
Received 7 October 2024, accepted 2 December 2024. Date of publication 00 xxxx 0000, date of current version 00 xxxx 0000.

Digital Object Identifier 10.1109/ACCESS.2024.3514843

Detecting Learning Behavior in Programming
Assignments by Analyzing Versioned Repositories
JOHN CHEN 1, SERENA LAU 1, JUHO LEINONEN 2, VALERIO TERRAGNI 1,
AND NASSER GIACAMAN 1
1Department of Electrical, Computer, and Software Engineering, The University of Auckland, Auckland 1010, New Zealand
2Department of Computer Science, Aalto University, 02150 Espoo, Finland

Corresponding author: Nasser Giacaman (n.giacaman@auckland.ac.nz)

This work was supported in part by the Special Interest Group on Computer Science Education (SIGCSE) Special Projects Grant, in May
2021; and in part by The University of Auckland Scholarship of Teaching and Learning Grant, in October 2022.

ABSTRACT Computing education plays a significant role in shaping the calibre of future computing
professionals; hence, improving its quality is a valuable endeavour. A promising approach to enhance
computing education is leveraging student data from version control systems (VCS). While previous studies
have utilised VCS data to predict academic performance, there remains a gap in harnessing this data for
learning analytics to understand student learning behaviours in real time. In this research, we introduce the
Polivr ecosystem, a comprehensive platform designed to address this gap by utilising VCS data for learning
analytics in computing education. The Polivr ecosystem comprises three key modules: Polivr Anonymiser,
which ensures data privacy by anonymising student identities; Polivr Core, which mines learning metrics
from Git repositories; and Polivr Web Viewer, which transforms the raw metrics into insightful visualisations
for educators. We evaluated Polivr using anonymised repositories collected from undergraduate computing
courses. The resulting visualisations revealed trends and patterns in student learning behaviours, such as
coding habits and progression over time. These insights provide valuable information for educators to enhance
teaching strategies and potentially identify at-risk students. This research demonstrates the potential of version
control systems as a rich source of learning analytics, contributing to improving computing education by
enabling data-driven decision-making in instructional design and student support.

INDEX TERMS Computing education, Git, learning analytics, learning behaviour, mining software
repositories, version control.

I. INTRODUCTION
The software industry is one of the fastest growing markets
internationally, and a similar rise in computing education
is needed to support and reflect the increasing demand
for computing professionals [1]. The quality of computing
education plays an important role in supporting the software
industry; it has a significant impact on the skill, productivity,
and success of computing professionals, evident in the
industry’s pattern of favouring highly rated universities when
recruiting [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was S. Chandrasekaran .

One key way to cultivate high quality computing education
is utilising the increasingly prevalent concept of learning
analytics. Learning analytics is a methodology for capturing
student learning engagement and processes, whereby learning
process data is continuously collected [2], [3]. This data
could be collected as students progress through programming
assignments and can be used to better understand student
struggles. Ultimately, computing educators can then be
better provisioned for designing instruction and learning
interventions tailored to student needs [3].

The goal then is to equip academic institutes with the means
to capture learning analytics to enhance computing education.
Currently, methodologies of collecting such analytics include
formative assessment techniques such as online discussion

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 1

https://orcid.org/0009-0008-4522-0986
https://orcid.org/0009-0009-1582-6300
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0001-5885-9297
https://orcid.org/0000-0001-6885-1571
https://orcid.org/0000-0003-2871-880X

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

forums [4], [5], [6] and automatic plagiarism detection
programs such as MOSS and JPLAG [7], [8]. However, there
is a lack of a standardized, quantitative means of evaluating
the learning behavior of students.

More recently, the rise of AI tools, such as ChatGPT, makes
this especially more difficult. ChatGPT, which stands for ‘Chat
Generative Pre-trained Transformer’, is a highly advanced
chatbot tool capable of generating human-language responses
for a vast range of domains. Thus, its complexity, accuracy,
and ease of access online poses it as a significant threat to the
education system [9], [10]. In particular, ChatGPT’s powerful
ability to generate accurate source code mixed with the
low performance of current Artificial Intelligence Generated
Content (AIGC) detectors on code-related content makes
the evaluation of computing assessment final submissions
extremely difficult [11]. This is also where the existing
tools mentioned, namely MOSS and JPLAG, struggle in
performance. These systems focus on similarity detections,
while ChatGPT and other similar AI tools can generate original
code that would go unnoticed if utilised [10].

This leads to the motivation to explore new ways to capture
learning analytics and student behaviours. An important
element of computing education that could be leveraged is
the use of version control systems (VCS), a tool often used to
simplify change management in software projects [12]. VCSs,
e.g. Git and Mercurial, have been widely used and encouraged
in computing education for their benefits of making team
collaboration and instructor administration easier, and for
building student skills with industry tools [13]. As VCSs are
able to monitor the activities of individual students throughout
the course of a computing assignment, it has a strong potential
to be used to capture a novel perspective on student learning
analytics in computing education [12]. Data from student
software repositories could be collected and analysed using
various techniques; this field is known as mining software
repositories [14], [15].
Our research project aims to investigate technologies and

techniques for utilising version control systems to capture
learning analytics and behaviours. The goal is to equip
computing education instructors with a novel perspective on
their students’ learning as they progress, so that they can tailor
learning interventions to best enhance their education. This
would ultimately improve the quality of computing education
and the calibre of graduating students, thus better supporting
the computing industry.

The contributions of this report include:

• The development of a framework for mining, processing,
and visualising metrics from a Git repository,

• The development of the Polivr1 ecosystem to actualise
the aforementioned framework and equip instructors with
learning analytic insights,

• An evaluation of the learning pattern insights procured
by the Polivr ecosystem.

1polivr.digitaledu.ac.nz

The structure of this report is outlined as follows. A review
of the existing literature is discussed in Section II. Next, the
conceptual and practical contributions made in this study are
explored in Section III. Section IV presents an evaluation of
the findings, followed by a discussion of key implications in
Section V. Finally, conclusions are drawn and future work is
outlined in Section VI.

II. LITERATURE REVIEW
A. LEARNING ANALYTICS IN COMPUTING EDUCATION
Learning analytics, in the context of higher education, involves
collecting and analysing student data to optimize learning [4],
[16]. With the increasingly pervasive issue of student retention
in computing programs, learning analytics offers a promising
solution [2], [3] given its capabilities to capture programming
progress with a fine level of granularity.

One of the main—and arguably one of the most important—
applications of learning analytics is enabling the quality
improvement of teaching and instructional interventions.
By analyzing engagement in programming tasks, educators
gain insights into student challenges, enabling more personal-
ized teaching approaches [3], [17]. Examples of interventions
include tailored feedback, instructor meetings, additional
topic-specific resources, and achievement badges [17], [18].
Continuous monitoring of student progress through learning
analytics fosters timely feedback and adaptive teaching, which
enhances student motivation, reduces anxiety, and improves
performance outcomes [4], [5], [16]. Another application of
learning analytics is predictive modelling, [19] a technique
used for the early flagging of at-risk students and personalised
learning technologies [20], [21].
To analyze student learning data in a way that allows

meaningful extraction of learning behavior patterns, key
metrics must first be defined to guide data collection.
Cardell-Oliver [22] suggests five software metrics for
both diagnostic and formative assessment: program size,
functional correctness, execution time, number of program
style violations, and client validation using acceptance testing.
Other potential metrics include the number of artifacts
produced, time spent on a task, lines of code written, number of
errors obtained, number of methods written, average method
length, and external resource usage [2]. These metrics can
then be mapped diagnostically to different problem solving
approaches, assisting instructors in adapting course delivery
or design learning interventions better catered to student
needs [22].

B. ETHICAL CONSIDERATIONS IN LEARNING ANALYTICS
The rapid growth of learning analytics has raised increasing
concerns about the ethical use of student data [23], [24], [25].
These concerns have led to the development of guidelines
for ethical considerations in this field. As the ethics within
learning analytics has evolved, the focus has shifted from
recognizing its importance to pinpointing which principles
to apply [24], [26]. A further challenge also exists where

2 VOLUME 12, 2024

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

economic pressures motivate institutes to make ethical
compromises due to the high value of learning data [24].
A key guideline is to avoid misinterpretation of student

data to prevent faulty diagnoses or behaviours that obstruct
learning [23]. This underscores the need to recognize
the limitations of systematic and temporal models in
learning analytics and avoid mistreating students based
on past algorithmic categorizations [24]. Privacy concerns
regarding the use of student data in research have also
been highlighted [27], with emphasis placed on obtaining
proper consent before data collection and research [25],
[28]. Additionally, the importance of data deidentification -
retaining unique identifiers whilst removing personal identities
- has been underscored [23].

Discussion on these principles emphasize that student data
should primarily benefit students, avoid reductionist and
stereotyped interpretations, and ensure predictive models
are unbiased [29]. Transparency in data collection, regular
algorithm reviews, and providing students with an option
to opt-out are also vital [30]. Additionally, the handling of
outliers, protection of student progress during data collection,
and limiting data use to its intended purpose are central to
ethical considerations [24].

C. VERSION CONTROL SYSTEMS
Version control systems (VCS) are essential in the software
industry [13], [31]. Its importance has led educators to
incorporate it into student assessments [32], and some have
enhanced its appeal through gamification [33]. The availability
of cloud-based Git services with educational support makes
its integration into computing education straightforward [34],
and both educators and students have responded positively to
its use in the classroom [13], [35].

VCS offer several advantages in computing education. For
instructors, they simplify task distributions, code reviews,
and assessment management [13]. Students benefit directly
from enhanced collaboration in team assignments [31]
and secure code storage. Indirect benefits include the
acquisition of in-demand VCS skills [31], [36] and exposure
to industry-standard tools and best practices [13]. Students
demonstrate notable improvements in their overall learning
and appreciation of teamwork and collaboration when using
VCS [37].

A valuable application of VCS in computing education
is predicting student performance. Strong correlations exist
between student interaction levels with VCS and their resulting
academic grades [36], [38], and hence accurate prediction
models can be built using VCS activity [12]. Data variables
that could be collected as inputs for the prediction model
include total number of commits, number of days with at
least one commit made, average quantity of commits per
day, number of line additions, number of line deletions,
total number of issues opened, and total number of issues
closed [36]. Guerrero-Higueras et al. [36] found that the
number of days where at least one commit is made had

a greater predictive importance than the total number of
commits, and the number of issues opened or closed during
the assignment had very low importance.

D. MINING SOFTWARE REPOSITORIES
The field of mining software repositories (MSR) is vast in
research. MSR research entails the creation of techniques,
known as mining techniques, to extract useful information
from software repositories [15]. Applications of this research
include predicting the occurrence of bugs, understanding the
evolution of a software project, and providing insight into
team dynamics [15], [39], [40], [41].
One common area of MSR research is the mining of Git

logs in a software repository [14], [39], [41], [42]. A common
mined artifact is the number of commits made over time as
a metric for commit consistency. Some systems extend this
by correlating this behaviour against assignment milestones.
One study has extended this research by analysing the size
and types of commits made over the lifecycle of a software
project [43]. Others have delved deeper into the owner of
commits to demonstrate and visualise the collaboration of
team members and project team dynamic [15], [41].
Some research has taken a different angle by looking

at the quality of software across versions. Metrics utilised
include the presence of code smells as well as heuristics such
as cyclometric complexity [14], [44]. In this way, one can
ascertain the quality of a codebase across time, often with
module granularity.

E. RELATED WORK
Mangaroska et al. [45] conducted a study comparing the
performance of multimodal learning analytics (MMLA) with
solely IDE-based learning analytics, where MMLA is a
collection of techniques that utilise various data sources
to analyse learning within various, naturalistic learning
settings [46]. Example data sources for MMLA include data
collected from video, audio, text, gestures, and biosensors [45].
Their research aimed to explore the potential of MMLA to
extract data in a way that effectively measures key constructs
influencing learning. The emphasis is on constructs that
cannot be easily measured purely using programming process
data, such as IDE-based logs. Examples of such constructs
include cognitive load, frustration, confusion, and selective
attention [45].
The experiment conducted for this study involved the

collection of eye-tracking data, physiological data using a
wristband sensor, facial expressions using video data, and
IDE log data. Data was captured while Computer Science
majors completed a series of debugging activities and analyzed
using eight predictive models developed for the study. The
first model included only IDE-log data, and the following
seven models included both IDE-log data and at least one
other data stream. It was found that the first model was
notably outperformed by the other seven models, which
forms strong evidence for the value of MMLA in capturing

VOLUME 12, 2024 3

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

and investigating learner behaviour. Additionally, the highest
performing model was defined with a combination of eye-
tracking, facial, and physiological data on top of IDE-log
data; this is an interesting result that could guide the effective
implementation of MMLA in computing education. Thus,
it can be concluded from this study that IDE-log data may
not be sufficient in comprehensively capturing computing
student behaviours, and exploring different data streams
offers promising potential for learning analytics in computing
education.
A different predictive model built by

Guerrero-Higueras et al. [36] used data collected from student
interactions with version control systems (VCS). Their
study found a strong relationship between VCS activity and
academic performance as the highest performing model in
the experiment had a reasonably high accuracy score of
0.78 for predicting students’ academic performance [36].
Git4School is a web application allowing teachers to
visualise student progress by analysing data from their
Git repositories. It provides dashboards with graphs that
help instructors identify struggling students and seeing how
students are progressing through their activities [47]. Pons et al.
investigated what indicators about student behaviour could
be extracted from Git repositories and acknowledge the
challenges of analysing Git data [48].

F. SUMMARY
The central aim of our research is to investigate how
version control systems can be used to identify and analyse
patterns of student learning behaviour in computing education.
Existing research gives evidence to the compelling benefits
of harnessing learning analytics, including the improvement
of teaching quality and consequently student performance,
attitudes, and retention in computing degrees. There currently
exist a range of different means to leverage learning analytics
in computing education, such as IDE-based data, multimodal
data collection, or the measurement of software metrics
on final submissions. However, methods for continuously
capturing data to maximize the benefits of learning analytics—
such as the early flagging of at-risk students—remains largely
unexplored. With the research evidence that points toward a
strong relationship between student performance and metrics
collected from version control system usage, this area has a
strong potential to fill the aforementioned gap.

This study explores the following research questions:

RQ1: What metrics of student learning can be identified from
version control in software submissions?

RQ2: How can metrics of student learning indicate student
uptake with course content?

III. DETECTING LEARNING BEHAVIOUR IN SOFTWARE
REPOSITORIES VIA GIT ANALYSIS
A. GIT MINING AND ANALYSIS
In order to actualise the potential of harnessing version control
systems (VCS) for learning analytics, this study focuses on Git,

owing to its widespread adoption in the computing education
landscape.

1) MINING AND PROCESSING GIT METRICS
Git tracks changes in software repositories via snapshots
known as commits, which record the differences between
file versions as code additions and deletions. Commits also
contain metadata such as the author, timestamp, and commit
message. Thus, the rudimentary data encapsulated within
each commit of a student’s repository for a given assignment
offers a high-level view into the student’s progression. Table 1
summarises these metrics and their extraction method in the
rudimentary category.
The repository snapshot at each commit can also be

examined, providing insight into the codebase evolution across
all commits. In particular, inspecting the abstract syntax
tree (AST) representation of code at each commit provides
insight into file structure. The AST analysis also facilitates
identification of the code entities making up the project -
such as classes, methods, and fields - and how the project
was modified across the commits for the different levels
of granularity. This study’s approach to quantifying this
modification is discussed in Appendix VI. Compiling the
code at each snapshot and executing any number of provided
tests also forms a key factor in assessing the progression of
correctness and code quality in a student’s codebase. Table 1
summarises these metrics and their extraction methods in the
AST snapshot and state snapshot categories, respectively.

Furthermore, amalgamating the data across all commits
yields key metrics for each repository as a whole, such as the
total number of commits or the total number of additions made.
Fitting a distribution to the per-commit ‘‘snapshot’’ metrics
and calculating the standard deviation also offers insights
into the variability of metrics within each repository. These
aggregate metrics then enable comparison among students
undertaking the same assignment, facilitating the identification
of trends and outliers within the cohort. Table 1 summarises
these metrics and their extraction method in the aggregate
analytics category.

2) METRIC DATA VISUALISATION
To maximise the value of the procured Git metrics in the realm
of computing education, the raw data must be transformed
into comprehensible insights presented in an intuitive manner.
Data persistence and user-friendly navigation through the
data should also be offered to enhance the overall utility and
accessibility for instructors.
To optimally illustrate the different metric categories

delineated in Table 1, the following three visualisation types
are proposed:

• Repository level: Visualisations here could include dot
plots and line graphs to represent each individual commit
and its associated metrics.

• Assignment level: These visualisations should facilitate
the comparison of repository wide metrics across
students. A histogram could be used to depict the

4 VOLUME 12, 2024

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

TABLE 1. Summary of the metrics obtainable by mining data from each Git commit in a software repository. These metrics are categorised into three
high-level extraction methods.

FIGURE 1. Conceptual pipeline diagram. Key modules are shown as
shaded rectangles and are expanded upon in the following section.
Modules are connected by generic data interchange representations.

distribution of these repository wide metrics across
students, and a scatter plot could be used to illustrate
and identify any relationships between such metrics.

3) CONCEPTUAL APPROACH
To establish the means of mining and processing Git data to
ultimately visualising the insights, a conceptual approach is
devised as shown in Figure 1.
This approach consists of a pipeline, headed by an

anonymiser module which is important for this study as
it ensures ethical adherence and data privacy of student
repositories. This is followed by the repository processor
module, responsible for producing the various Git metrics
outlined in Table 1. Finally, we conclude with the viewer
component, responsible for transforming the Git metrics into
effective visualisations.

B. THE POLIVR ECOSYSTEM
Given the promising prospects of using version control for
learning analytics, this study brings forth the key practical
contribution of the Polivr ecosystem (Polivr stands for

FIGURE 2. The Polivr ecosystem architecture. Key modules are shown as
shaded rectangles and are expanded upon in the following text. Modules
are connected by data interchange representations.

‘progression of learning in versioned repositories’). In this
way, Polivr implements the conceptual blueprint outlined in the
previous section. This implementation is portrayed in Figure 2.
Note that our implementation currently only works in the
context of Java repositories.

1) POLIVR ANONYMISER
The anonymiser is a series of Python scripts used to protect the
identities of past students via anonymising their identities in
Git logs. This way, one can safely use their repositories when
performing evaluation without risk of exposing private data.
The anonymiser is complex in implementation as it has to cater
for anonymising at scale and preserving ‘pseudo-identities’ for
the same students, which may have multiple Git authorships
across different repositories and/or assignments. To do this,
the anonymiser works in three distinct stages as shown in
Figure 3.
In the initial mapping stage, the anonymiser reads Git

authors from all repositories and aims to associate them

VOLUME 12, 2024 5

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

FIGURE 3. Stages of the Polivr anonymiser. Key modules are shown as
shaded rectangles, connected by data interchange representations.

with unique identities from the students csv file, aided by
other identifiers like UPI, GitHub username, or student ID.
Each identified entity is then linked to a unique random
pseudonym, with this data saved in an output mapping csv file.
An existingmapping csv can be optionally inputted, preserving
previous identity-to-pseudonym links, ensuring consistent
pseudo-identities across all processed student repositories.
It is common that not all Git authors can be automatically

mapped to identities. The reconcilliation stage resolves this
issue through prompting and establishing manual intervention
to map the remaining authors to identities. The csv can then
be reprocessed so that pseudonyms are consistent across all
Git authors found. Finally, stage three occurs: anonymisation.
Here, using the complete mapping csv file, all repositories are
anonymised. This is done by replacing all existing Git authors
with those of their corresponding ‘pseudo-identities’.

2) POLIVR CORE
Polivr Core implements the repository processor phases as
given in Figure 1 in a three-layer architecture as shown in
Figure 4. Each layer abstracts away the complexity of inner
implementation from modules in the outer layers.

FIGURE 4. Layered architecture of Polivr Core. Each module outputs JSON
files which are then uploaded and persisted to Polivr Web Viewer.

a: POLIVR
At the heart of Polivr Core, is the Polivr Processor (shortform
Polivr). Polivr is built with Java and is responsible for taking
in a single Git repository and producing a series of ‘learning
behaviour’ metrics. These correspond to the first three phases.

• Git Log Inspection: JGit is used to process the Git logs
of a repository and extract the specified rudimentary
metrics.

• State Traversal: JGit is again used to check out the
codebase at each commit and then run both Maven builds
and test cases at each commit check out.

• AST Traversal: JavaParser was used to process the
Java files and extract AST representations of the various
entities. The modification score metrics are then attained
as per the discussion in Appendix VI.

b: POLIVR BATCH EXECUTABLE
Alongside Polivr, a batch executable has been created using
Golang. The executable is effectively a wrapper and allows
one to run Polivr on many repositories both sequentially and
in parallel, ultimately producing a collection of data JSONs.
Experimental verification on a machine with 20 OS threads
showed that parallel processing reduces the average processing
time for a single repository from roughly 3minutes to 1minute,
achieving an approximate 3 times speed-up. This is significant
as processing 100 repositories would only take 5 hours as
opposed to 15. This speed up is achieved by using Golang’s
renowned Go coroutines which operates on green threads. The
executable also takes on the responsibility of setting various
configurations such as memory allocation and batch sizes.
It also ensures that processing is performed on a copy of each
original repository such that the state of the original repository
is maintained even in the event of unexpected termination.

c: POLIVR GUI
The Polivr GUI, constructed using C#.NET6, represents
the final abstraction layer. A Blazor MAUI application
was chosen for its cross-platform compatibility and robust
developer community support. The GUI takes on two core
responsibilities. The first is calculating the aggregate metrics
from the ‘commit-level’ metrics ascertained earlier. The
second is that the GUI negotiates all the data into a format that
can be persisted and ultimately displayed by the web viewer.
This involves mapping each repository to the appropriate
student for the course, constructing various API requests, and
handling client authentication appropriately. The GUI also
carries the benefit of ensuring that the local environment is ‘fit’
to run the inner modules and makes processor configuration
simpler.

3) POLIVR WEB VIEWER
After processing the student repositories with the Polivr
Core, the outputted metric JSON files can be uploaded to
the Polivr Web Viewer. This platform serves as the primary
interface for instructors, providing an intuitive presentation
of the raw metrics and simplifying the interpretation
of complex repository data. Coupled with user-friendly
functionality design and efficient data management, the web
viewer enables instructors to conveniently draw meaningful
inferences about student learning behaviour. Trends and
outliers within the cohort are also easily visualised, facilitating

6 VOLUME 12, 2024

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

FIGURE 5. The Polivr Web Viewer modification drilldown view. This visualisation lists each file in the repository (viewed top to bottom) and each commit
across the project is represented by a tile (viewed horizontally). The number of modifications within the commit for each respective file is represented by
the colour of the commit tile. Commits with larger amounts of modification appear more red and those with less modification appear more blue.

the identification of students who may need additional
attention from instructors.

Data persistence andmanagement on the PolivrWeb Viewer
is facilitated through a REST API, developed using Express.js,
which interfaces with the Firebase database. This API also
orchestrates other backend services, including JWT token
encryption and dispatching email notifications to users. The
frontend user interface, built with React.js, is structured such
that student repositories are grouped into assignments, and
assignments into courses. This design mimics typical comput-
ing education course structures, ensuring intuitive integration
and organisation of actual student data. The visualisations
offered by the interface are tailored to provide a comprehensive
and intuitive representation of the different Git metrics
generated by Polivr Core. These visualisations can be grouped
into repository, assignment, and student levels as discussed in
Section III-A2.

a: REPOSITORY LEVEL
Each repository is assigned a dedicated page featuring three
different tabs, with each housing a distinct set of visualisations.
The ‘Overview’ tab displays all commits for the repository,
represented both in a dot plot and a line chart format. Users

can select one of the seven key commit metrics to dynamically
adjust the size of the dots in the dot plot and change the y-axis
measurement in the line chart.
The ‘Modification Drilldown’ tab features a dynamic

visualisation of the depicting the composition and evolution of
code entities within the project, illustrated in Figure 5. Each
entity’s modification over successive commits is quantified
through a modification score, detailed in Appendix VI,
and visually represented using a color-coded heatmap.
Users can click into any parent entity to view the child
entities, facilitating a layered, ‘drilldown’ exploration of the
repository’s structural transformations.
The ‘Timeline’ tab, illustrated in Figure 6 provides a

granular view of the project’s development over time, allowing
users to visualise the codebase’s evolution in detail. Users
can navigate through the repository’s commits in a sequential
manner, utilising either the manual skips or the auto-play
feature. The repository’s file directory tree is displayed,
enabling users to see the high-level file structure evolve
over the commits. Additionally, newly added or modified
files in each commit are visually highlighted. Users can also
select individual files to view a simplified representation
of the code. This representation includes the class, field,

VOLUME 12, 2024 7

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

FIGURE 6. The Polivr Web Viewer timeline view. This visualisation showcases the file structure for a given commit in the left panel. Clicking on each file
displays the ‘skeleton’ of selected code, displaying key classes, methods, and members.

and method names, accompanied by line counts for each
method.

b: ASSIGNMENT LEVEL
At the assignment level, an overview of all repositories under
the assignment is displayed using two charts, illustrated in
Figure 7. A donut chart portrays the distribution of repository
progress statuses as a proportion of the total student count.
Alongside this, a line graph charts student engagement levels,
quantified by the daily commit frequency throughout the
assignment’s duration.
To analyse the aggregated repository-wide metrics, both

a histogram and a scatter plot are employed to facilitate
comparison across the student cohort. Similar to the repository
overview, users can choose an aggregate repository-wide
metric for the histogram’s x-axis and select two metrics for
comparison on the scatter plot.
The histogram view offers insight into the distribution of

the chosen metric, emphasising outlier repositories. Adjacent
to the histogram, a detailed view lists repositories with
the highest and lowest values for that metric. The scatter
plot view illustrates the relationship between two selected
metrics, enabling users to discern correlations effectively and
efficiently. Trends are vividly presented, and consequently,

outlier repositories are easily identifiable. The detailed view
beside the scatter plot highlights repositories identified as
outliers based on their high Mahalanobis distances [49].
The user can also select a histogram bin to view the list of

repositories within, and selecting a repository either from
the detailed view or directly on the scatter plot reveals a
comprehensive breakdown of its metric values. Each value
is placed contextually within the box plot distribution of the
respective metric across the entire student cohort, offering
comparative insights anchored in broader trends.

IV. EVALUATION
A. COURSE CONTEXT
In this study, the course being analysed is SOFTENG281,
a second-year, 12-week ‘‘CS2-like’’ course that uses Java
as the programming language. The first six weeks teach
object-oriented programming (OOP) concepts, while the final
six weeks focus on design patterns, data structures, and simple
algorithms in the final six weeks. The course had an enrollment
of 309 students and is a mandatory requirement for three
engineering specialisations: computer systems engineering,
electrical and electronic engineering, and software engineer-
ing. Before taking this course, students completed a first-year

8 VOLUME 12, 2024

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

FIGURE 7. The Polivr Web Viewer assignment overview. This visualisation displays an overview of the selected assignment, notably a summary of the
progress of the cohort in the form of a pie chart and the aggregate number of commits for this assignment across time. The table at the bottom of the
screen lists all the repositories for the selected assignment.

CS1 course, which covered programming fundamentals using
Matlab and C, as part of their engineering curriculum.
The assessment structure of SOFTENG281 includes three

major take-home assignments worth 20% each, an invigilated
practical test worth 30%, and some small exercises totalling
10%. This evaluation specifically focuses on the first
assignment (Assignment 1), which assesses students’ ability to
apply the OOP concepts covered in the initial six weeks of the
course. The assignments used Maven for build management,
GitHub Classroom was used to distribute the assignment
starter code to students. Assignment 1 aimed to test students’
understanding and application of OOP concepts, such as
encapsulation, inheritance, and polymorphism. Students were
provided with half of the JUnit tests to help guide some of their
development, while the other half were hidden to encourage
students to write their own test cases.

B. METHODOLOGY
The student repositories were anonymised using a script that
removed authorship details. Following anonymisation, Polivr
Core processed the repositories using one of the dedicated
lab machines, utilising its computing power of 20 OS threads.
After processing, the output metrics were persisted to the web
client hosted on Heroku. The subsequent findings and insights
are centred around the graphs derived specifically from the
SOFTENG281 2023 cohort case study. Section III provides
a more in-depth understanding of how Polivr was used to
process the student repositories.

C. REPOSITORY LEVEL
To evaluate per-commit metrics at the repository level, Repos-
itory 51 by psuedo-student Sandie Seaforth and Repository
158 by pseudo-student Brian Pouk were selected for further
analysis given their distinct characteristics identified through
manual inspection. The defining features of these repositories
are observed through the differing progression journeys of the
number of additions and deletions as well as the number of
test cases passed across all commits.

1) ADDITIONS AND DELETIONS
Figure 8 illustrates a generally steady increase in the number
of additions and deletions for Repository 158. This suggests a
gradual progression through the assignment, with only small to
moderate changes being performed within each commit. This
is contrasted with Figure 9, which depicts the progression of
additions and deletions for Repository 51. Here, a significant
jump in the number of additions is exhibited at commits
11 and 13, and a significant jump in the number of deletions
is exhibited at commit 13. This increase is also inconsistent
with the general trend of very minimal additions and deletions
for all other commits in Repository 51.

2) TEST CASES
Figure 10 captures Repository 158’s consistent and gradual
progression towards passing all test cases, both provided and
hidden. This is contrasted with Figure 11, which illustrates
Repository 51’s more erratic progression to passing all test

VOLUME 12, 2024 9

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

FIGURE 8. Line chart of the cumulative number of additions and deletions for each commit in Repository 158. The cumulative sum increases steadily overall,
with slightly larger increases observed around commits 30 to 32. This suggests a gradual progression through the assignment, with only small to moderate
changes being performed within each commit.

FIGURE 9. Line chart of the cumulative number of additions and deletions for each commit in Repository 51. A sharp jump in additions and deletions is
observed in commits 11 and 13. This increase is inconsistent with the general trend of very minimal additions and deletions for all other commits.

FIGURE 10. Line chart of the cumulative number of provided and hidden test cases passed for each commit in Repository 158. The student of this repository
seems to make significant progress in test cases in commits 18 and 24. This suggests a consistent and gradual progression towards passing all test cases.

10 VOLUME 12, 2024

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

FIGURE 11. Line chart of the cumulative number of provided and hidden test cases passed for each commit in Repository 51. The student of this repository
makes a few commits (9, 23, and 30) where the number of test cases dips in comparison to the previous commit. This suggests a more erratic progression to
passing all test cases.

FIGURE 12. Scatter plot of the total number of commits against the insertions variability. The yellow dot
highlights an outlier (Repository 51) that seems to have higher insertion variability than other repositories
with a similar number of commits. This suggests that repositories with fewer commits often exhibit more
significant variations in their insertion counts per commit.

cases, marked by sharp and irregular dips in the percentage of
passed test cases across various commits.

D. ASSIGNMENT LEVEL
For assignment level evaluation, repository-wide metrics were
compared across all repositories within Assignment 1 of
the SOFTENG281 course. Additionally, each metric was
plotted against other metrics using a scatter plot to identify
any correlations between metrics and visualise any present
trends in the data. A selection of outlier repositories were

also highlighted on the plot, determined based on their high
Mahalanobis distances, a metric used for determining the
distance between a data point and the distribution [49]. After
a rudimentary inspection of the aggregate metric graphs, the
following trends emerged as being of notable interest.

1) TREND A: TOTAL NUMBER OF COMMITS AGAINST
INSERTIONS VARIABILITY
The insertions variability metric gauges the fluctuation in the
number of insertions for each commit, quantified using the

VOLUME 12, 2024 11

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

FIGURE 13. Scatter plot of the total number of insertions against the final modification score. The yellow dot
highlights an outlier (Repository 51) that seems to have a higher number of insertions than other repositories
with the same modification score. This suggests that repositories with more insertions often exhibit greater
modification activity.

standard deviation. The plot in Figure 12 suggests a strongly
negative, non-linear correlation between the total number of
commits and the insertions variability of the repositories in
Assignment 1. In essence, repositories with fewer commits
often exhibit more significant variations in their insertion
counts per commit. This relationship also appears to be
more pronounced at lower commit numbers, indicated by the
steeper slope, and gradually levels off as the total commits
increase.

2) TREND B: TOTAL NUMBER OF INSERTIONS AGAINST FINAL
MODIFICATION SCORE
The plot in Figure 13 illustrates the strongly positive, linear
correlation between the total number of insertions and the final
modification score. This trend suggests that repositories with
more insertions often also exhibit greater modification activity,
as indicated by a high modification score. A few outlier points
on the plot, particularly in the upper-right region, represent
repositories with disproportionately high modification scores
or insertions, diverging from the general trend exhibited by
most repositories.

3) TREND C: TOTAL NUMBER OF COMMITS AGAINST
COMMIT TIME VARIABILITY
The commit time variability metric gauges the fluctuation in
the duration of the interval between adjacent commits. The plot
in figure 14 highlights a weak negative, non-linear correlation

between the total number of commits and the commit time
variability of the repositories. In essence, repositories with
more commits often have a lower fluctuation in commit time
intervals. This relationship also appears to bemore pronounced
at lower commit numbers, indicated by the steeper slope,
and gradually levels off as the total number of commits
increase.

4) TREND D: TOTAL NUMBER OF TEST CASES PASSED
The histogram in figure 15 illustrates a strongly left-skewed
distribution, suggesting that most students manage to pass a
high number of test cases. Additionally, the prominent spike
at the highest histogram bin indicate that a significant portion
of repositories passed all, or nearly all, test cases. The lower
end of the histogram depicts a small number of repositories
failing all test cases—these repositories often did not compile
at the final commit.

V. DISCUSSION
The trends and patterns observed in the metric graphs can
be interpreted with respect to the wider computing education
course, facilitating more meaningful inferences about student
learning behaviours. The trends identified from the assignment
level evaluation in Section IV-D are discussed below. This
is followed by a holistic discussion of both repository and
assignment level evaluations, in light of the research objectives
and the existing literature.

12 VOLUME 12, 2024

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

FIGURE 14. Scatter plot of the total number of commits against the commit time variability. The yellow dot
highlights a data point (Repository 51) that seems to be in line with the general correlation observed. This
suggests that repositories with more commits often have a lower fluctuation in commit time intervals.

FIGURE 15. Histogram of the total number of test cases passed. We see the vast majority of repositories lie in
the range 42 to 43. Given there were 42 test cases for this assignment, this indicates that most students
passed all test cases for this assignment. This suggests that the test cases were not sufficiently challenging to
differentiate between students.

VOLUME 12, 2024 13

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

A. TREND INSIGHTS
• Trend A: The insertions variability of a repository can
be interpreted as a measure of the student’s consistency
with their commit behaviour, characterised by the size
of the commit. For example, a repository with many
small commits—that is the number of insertions for that
commit is low—and a few large commits would result
in a high insertions variability for that repository. Thus,
Trend Amakes sense intuitively, as a lower commit count
offers less opportunity for insertions to be consistently
distributed across the commits. The outliers highlighted
in the top-left and central regions of the plot indicate
repositories with higher insertions variabilities than most
repositories, with respect to the number of commits. This
suggests that these repositories contain larger changes
grouped into less commits by the student.

• Trend B: The modification score is a quantified measure
of how extensively the codebase has been altered,
surpassing the simplistic insertions and deletions metrics
by considering only credible changes, as explained
in the Appendix. For instance, a commit solely
involving comments and formatting alterations would
have numerous insertions but a modification score of
zero. Thus, repositories exhibiting high insertion counts
yet lowmodification scores indicate that the student made
numerous changes that did not enhance the project’s
functionality. This behaviour could be loosely inferred as
suspicious, as frequent non-credible changes are unlikely
to serve a genuine purpose. Repositories in this category
are easily identifiable as the outliers below the positive
correlation line. As Trend B emphasizes that the majority
of repositories follow the positive correlation, it suggests
that most students make code changes that predominantly
have an effect on the codebase functionality.

• Trend C: The commit time variability of a repository can
be interpreted as a measure of the student’s consistency
with their commit behaviour, characterised by the
time intervals between each commit. For instance,
a student who regularly makes commits every day would
exhibit low commit time variability in their repository.
Conversely, a student committing infrequently at the
beginning of an assignment but very frequently toward
the end would have a high commit time variability
for their repository. Thus, it makes logical sense that
Trend C displays a negative correlation, as a higher
number of commits tend to result in more evenly spaced
commit time intervals, thereby reducing commit time
variability. Outlier repositories with a disproportionately
high commit time variability but a low number of
commits may be of concern, as they may have crammed
significantly large chunks of work at one time. This
behaviour could, for example, be loosely inferred as
either suspicious conduct or indicative of a student
struggling to complete their required tasks within the
allotted time frame.

• Trend D: This trend illustrates a phenomenon commonly
referred to as the ‘ceiling effect’, which occurs when
a large proportion of a participant cohort achieves the
highest value for some measured variable [50]. This
phenomenon poses challenges, particularly in research,
as it prevents drawing conclusions about the impact of
an intervention on students’ learning outcomes when
they have already achieved the highest evaluation metric.
In the context of the SOFTENG281 case study, Trend
D underscores the difficulty of solely relying on test
cases to evaluate student learning progress. Since tests are
frequently used as the primary means of assessing student
learning in assignments, this insight highlights the need
to explore more comprehensive metrics for effectively
assessing and understanding student learning.

B. RESEARCH IMPLICATIONS
RQ1: What metrics of student learning can
be identified from version control in software
submissions?

A large suite of metrics have been identified, along with the
different methodologies to extract these metrics from version
control in software submissions. Section III-A1 outlines these
metrics in further depth. Furthermore, Polivr Core successfully
procured these metrics, followed by their visualisation on the
Polivr Web Viewer.

RQ2: How can metrics of student learning
indicate student uptake with course content?

Insights from the Git learning metrics were captured as trends
in the data distribution and correlations between two metrics,
as discussed in SectionV-A.Although student uptake of course
content cannot be confidently indicated using the current
metrics, these metrics still illustrate valuable insights into
general behavioural patterns. Additionally, students of concern
can be easily identified and further intervention to gauge
uptake could be conducted.

C. PRACTICAL IMPLICATIONS
This research carries substantial practical implications. Polivr
presents a novel tool for computing education instructors
to assess their students’ progress in Git-based assignments.
With its user-friendly and intuitive interface, it not only
facilitates easy access but also delivers deep insights. This
equips instructors with the necessary data to refine course
delivery and provide tailored learning interventions where
required. Utilising Polivr while an assignment is still in
progress also enables early detection of students who might be
struggling, characterised by outlier repositories or abnormal
metric patterns. With plans to release Polivr to the public soon,
there’s an ambition to reshape learning analytics for computing
educators. Polivr stands poised to elevate the teaching and
learning experience in computing and pave the way for more
research in this domain.

14 VOLUME 12, 2024

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

D. THREATS TO VALIDITY
There are a number of factors that may compromise the
validity of this study, which are important to acknowledge
when drawing insights and conclusions from the findings.

• Sampling Bias: Our study was based solely on data
from the SOFTENG281 2023 cohort, which limits
the breadth of our insights and as such, the procured
insights may not be necessarily generalisable to other
computing education courses and student cohorts.
Thus, we intend to include data from various courses
and cohorts to enhance the general applicability of
our findings. Moreover, as our dataset exclusively
features Java repositories, further investigations should
explore whether the identified patterns remain consistent
across Git repositories developed in other programming
languages.

• Cloud Hosting Constraints: The constraints of cloud
hosting, such as potential downtimes or latencies,
may introduce inaccuracies during data extraction for
the visualisations. Additionally, the 1 MB document
size limit set by our cloud storage provider, Fire-
base, impacts the size of repositories that can be
processed. This limitation could potentially hinder the
extrapolation of our findings to substantially larger
projects.

• Individual Assignments: The assignments used in our
study were solely individual assignments and did not
include any group assignments. Thus, insights and trends
identified may not be fully applicable to computing
education courses with group assignments.

VI. CONCLUSION
Understanding student learning behaviours in the field of
computing education is often a complex and challenging
task, which motivates the search for novel ways of capturing
learning analytics. A promising research opportunity has been
identified whereby we aim to investigate the prospect of
mining Git-based student repositories for ‘learning metrics’
with the hope of utilising such metrics to better understand
student learning. To address this, we have developed the Polivr
ecosystem, which is designed to extract and process a suite of
learning metrics, transforming them into informative visuali-
sations that offer valuable insights into student learning. Our
evaluation of these insights revealed many interesting trends
in student behaviour. This reaffirms the potential Polivr has to
revolutionise the way educators perceive and harness student
data, ultimately enhancing the educational experience and
outcomes.
Future work for this research includes expanding the

applicability of our insights by analysing more extensive
historical data. We intend to broaden our scope by assessing
group assignments and assignments written in different pro-
gramming languages. The use of the metrics and visualisations
generated by Polivr to detect academic misconduct behaviour
is another intriguing area to be explored.

APPENDIX
POLIVR MODIFICATION SCORE CALCULATION
The modification score aims to be a better metric of repository
progression that is tied more closely with ‘credible’ changes in
the code with every commit. In this way, it supersedes looking
at the total number of additions and deletions in a commit
because it effectively sifts through these line changes and only
counts credible changes to lines. The general idea here is that
as entities are more and more modified, this is reflected in the
score correlated to this entity.
The score is derived via a series of transitions functions,

w, x, y, z. It is simpler to undertake this from a bottom up
approach whereby we work from the entities with finer
granularity up to a notion of score across the project.
For methods, their scores can be calculated as follows.

A similar case can be made for fields. We see the score simply
is the previous score plus some contribution calculated by the
function δ for going from Mi−1

j,k,l to Mi
j,k,l

||Mi
j,k,l || = z(||Mi−1

j,k,l ||, Mi
j,k,l, Mi−1

j,k,l)

= ||Mi−1
j,k,l || + δ(Mi

j,k,l, Mi−1
j,k,l) (1)

δ(Mi
j,k,l, Mi−1

j,k,l) is the number of ‘credibly’ changed lines
for that given method. We define a ‘credible’ line change as
a line addition, deletion, or modification where a change has
occurred, excluding annotations, package imports, whitespace
changes and alterations due to commenting or formatting.
Doing so would render changes due to linters as practically
invisible.
If the method did not exist in the previous commit, then

||Mi−1
j,k,l || = 0 and δ collapses to simply counting the number

of credible lines in the newly added method. This reasoning
is consistent across all transition functions.
Rising up a level, for classes, their scores can be

calculated as given in Equation 2. The δ function encapsulates
‘credible’ changes to a class across two commits. For
all substructures (field or method) Jij,k,l in the class Ci

j,k ,
we define δ =

∑
l ||Jij,k,l || + ϵ where such constituent

scores ||Jij,k,l || are defined above. For substructure deletions
between commits i − 1 and i, the sum of the scores of the
removed substructures at the previous commit are issued to ϵ

(colloquially, /dev/null) and, thus, changes due to deletion
of substructures are still preserved in indicating modification.

Of note, method and field renaming is handled appropriately
whereby scores continue to propagate if renames take place.
We classify a rename where the contents of the entity has a
similarity of above 50%. 50%was chosen for consistency with
Git’s internal rename detector [51]. Similarity comparison was
performed using Greedy String Tiling due to the promise it
has shown in code similarity analysis [52], [53].

||Ci
j,k || = y(||Ci−1

j,k ||, Ci
j,k , Ci−1

j,k) = ||Ci−1
j,k || + δ(Ci

j,k , Ci−1
j,k)
(2)

Rising a further level, for files, their scores can be calculated
as given in the transition equation, Equation 3. The δ function
encapsulates ‘credible’ changes to a file across two commits.

VOLUME 12, 2024 15

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

For all structures (interfaces, enums, or classes) Jij,k in the file
Fij, we define δ =

∑
k ||Jij,k || + ϵ where such constituent

scores ||Jij,k || are defined above. As before, ϵ stores the
scores of deleted structures. Again, renames of structures are
appropriately handled by a similar analysis as that described
in the preceding paragraph.

||Fij|| = x(||Fi−1
j ||, Fij, Fi−1

j) = ||Fi−1
j || + δ(Fij, Fi−1

j)

(3)

Finally, the scores of a given project state can be calculated
by the transition function w as given in Equation 4. For all
files, we define δ =

∑
j ||Fij|| + ϵ where such constituent

scores ||Fij|| are defined above. As before, ϵ stores the scores
of deleted files. The renaming of files is catered for when
performing the transition function x through the use of Git’s
internal rename detector heuristic [51]. This ensures that the
scores are appropriately propagated.

||Pi|| = w(||Pi−1
||, Pi, Pi−1) = ||Pi−1

|| + δ(Pi, Pi−1) (4)

This way, we are able to ascertain the project’s modification
score over commit time whilst also being able to drill down
into exactly what constituent entities changed at each commit.

REFERENCES
[1] E. Roberts, ‘‘Computing education and the information technology

workforce,’’ ACM SIGCSE Bull., vol. 32, no. 2, pp. 83–90, Jun. 2000.
[2] D. Olivares, ‘‘Exploring learning analytics for computing education,’’

in Proc. 11th Annu. Int. Conf. Int. Comput. Educ. Res., Aug. 2015,
pp. 271–272.

[3] D. M. Olivares and C. D. Hundhausen, ‘‘Supporting learning analytics
in computing education,’’ in Proc. 7th Int. Learn. Anal. Knowl. Conf.,
Mar. 2017, pp. 584–585.

[4] N. Sclater, A. Peasgood, and J. Mullan, Learning Analytics in Higher
Education. London, U.K.: Jisc, 2016. Accessed: Feb. 8, 2017, p. 176.

[5] Z. G. Baleni, ‘‘Online formative assessment in higher education: Its pros
and cons,’’ Electron. J. e-Learn., vol. 13, no. 4, pp. 228–236, Apr. 2015.

[6] J. W. Gikandi, D. Morrow, and N. E. Davis, ‘‘Online formative assessment
in higher education: A review of the literature,’’ Comput. Educ., vol. 57,
no. 4, pp. 2333–2351, Dec. 2011.

[7] A. A. Pandit and G. Toksha, ‘‘Review of plagiarism detection technique in
source code,’’ in Proc. Int. Conf. Intell. Comput. Smart Commun. (ICSC).
Cham, Switzerland: Springer, 2020, pp. 393–405.

[8] S. Schleimer, D. S. Wilkerson, and A. Aiken, ‘‘Winnowing: local algorithms
for document fingerprinting,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2003, pp. 76–85.

[9] M. Farrokhnia, S. K. Banihashem, O. Noroozi, and A. Wals, ‘‘A SWOT
analysis of ChatGPT: Implications for educational practice and research,’’
Innov. Educ. Teaching Int., vol. 61, no. 3, pp. 460–474, May 2024.

[10] M. Khalil and E. Er, ‘‘Will ChatGPT get you caught? Rethinking of
plagiarism detection,’’ 2023, arXiv:2302.04335.

[11] J. Wang, S. Liu, X. Xie, and Y. Li, ‘‘Evaluating AIGC detectors on code
content,’’ 2023, arXiv:2304.05193.

[12] Á. M. Guerrero-Higueras, V. M. Olivera, G. Esteban, C. Fernández,
F. J. Rodríguez-Sedano, and M. Á. Conde, ‘‘Model for evaluating Student
performance through their interaction with version control systems,’’ in
Proc. Learn. Anal. Summer Inst. Spain, Jan. 2018, pp. 104–112.

[13] L. Haaranen and T. Lehtinen, ‘‘Teaching git on the side: Version control
system as a course platform,’’ in Proc. ACM Conf. Innov. Technol. Comput.
Sci. Educ., Jun. 2015, pp. 87–92.

[14] G. Robles and J. M. Gonzalez-Barahona, ‘‘Mining student repositories to
gain learning analytics. An experience report,’’ in Proc. IEEE Global Eng.
Educ. Conf. (EDUCON), Mar. 2013, pp. 1249–1254.

[15] A. E. Hassan, ‘‘The road ahead for mining software repositories,’’ in Proc.
Frontiers Softw. Maintenance, Sep. 2008, pp. 48–57.

[16] O. Viberg, M. Hatakka, O. Bälter, and A. Mavroudi, ‘‘The current landscape
of learning analytics in higher education,’’ Comput. Hum. Behav., vol. 89,
pp. 98–110, Dec. 2018.

[17] C. D. Hundhausen, D. M. Olivares, and A. S. Carter, ‘‘IDE-based learning
analytics for computing education: A process model, critical review, and
research agenda,’’ ACM Trans. Comput. Educ., vol. 17, no. 3, pp. 1–26,
Sep. 2017.

[18] A. J. Stimpson and M. L. Cummings, ‘‘Assessing intervention timing
in computer-based education using machine learning algorithms,’’ IEEE
Access, vol. 2, pp. 78–87, 2014.

[19] C. Brooks and C. Thompson, ‘‘Predictive modelling in teaching and
learning,’’ in Handbook of Learning Analytics. Society for Learn-
ing Analytics Research, May 2017, pp. 61–68. [Online]. Available:
https://www.solaresearch.org

[20] M. Asiah, K. N. Zulkarnaen, D. Safaai, M. Y. N. N. Hafzan, M. M. Saberi,
and S. S. Syuhaida, ‘‘A review on predictive modeling technique for Student
academic performance monitoring,’’MATECWeb Conf., vol. 255, Jan. 2019,
Art. no. 03004.

[21] M. Ekowo and I. Palmer, Predictive Analytics in Higher Education.
Washington, DC, USA: New America, 2017.

[22] R. Cardell-Oliver, ‘‘How can software metrics help novice programmers,’’
in Proc. 13th Australas. Comput. Educ. Conf., vol. 14, Jan. 2011, pp. 55–62.

[23] S. Slade and P. Prinsloo, ‘‘Learning analytics: Ethical issues and dilemmas,’’
Amer. Behav. Sci., vol. 57, no. 10, pp. 1510–1529, Oct. 2013.

[24] P. Prinsloo and S. Slade, Ethics and Learning Analytics: Charting the (Un)
Charted. SoLAR, 2017. [Online]. Available: https://www.solaresearch.org

[25] J. E. Willis, S. Slade, and P. Prinsloo, ‘‘Ethical oversight of student data
in learning analytics: A typology derived from a cross-continental, cross-
institutional perspective,’’ Educ. Technol. Res. Develop., vol. 64, no. 5,
pp. 881–901, Oct. 2016.

[26] D. Tzimas and S. Demetriadis, ‘‘Ethical issues in learning analytics:
A review of the field,’’ Educ. Technol. Res. Develop., vol. 69, no. 2,
pp. 1101–1133, Apr. 2021.

[27] J. C. C. Rios, K. Kopec-Harding, S. Eraslan, C. Page, R. Haines, C. Jay, and
S. M. Embury, ‘‘A methodology for using GitLab for software engineering
learning analytics,’’ in Proc. IEEE/ACM 12th Int. Workshop Cooperat. Hum.
Aspects Softw. Eng. (CHASE), May 2019, pp. 3–6.

[28] Y.-S. Tsai and D. Gasevic, ‘‘Learning analytics in higher education—
Challenges and policies: a review of eight learning analytics policies,’’
in Proc. 7th Int. Learn. Anal. Knowl. Conf., 2017, pp. 233–242.

[29] S. Slade andA. Boroowa,Policy on Ethical Use of Student Data for Learning
Analytics. Open Univ. U.K.: Milton Keynes, 2014.

[30] A. Rubel and K. M. L. Jones, ‘‘Student privacy in learning analytics: An
information ethics perspective,’’ Inf. Soc., vol. 32, no. 2, pp. 143–159,
Mar. 2016.

[31] D. Rocco and W. Lloyd, ‘‘Distributed version control in the classroom,’’ in
Proc. 42nd ACM Tech. Symp. Comput. Sci. Educ., Mar. 2011, pp. 637–642.

[32] R. Glassey, ‘‘Adopting Git/GitHub within teaching: A survey of tool
support,’’ in Proc. ACM Conf. Global Comput. Educ., May 2019,
pp. 143–149.

[33] L. Singer and K. Schneider, ‘‘It was a bit of a race: Gamification
of version control,’’ in Proc. 2nd Int. Workshop Games Softw. Eng.,
Realizing User Engagement With Game Eng. Techn. (GAS), Jun. 2012,
pp. 5–8.

[34] D. M. Case, N. W. Eloe, and J. L. Leopold, ‘‘Scaffolding version control
into the computer science curriculum,’’ in Proc. Int. Workshop Distance
Educ. Technol. (Conjunct With 22nd Int. Conf. Distrib. Multimedia Syst.),
Nov. 2016, pp. 175–183.

[35] J. Lawrance, S. Jung, and C. Wiseman, ‘‘Git on the cloud in the classroom,’’
in Proc. 44th ACMTech. Symp. Comput. Sci. Educ., Mar. 2013, pp. 639–644.

[36] Á. M. Guerrero-Higueras, C. F. Llamas, L. S. González, A. G. Fernández,
G. E. Costales, and M. Á. C. González, ‘‘Academic success assessment
through version control systems,’’ Appl. Sci., vol. 10, no. 4, p. 1492,
Feb. 2020.

[37] P. Patani, S. Tiwari, and S. S. Rathore, ‘‘The impact of GitHub on students’
learning and engagement in a software engineering course,’’ Comput. Appl.
Eng. Educ., vol. 32, no. 5, pp. 1–23, Sep. 2024, doi: 10.1002/cae.22775.

[38] A. Karakaš and D. Helic, ‘‘Relation between student characteristics, git
usage and success in programming courses,’’ in Responsive and Sustainable
Educational Futures, O. Viberg, I. Jivet, P. Muñoz-Merino, M. Perifanou,
and T. Papathoma, Eds., Cham, Switzerland: Springer, 2023, pp. 133–148.

16 VOLUME 12, 2024

http://dx.doi.org/10.1002/cae.22775

J. Chen et al.: Detecting Learning Behavior in Programming Assignments by Analyzing Versioned Repositories

[39] F. Z. Sokol, M. F. Aniche, and M. A. Gerosa, ‘‘MetricMiner: Supporting
researchers in mining software repositories,’’ in Proc. IEEE 13th Int. Work.
Conf. Source Code Anal. Manipulation (SCAM), Sep. 2013, pp. 142–146.

[40] H. Kagdi, M. L. Collard, and J. I. Maletic, ‘‘A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution,’’ J. Softw. Maintenance Evolution: Res. Pract., vol. 19, no. 2,
pp. 77–131, Mar. 2007.

[41] M. Mittal and A. Sureka, ‘‘Process mining software repositories from
student projects in an undergraduate software engineering course,’’ in Proc.
Companion 36th Int. Conf. Softw. Eng., May 2014, pp. 344–353.

[42] L. Glassy, ‘‘Using version control to observe student software development
processes,’’ J. Comput. Sci. Colleges, vol. 21, no. 3, pp. 99–106, Feb. 2006.

[43] M.Macak, D. Kruzelova, S. Chren, and B. Buhnova, ‘‘Using process mining
for git log analysis of projects in a software development course,’’ Educ.
Inf. Technol., vol. 26, no. 5, pp. 5939–5969, Sep. 2021.

[44] C. Kiefer, A. Bernstein, and J. Tappolet, ‘‘Mining software repositories with
iSPAROL and a software evolution ontology,’’ in Proc. 4th Int. Workshop
Mining Softw. Repositories (MSR: ICSE Workshops), May 2007, p. 10.

[45] K. Mangaroska, K. Sharma, D. Gašević, and M. Giannakos, ‘‘Multimodal
learning analytics to inform learning design: Lessons learned from
computing education,’’ J. Learn. Anal., vol. 7, no. 3, pp. 79–97, Dec. 2020.

[46] P. Blikstein, ‘‘Multimodal learning analytics,’’ in Proc. 3rd Int. Conf. Learn.
Anal. Knowl., Apr. 2013, pp. 102–106.

[47] J.-B. Raclet and F. Silvestre, ‘‘Git4School: A dashboard for
supporting teacher interventions in software engineering courses,’’
in Addressing Global Challenges and Quality Education, C. Alario-Hoyos,
M. J. Rodríguez-Triana, M. Scheffel, I. Arnedillo-Sánchez, and
S. M. Dennerlein, Eds., Cham, Switzerland: Springer, 2020, pp. 392–397.

[48] M. Pons, J.-M. Bruel, J.-B. Raclet, and F. Silvestre, ‘‘Finding behavioral
indicators from contextualized commits in software engineering courses
with process mining,’’ in Frontiers in Software Engineering Education,
A. Capozucca, S. Ebersold, J.-M. Bruel, and B. Meyer, Eds., Cham,
Switzerland: Springer, 2023, pp. 56–68.

[49] G. J. McLachlan, ‘‘Mahalanobis distance,’’ Resonance, vol. 4, no. 6,
pp. 20–26, Jun. 1999.

[50] N. Staus, K. O’Connell, and M. Storksdieck, ‘‘Addressing the ceiling effect
when assessing STEM out-of-school time experiences,’’ Frontiers Educ.,
vol. 6, Jul. 2021, Art. no. 690431, doi: 10.3389/feduc.2021.690431.

[51] Git Diff Documentation. Accessed: Dec. 11, 2024. [Online]. Available:
https://git-scm.com/docs/git-diff

[52] A. B. Kleiman and T. Kowaltowski, ‘‘Qualitative analysis and comparison
of plagiarism-detection systems in student programs,’’ Sao Poalo, Brazil:
Instituto de Computacao Universidade Estadual de Campinas, 2009.

[53] L. Prechelt, G. Malpohl, and M. Philippsen, ‘‘Finding plagiarisms among
a set of programs with JPlag,’’ J. Univers. Comput. Sci., vol. 8, no. 11,
p. 1016, Jan. 2002.

JOHN CHEN received the Bachelor of Engineering
degree (Hons.) in software engineering from The
University of Auckland, New Zealand. He is
currently a Software Engineer with Vivienne
Court Trading, Sydney, Australia. His research
interests include high performance computing,
software architecture and practices, and tooling and
methodologies in computing education.

SERENA LAU received the Bachelor of Engineer-
ing degree (Hons.) in software engineering from
The University of Auckland, New Zealand. She is
currently a Software Engineer with Sandfield Asso-
ciates Ltd., Auckland, New Zealand. Her research
interests include human–computer interaction and
tooling and methodologies in computing education.

JUHO LEINONEN received the Ph.D. degree in
computer science from the University of Helsinki.
He is currently an Academy Research Fellow with
Aalto University, Finland. His research explores
how to best support and engage diverse learner
populations using educational technology and
artificial intelligence.

VALERIO TERRAGNI received the Ph.D. degree in
computer science from The Hong Kong University
of Science and Technology. He is currently a Senior
Lecturer and the Director of software engineering
with The University of Auckland, New Zealand.
His current research interests include automated
software testing and program analysis.

NASSER GIACAMAN received the Ph.D. degree
in engineering from The University of Auckland.
He is currently a Senior Lecturer in software
engineering with The University of Auckland, New
Zealand. His current research interests include
educational technologies, computing education,
and immersive technologies.

VOLUME 12, 2024 17

http://dx.doi.org/10.3389/feduc.2021.690431

