124

[30] Ian Jones and Ben Davies. 2024. Comparative judgement in education research. International Journal
of Research & Method in Education 47, 2 (2024), 170–181. https://doi.org/10.1080/1743727X.2023.2242273
arXiv:https://doi.org/10.1080/1743727X.2023.2242273

[31] Ishika Joshi, Ritvik Budhiraja, Pranav Deepak Tanna, Lovenya Jain, Mihika Deshpande, Arjun Srivastava, Srinivas
Rallapalli, Harshal D Akolekar, Jagat Sesh Challa, and Dhruv Kumar. 2023. "With Great Power Comes Great Respon-
sibility!": Student and Instructor Perspectives on the influence of LLMs on Undergraduate Engineering Education.
arXiv:2309.10694 [cs.HC]

[32] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David Weintrop, and Tovi Grossman. 2023.
Studying the Effect of AI Code Generators on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association for
Computing Machinery, New York, NY, USA, Article 455, 23 pages. https://doi.org/10.1145/3544548.3580919

[33] Tyson Kendon, Leanne Wu, and John Aycock. 2023. AI-Generated Code Not Considered Harmful. In Proceedings of the
25th Western Canadian Conference on Computing Education (Vancouver, BC, Canada) (WCCCE ’23). Association for
Computing Machinery, New York, NY, USA, Article 3, 7 pages. https://doi.org/10.1145/3593342.3593349

[34] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A Systematic Literature Review of Automated Feedback
Generation for Programming Exercises. ACM Trans. Comput. Educ. 19, 1, Article 3 (Sept. 2018), 43 pages. https:
//doi.org/10.1145/3231711

[35] Natalie Kiesler, Dominic Lohr, and Hieke Keuning. 2023. Exploring the Potential of Large Language Models to Generate
Formative Programming Feedback. In 2023 IEEE Frontiers in Education Conference (FIE). 1–5. https://doi.org/10.1109/
FIE58773.2023.10343457

[36] Natalie Kiesler and Daniel Schiffner. 2023. Large Language Models in Introductory Programming Education: ChatGPT’s
Performance and Implications for Assessments. arXiv:2308.08572 [cs.SE] https://arxiv.org/abs/2308.08572

[37] JP Kincaid. 1975. Derivation of new readability formulas (automated readability index, fog count and flesch reading
ease formula) for navy enlisted personnel. Chief of Naval Technical Training (1975).

[38] MJ Kolen and RL Brennan. 2016. ‘No More Marking’: An online tool for comparative judgement. ISSN 1756-509X
(2016), 12.

[39] Charles Koutcheme, Nicola Dainese, Arto Hellas, Sami Sarsa, Juho Leinonen, Syed Ashraf, and Paul Denny. 2024.
Evaluating Language Models for Generating and Judging Programming Feedback. arXiv:2407.04873 [cs.AI] https:
//arxiv.org/abs/2407.04873

[40] Charles Koutcheme, Nicola Dainese, Sami Sarsa, Arto Hellas, Juho Leinonen, and Paul Denny. 2024. Open Source
Language Models Can Provide Feedback: Evaluating LLMs’ Ability to Help Students Using GPT-4-As-A-Judge. In
Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1 (Milan, Italy) (ITiCSE 2024).
Association for Computing Machinery, New York, NY, USA, 52–58. https://doi.org/10.1145/3649217.3653612

[41] Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Resistance is Futile": How University
Programming Instructors Plan to Adapt as More Students Use AI Code Generation and Explanation Tools Such
as ChatGPT and GitHub Copilot. In Proceedings of the 2023 ACM Conference on International Computing Education
Research - Volume 1 (Chicago, IL, USA) (ICER ’23). Association for Computing Machinery, New York, NY, USA, 106–121.
https://doi.org/10.1145/3568813.3600138

[42] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne Kim, Andrew Tran, and Arto Hellas.
2023. Comparing Code Explanations Created by Students and Large Language Models. In Proceedings of the 2023

33

https://samim.io/dl/Predicting%20results%20of%20social%20science%20experiments%20using%20large%20language%20models.pdf
https://samim.io/dl/Predicting%20results%20of%20social%20science%20experiments%20using%20large%20language%20models.pdf
https://doi.org/10.1609/icwsm.v8i1.14550
https://doi.org/10.1145/3202185.3202762
https://doi.org/10.1145/3202185.3202762
https://doi.org/10.1145/3571785.3574124
https://doi.org/10.1080/1743727X.2023.2242273
https://arxiv.org/abs/https://doi.org/10.1080/1743727X.2023.2242273
https://arxiv.org/abs/2309.10694
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3593342.3593349
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1109/FIE58773.2023.10343457
https://doi.org/10.1109/FIE58773.2023.10343457
https://arxiv.org/abs/2308.08572
https://arxiv.org/abs/2308.08572
https://arxiv.org/abs/2407.04873
https://arxiv.org/abs/2407.04873
https://arxiv.org/abs/2407.04873
https://doi.org/10.1145/3649217.3653612
https://doi.org/10.1145/3568813.3600138


Brown et al.

Conference on Innovation and Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE 2023). Association
for Computing Machinery, New York, NY, USA, 124–130. https://doi.org/10.1145/3587102.3588785

[43] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather, and Brett A. Becker. 2023. Using
Large Language Models to Enhance Programming Error Messages. In Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery, New
York, NY, USA, 563–569. https://doi.org/10.1145/3545945.3569770

[44] Mark Liffiton, Brad E Sheese, Jaromir Savelka, and Paul Denny. 2024. CodeHelp: Using Large Language Models with
Guardrails for Scalable Support in Programming Classes. , 11 pages. https://doi.org/10.1145/3631802.3631830

[45] Steffen Lippert, Anna Dreber, Magnus Johannesson, Warren Tierney, Wilson Cyrus-Lai, Eric Luis Uhlmann, Emo-
tion Expression Collaboration, and Thomas Pfeiffer. 2024. Can large language models help predict results from a
complex behavioural science study? Royal Society Open Science 11, 9 (2024), 240682.

[46] Dominic Lohr, Natalie Kiesler, Hieke Keuning, and Johan Jeuring. 2024. "Let Them Try to Figure It Out First" -
Reasons Why Experts (Do Not) Provide Feedback to Novice Programmers. In Proceedings of the 2024 on Innovation and
Technology in Computer Science Education V. 1 (Milan, Italy) (ITiCSE 2024). Association for Computing Machinery, New
York, NY, USA, 38–44. https://doi.org/10.1145/3649217.3653530

[47] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul Denny, Seth Bernstein, and Juho Leinonen.
2023. Experiences fromUsing Code Explanations Generated by Large LanguageModels in aWeb Software Development
E-Book. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1 (Toronto ON, Canada)
(SIGCSE 2023). Association for Computing Machinery, New York, NY, USA, 931–937. https://doi.org/10.1145/3545945.
3569785

[48] Joyce Mahon, Brian Mac Namee, and Brett A. Becker. 2023. No More Pencils No More Books: Capabilities of Generative
AI on Irish and UK Computer Science School Leaving Examinations. In Proceedings of the 2023 Conference on United
Kingdom & Ireland Computing Education Research (Swansea, Wales Uk) (UKICER ’23). Association for Computing
Machinery, New York, NY, USA, Article 2, 7 pages. https://doi.org/10.1145/3610969.3610982

[49] Alina Mailach, Dominik Gorgosch, Norbert Siegmund, and Janet Siegmund. 2024. “Ok Pal, We Have to Code That
Now”: Interaction Patterns of Programming Beginners with a Conversational Chatbot. Empirical Software Engineering
(EMSE) (2024), to appear.

[50] SamihaMarwan, Joseph JayWilliams, and Thomas Price. 2019. An Evaluation of the Impact of Automated Programming
Hints on Performance and Learning. In Proceedings of the 2019 ACM Conference on International Computing Education
Research (Toronto ON, Canada) (ICER ’19). Association for Computing Machinery, New York, NY, USA, 61–70.
https://doi.org/10.1145/3291279.3339420

[51] Samiha Marwan, Nicholas Lytle, Joseph Jay Williams, and Thomas Price. 2019. The Impact of Adding Textual
Explanations to Next-Step Hints in a Novice Programming Environment. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE ’19). Association for
Computing Machinery, New York, NY, USA, 520–526. https://doi.org/10.1145/3304221.3319759

[52] Samiha Marwan and Thomas W. Price. 2023. ISnap: Evolution and Evaluation of a Data-Driven Hint System for Block-
Based Programming. IEEE Trans. Learn. Technol. 16, 3.2 (June 2023), 399–413. https://doi.org/10.1109/TLT.2022.3223577

[53] Jessica McBroom, Irena Koprinska, and Kalina Yacef. 2021. A Survey of Automated Programming Hint Generation:
The HINTS Framework. ACM Comput. Surv. 54, 8, Article 172 (oct 2021), 27 pages. https://doi.org/10.1145/3469885

[54] Angela J McLean, Carol H Bond, and Helen D Nicholson. 2015. An anatomy of feedback: a phenomenographic
investigation of undergraduate students’ conceptions of feedback. Studies in Higher Education 40, 5 (2015), 921–932.

[55] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. 2024. Using an LLM to Help
With Code Understanding. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering
(Lisbon, Portugal) (ICSE ’24). Association for Computing Machinery, New York, NY, USA, Article 97, 13 pages.
https://doi.org/10.1145/3597503.3639187

[56] Ha Nguyen and Vicki Allan. 2024. Using GPT-4 to Provide Tiered, Formative Code Feedback. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1 (Portland, OR, USA) (SIGCSE 2024). Association for
Computing Machinery, New York, NY, USA, 958–964. https://doi.org/10.1145/3626252.3630960

[57] Sydney Nguyen, Hannah McLean Babe, Yangtian Zi, Arjun Guha, Carolyn Jane Anderson, and Molly Q Feldman. 2024.
How Beginning Programmers and Code LLMs (Mis)read Each Other. In Proceedings of the 2024 CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New York,
NY, USA, Article 651, 26 pages. https://doi.org/10.1145/3613904.3642706

[58] Florian Obermüller, Ute Heuer, and Gordon Fraser. 2021. Guiding Next-Step Hint Generation Using Automated
Tests. In Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 1
(Virtual Event, Germany) (ITiCSE ’21). Association for Computing Machinery, New York, NY, USA, 220–226. https:
//doi.org/10.1145/3430665.3456344

34

https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3545945.3569770
https://doi.org/10.1145/3631802.3631830
https://doi.org/10.1145/3649217.3653530
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3610969.3610982
https://doi.org/10.1145/3291279.3339420
https://doi.org/10.1145/3304221.3319759
https://doi.org/10.1109/TLT.2022.3223577
https://doi.org/10.1145/3469885
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3626252.3630960
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3430665.3456344
https://doi.org/10.1145/3430665.3456344


Howzat? Expert Judgement of Human and AI Hints

[59] Maciej Pankiewicz and Ryan S. Baker. 2024. Navigating Compiler Errors with AI Assistance - A Study of GPT
Hints in an Introductory Programming Course. In Proceedings of the 2024 on Innovation and Technology in Computer
Science Education V. 1 (Milan, Italy) (ITiCSE 2024). Association for Computing Machinery, New York, NY, USA, 94–100.
https://doi.org/10.1145/3649217.3653608

[60] Phitchaya Mangpo Phothilimthana and Sumukh Sridhara. 2017. High-Coverage Hint Generation for Massive Courses:
Do Automated Hints Help CS1 Students?. In Proceedings of the 2017 ACM Conference on Innovation and Technology in
Computer Science Education (Bologna, Italy) (ITiCSE ’17). Association for Computing Machinery, New York, NY, USA,
182–187. https://doi.org/10.1145/3059009.3059058

[61] Alastair Pollitt. 2012. The method of Adaptive Comparative Judgement. Assessment in Educa-
tion: Principles, Policy & Practice 19, 3 (2012), 281–300. https://doi.org/10.1080/0969594X.2012.665354
arXiv:https://doi.org/10.1080/0969594X.2012.665354

[62] Stanislav Pozdniakov, Jonathan Brazil, Solmaz Abdi, Aneesha Bakharia, Shazia Sadiq, Dragan Gašević, Paul Denny, and
Hassan Khosravi. 2024. Large language models meet user interfaces: The case of provisioning feedback. Computers
and Education: Artificial Intelligence 7 (2024), 100289. https://doi.org/10.1016/j.caeai.2024.100289

[63] James Prather, Paul Denny, Brett A. Becker, Robert Nix, Brent N. Reeves, Arisoa S. Randrianasolo, and Garrett Powell.
2023. First Steps Towards Predicting the Readability of Programming Error Messages. In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for
Computing Machinery, New York, NY, USA, 549–555. https://doi.org/10.1145/3545945.3569791

[64] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and Maxine Cohen. 2018. Metacognitive
Difficulties Faced by Novice Programmers in Automated Assessment Tools. In Proceedings of the 2018 ACM Conference
on International Computing Education Research (Espoo, Finland) (ICER ’18). Association for Computing Machinery,
New York, NY, USA, 41–50. https://doi.org/10.1145/3230977.3230981

[65] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John Homer, Nevan Simone, and Maxine
Cohen. 2017. On Novices’ Interaction with Compiler Error Messages: A Human Factors Approach. In Proceedings
of the 2017 ACM Conference on International Computing Education Research (Tacoma, Washington, USA) (ICER ’17).
Association for Computing Machinery, New York, NY, USA, 74–82. https://doi.org/10.1145/3105726.3106169

[66] James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen, Andrew Luxton-Reilly, Garrett Powell,
James Finnie-Ansley, and Eddie Antonio Santos. 2023. “It’s Weird That it Knows What I Want”: Usability and
Interactions with Copilot for Novice Programmers. ACM Trans. Comput.-Hum. Interact. 31, 1, Article 4 (Nov. 2023),
31 pages. https://doi.org/10.1145/3617367

[67] James Prather, Brent N Reeves, Juho Leinonen, Stephen MacNeil, Arisoa S Randrianasolo, Brett A. Becker, Bailey
Kimmel, Jared Wright, and Ben Briggs. 2024. The Widening Gap: The Benefits and Harms of Generative AI for
Novice Programmers. In Proceedings of the 2024 ACM Conference on International Computing Education Research -
Volume 1 (Melbourne, VIC, Australia) (ICER ’24). Association for Computing Machinery, New York, NY, USA, 469–486.
https://doi.org/10.1145/3632620.3671116

[68] Thomas W. Price, Samiha Marwan, and Joseph Jay Williams. 2021. Exploring Design Choices in Data-Driven Hints for
Python Programming Homework. In Proceedings of the Eighth ACM Conference on Learning @ Scale (Virtual Event,
Germany) (L@S ’21). Association for Computing Machinery, New York, NY, USA, 283–286. https://doi.org/10.1145/
3430895.3460159

[69] Thomas W. Price, Samiha Marwan, Michael Winters, and Joseph Jay Williams. 2020. An Evaluation of Data-Driven
Programming Hints in a Classroom Setting. In Artificial Intelligence in Education, Ig Ibert Bittencourt, Mutlu Cukurova,
Kasia Muldner, Rose Luckin, and Eva Millán (Eds.). Springer International Publishing, Cham, 246–251.

[70] Arun Raman and Viraj Kumar. 2022. Programming Pedagogy and Assessment in the Era of AI/ML: A Position Paper.
In Proceedings of the 15th Annual ACM India Compute Conference (Jaipur, India) (COMPUTE ’22). Association for
Computing Machinery, New York, NY, USA, 29–34. https://doi.org/10.1145/3561833.3561843

[71] Eric F Rietzschel, Bernard A Nijstad, and Wolfgang Stroebe. 2006. Productivity is not enough: A comparison of
interactive and nominal brainstorming groups on idea generation and selection. Journal of Experimental Social
Psychology 42, 2 (2006), 244–251.

[72] Lianne Roest, Hieke Keuning, and Johan Jeuring. 2024. Next-Step Hint Generation for Introductory Programming
Using Large Language Models. In Proceedings of the 26th Australasian Computing Education Conference (Sydney, NSW,
Australia) (ACE ’24). Association for Computing Machinery, New York, NY, USA, 144–153. https://doi.org/10.1145/
3636243.3636259

[73] Vincent Donche San Verhavert, Renske Bouwer and Sven De Maeyer. 2019. A meta-analysis on the reliability
of comparative judgement. Assessment in Education: Principles, Policy & Practice 26, 5 (2019), 541–562. https:
//doi.org/10.1080/0969594X.2019.1602027 arXiv:https://doi.org/10.1080/0969594X.2019.1602027

[74] Andreas Scholl and Natalie Kiesler. 2024. How Novice Programmers Use and Experience ChatGPT when Solving
Programming Exercises in an Introductory Course. arXiv:2407.20792 [cs.AI] https://arxiv.org/abs/2407.20792

35

https://doi.org/10.1145/3649217.3653608
https://doi.org/10.1145/3059009.3059058
https://doi.org/10.1080/0969594X.2012.665354
https://arxiv.org/abs/https://doi.org/10.1080/0969594X.2012.665354
https://doi.org/10.1016/j.caeai.2024.100289
https://doi.org/10.1145/3545945.3569791
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3632620.3671116
https://doi.org/10.1145/3430895.3460159
https://doi.org/10.1145/3430895.3460159
https://doi.org/10.1145/3561833.3561843
https://doi.org/10.1145/3636243.3636259
https://doi.org/10.1145/3636243.3636259
https://doi.org/10.1080/0969594X.2019.1602027
https://doi.org/10.1080/0969594X.2019.1602027
https://arxiv.org/abs/https://doi.org/10.1080/0969594X.2019.1602027
https://arxiv.org/abs/2407.20792
https://arxiv.org/abs/2407.20792


Brown et al.

[75] Judy Sheard, Paul Denny, Arto Hellas, Juho Leinonen, Lauri Malmi, and Simon. 2024. Instructor Perceptions of AI
Code Generation Tools - A Multi-Institutional Interview Study. In Proceedings of the 55th ACM Technical Symposium
on Computer Science Education V. 1 (Portland, OR, USA) (SIGCSE 2024). Association for Computing Machinery, New
York, NY, USA, 1223–1229. https://doi.org/10.1145/3626252.3630880

[76] Brad Sheese, Mark Liffiton, Jaromir Savelka, and Paul Denny. 2024. Patterns of Student Help-Seeking When Using a
Large Language Model-Powered Programming Assistant. In Proceedings of the 26th Australasian Computing Education
Conference (Sydney, NSW, Australia) (ACE ’24). Association for Computing Machinery, New York, NY, USA, 49–57.
https://doi.org/10.1145/3636243.3636249

[77] Rebecca Smith and Scott Rixner. 2019. The Error Landscape: Characterizing the Mistakes of Novice Programmers. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE
’19). Association for Computing Machinery, New York, NY, USA, 538–544. https://doi.org/10.1145/3287324.3287394

[78] Ryo Suzuki, Gustavo Soares, Elena Glassman, Andrew Head, Loris D’Antoni, and Björn Hartmann. 2017. Exploring
the Design Space of Automatically Synthesized Hints for Introductory Programming Assignments. In Proceedings of
the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI EA
’17). Association for Computing Machinery, New York, NY, USA, 2951–2958. https://doi.org/10.1145/3027063.3053187

[79] Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. 2023. A Think-Aloud Study of Novice Debugging. ACM
Trans. Comput. Educ. 23, 2, Article 28 (jun 2023), 38 pages. https://doi.org/10.1145/3589004

[80] Joseph B. Wiggins, Fahmid M. Fahid, Andrew Emerson, Madeline Hinckle, Andy Smith, Kristy Elizabeth Boyer,
Bradford Mott, Eric Wiebe, and James Lester. 2021. Exploring Novice Programmers’ Hint Requests in an Intelligent
Block-Based Coding Environment. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
(Virtual Event, USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY, USA, 52–58. https://doi.org/
10.1145/3408877.3432538

[81] Ruiwei Xiao, Xinying Hou, and John Stamper. 2024. Exploring How Multiple Levels of GPT-Generated Programming
Hints Support or Disappoint Novices. In Extended Abstracts of the CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI EA ’24). Association for Computing Machinery, New York, NY, USA, Article 142,
10 pages. https://doi.org/10.1145/3613905.3650937

[82] Yuankai Xue, Hanlin Chen, Gina R. Bai, Robert Tairas, and Yu Huang. 2024. Does ChatGPT Help With Introductory
Programming?An Experiment of Students Using ChatGPT in CS1. In Proceedings of the 46th International Conference
on Software Engineering: Software Engineering Education and Training (Lisbon, Portugal) (ICSE-SEET ’24). Association
for Computing Machinery, New York, NY, USA, 331–341. https://doi.org/10.1145/3639474.3640076

[83] J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang. 2023. Why Johnny Can’t Prompt: How
Non-AI Experts Try (and Fail) to Design LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA,
Article 437, 21 pages. https://doi.org/10.1145/3544548.3581388

36

https://doi.org/10.1145/3626252.3630880
https://doi.org/10.1145/3636243.3636249
https://doi.org/10.1145/3287324.3287394
https://doi.org/10.1145/3027063.3053187
https://doi.org/10.1145/3589004
https://doi.org/10.1145/3408877.3432538
https://doi.org/10.1145/3408877.3432538
https://doi.org/10.1145/3613905.3650937
https://doi.org/10.1145/3639474.3640076
https://doi.org/10.1145/3544548.3581388

	Abstract
	1 Introduction
	2 Related work
	2.1 Non-AI hinting for novice programmers
	2.2 Timing of hints
	2.3 Generative AI and Large Language Models in programming education

	3 Method
	3.1 Student Snapshots
	3.2 Prompt formation
	3.3 Human-generated hints
	3.4 Educator evaluation
	3.5 Measuring characteristics of hints
	3.6 Pre-registration and ethical approval

	4 Results
	4.1 Open data
	4.2 Prompt creation
	4.3 Hint generation
	4.4 Judges
	4.5 Validity of Judging
	4.6 Method and stimuli evaluation
	4.7 Hint characteristics
	4.8 Hint scoring
	4.9 Hint rankings
	4.10 Hint rankings by generation mechanism
	4.11 Hint rankings by hint characteristics

	5 Educator survey
	6 Discussion
	6.1 Hint characteristics
	6.2 Hint generation
	6.3 The missing student perspective
	6.4 The nature of hints
	6.5 The personal connection
	6.6 Relation to prior work
	6.7 Comparative judgement as a research method

	7 Threats to Validity
	8 Future work
	9 Conclusion
	Acknowledgments
	References

