
Promoting Early Engagement with Programming Assignments
Using Scheduled Automated Feedback

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Jacqueline Whalley
Auckland University of Technology

Auckland, New Zealand
jwhalley@aut.ac.nz

Juho Leinonen
University of Helsinki

Helsinki, Finland
juho.leinonen@helsinki.fi

ABSTRACT
Programming assignments are a common form of assessment in
introductory courses and often require substantial work to com-
plete. Students must therefore plan and manage their time carefully,
especially leading up to published deadlines. Although time man-
agement is an important metacognitive skill that students must
develop, it is rarely taught explicitly. Prior research has explored
various approaches for reducing procrastination and other unpro-
ductive behaviours in students, but these are often ineffective or
impractical in large courses. In this work, we investigate a scalable
intervention that incentivizes students to begin work early. We pro-
vide automatically generated feedback to students who submit their
work-in-progress prior to two fixed deadlines scheduled earlier than
the final deadline for the assignment. Although voluntary, we find
that many students welcome this early feedback and improve the
quality of their work across each iteration. Especially for at-risk
students, who have failed an earlier module in the course, engaging
with the early feedback opportunities results in significantly better
work at the time of final submission.

CCS CONCEPTS
• Social and professional topics → Computing education.

KEYWORDS
early feedback, deadlines, self-regulation, novice programmers, au-
tomated feedback, time management, procrastination, assessment,
at-risk students
ACM Reference Format:
Paul Denny, Jacqueline Whalley, and Juho Leinonen. 2021. Promoting Early
Engagement with Programming Assignments Using Scheduled Automated
Feedback. In Australasian Computing Education Conference (ACE ’21), Feb-
ruary 2–4, 2021, Virtual, SA, Australia. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3441636.3442309

1 INTRODUCTION
Programming assignments often require a substantial amount of
work from students, and this may be spread over a number of days
or weeks leading up to a deadline. Time management is therefore a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACE ’21, February 2–4, 2021, Virtual, SA, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8976-1/21/02. . . $15.00
https://doi.org/10.1145/3441636.3442309

very important metacognitive skill for students to develop. In the
programming education literature, a range of activities aimed at
supporting metacognitive and self-regulatory skills have specifi-
cally focused on time management [31]. Despite this, it is known
that many students do not manage their time well and will delay
starting work on an assignment if the deadline is not imminent.
This is a serious problem as it is often difficult for students to judge
how much time it will take them to complete an assignment, par-
ticularly if they need to seek help. There is also clear evidence that
starting work early, and making incremental progress, is strongly
correlated with successful outcomes [9, 25].

As enrolments in programming courses have grown, there has
been an increasing reliance on automated marking for reasons of
efficiency. Automated assessment tools, which provide students
immediate feedback on code they have written, are often used for
small programming tasks [26]. Providing automatically generated
feedback of program correctness for larger programming assign-
ments is also possible, and can help students to fix errors or improve
their submissions prior to a final submission deadline. Such for-
mative re-submissions allow students to learn from their mistakes,
reduce careless errors, and can reduce the anxiety associated with
the act of submitting an assignment [28]. However, allowing stu-
dents to access such formative mechanisms at any time does not
address issues around time management or procrastination.

In this research, we investigate the use of an optional feedback
and re-submission process for an end of course programming as-
signment in an introductory course. The feedback that students
receive is automatically generated enabling this approach to work
at scale. To receive feedback on their work, students submit what
they have completed prior to a scheduled “early feedback” deadline.
The scheduling of these deadlines is designed to encourage students
to start their work early, such that the more progress they make, the
more useful the feedback they receive. The nature of the feedback is
minimal, essentially revealing only the number of functional tests,
across a range of independent tasks, that the submitted code passes.
This limited feedback still helps students to identify the tasks to
which they should allocate their available time, but by not revealing
details about the errors, students are expected to review their own
code carefully.

In this work, we address the following research questions:

RQ1. To what extent do students take advantage of scheduled, but
optional, early feedback opportunities?

RQ2. What relationship exists between receiving early feedback
and subsequent assignment performance?

RQ3. Do at-risk students, who failed a prior module, make use
of the early feedback opportunities and if so, how does this
impact their performance?

https://doi.org/10.1145/3441636.3442309
https://doi.org/10.1145/3441636.3442309

ACE ’21, February 2–4, 2021, Virtual, SA, Australia Paul Denny, Jacqueline Whalley, and Juho Leinonen

2 RELATEDWORK
It is generally accepted that providing learners with useful, action-
able feedback is critical for their progression and engagement. In
his best-selling book on teaching in higher education, Ramsden
provides a section on the effect of feedback on performance [32,
p. 1930]. He notes that for feedback to be useful it needs to be timely
and detailed. This presents unique challenges in the computer sci-
ence classroom. As enrolments increase, providing timely feedback
on a large scale can be difficult without the use of automation.
Moreover, novice programmers may lack the knowledge, language
(i.e. technical terminology) and experience needed to interpret de-
tailed feedback. Ramsden also noted that when feedback is delayed,
students do not have sufficient time to learn from it and adjust
their behaviors. It is reasonable therefore to expect that providing
simple feedback, regularly throughout a programming assignment,
should lead to improved learning and better outcomes. But what
kind of feedback is appropriate for novice programmers, and can it
be scheduled to promote positive time management behaviors and
discourage procrastination?

2.1 Feedback and Learning to Program
The earliest, and most common, form of feedback students receive
on their programming is from a compiler or interpreter and relates
to syntax. The error messages provided by such tools are immediate,
but often unhelpful because they are cryptic and difficult for novice
programmers to decipher. As a result, there has been a recent surge
in interest focused on improving the quality and usefulness of such
error messages [2, 11].

One scalable solution for providing feedback on program cor-
rectness is to release unit tests or testing code directly to students.
This approach has been found to afford some benefits, as the feed-
back students receive enables them to write fully compliant and
functionally correct code, helps them focus on code quality, and
increases their confidence in their programming ability [4, 5]. But
for many students unit tests are complicated and unhelpful. In one
study, novice programmers were given unit test code to help them
during programming labs and take-home assignments [37]. At the
end of the course, students were surveyed and although they all
reported using the provided unit test code, some students found
it hard to understand and read, and the resulting error messages
difficult to interpret. This suggests that simpler forms of feedback
may be more appropriate for novices.

Other research has looked at the usefulness of software metrics
[3, 27] as a feedback mechanism. Work in this area also suggests
that students find it difficult to interpret metric-based feedback [27],
and has lead researchers to explore a variety of feedback formats
[24]. Providing convenient and actionable feedback, which is simple
for students to understand, remains an ongoing challenge of great
interest to computing educators [8].

2.2 Automated Feedback
Automated feedback systems, many of which provide a web-based
interface throughwhich code can be uploaded or submitted, provide
convenience for students and the ability to collect fine-grained
process data for instructors and educational researchers [21, 33]. A
wide variety of such systems exist, ranging from practice tools that

provide automatic feedback on small fragments of student-written
code [10, 13, 30], to more sophisticated frameworks designed to
automatically grade large multi-file assignments [14].

A 2010 systematic review of the literature on automated pro-
gramming assessment tools reported that many systems produce
feedback based around test cases that are either automatically gen-
erated or taken from instructor-provided test suites [20]. In general,
automated feedback is viewed positively by programming students
and influences them to put more effort into their work [16]. A re-
view of a range of educational interventions in computer science
classrooms shows significant evidence for the benefits of automated
feedback [35]. In 2018, Keuning et al. published a systematic liter-
ature review on automated feedback for programming exercises
[26]. A total of 101 tools were reviewed and classified according to
the type of feedback they provide. The authors found that contem-
porary tools tend to focus more on test failures and compiler errors
than their earlier counterparts which focused mainly on feedback
related to solution errors. Very few tools provide specific feedback
on how students should proceed, and few existing tools are easily
adaptable by instructors to suit their needs.

In the current study, we adopt an automated approach to pro-
viding feedback to students. Like many existing tools, the feedback
we generate is test-case based, however we only report the total
number of passing tests leaving the work of bug diagnosis and
correction in the hands of the students. One goal of providing this
feedback is to help students produce higher quality solutions. How-
ever, the scheduling of the feedback serves another purpose. By
providing the feedback on a strictly fixed schedule to all students,
rather than immediately when a student submits their work, our
aim is to encourage students to start work early and manage their
time effectively.

2.3 Influencing Positive Work Behaviors
Timemanagement has been identified as one of the primary reasons
that students struggle in their programming courses [36]. Moreover,
procrastination is a common and widely acknowledged problem for
many students [7, 18]. In computer science classrooms, there have
been some deliberate efforts to reduce procrastination behavior
but with limited success. In a study by Edwards et al. [12] com-
paring three interventions, only regular automated email alerts
which included a reminder of upcoming deadlines seemed to have
an effect. In another study by Ilves et al. visualizations targeting
time management were only helpful for low-performing students
and even harmful for performance-oriented students [22]. Novice
programmers, who are typically first year students at university, are
at particular risk. Students initially do not manage their time very
well, and rely on explicit deadlines to control their behaviour rather
than self-regulating their activity. As students progress through
their degree, their time management skills tend to improve [19].

Encouraging students to start work early is well justified. Al-
though some studies involving novice programmers have reported
that the time at which a student starts their assignment has little
effect on their performance [29], there is much more evidence that
starting early has a positive effect [1, 15, 17, 39]. Some instruc-
tors have therefore opted for mandatory activities requiring early
engagement with assignments. For example, Willman et al. [39]

Promoting Early Engagement with Programming Assignments Using Scheduled Automated Feedback ACE ’21, February 2–4, 2021, Virtual, SA, Australia

included mandatory collaborative problem solving sessions and
noted that providing this structure motivated students to start their
assignments early.

Other work has tried to influence student time management in
more subtle ways. Irwin and Edwards explored an ingenious way
of using mobile gaming psychology to encourage better time man-
agement by students when working on programming assignments
[23]. Specifically, they incorporated an energy bar system into their
automated grading framework. Students could submit their work
for feedback, but when they did so they would lose “submission
energy” which took some time to regenerate. This approach was
inspired by how some mobile games limit consumption by their
players. The goal was to encourage students to spread their work
out over time and to avoid procrastination. However, students still
had to recognise for themselves that starting their work late would
limit the number of submissions they couldmake overall. In fact, the
authors found that students made significantly fewer submissions
when compared with historical data, indicating that the energy bar
system actually limited the number of submissions made rather
than simply spreading them out over time. Similarly, the authors
noted that the time at which students began work was only a few
hours earlier on average compared to historical data, and a smaller
difference than was hoped for.

In a similar vein, Spacco and Pugh describe an auto-grading
tool called Marmoset, which allows students to submit their code
which is executed against a set of public test cases [34]. If it passes
these, students can choose to have their code tested using a more
comprehensive set of hidden “release tests”. These release tests
provide very little detail about why a program failed, and students
are encouraged to design their own tests to identify bugs in their
code. The rate at which students can access the release tests is
limited, as a token is consumed which regenerates after 24 hours.
Although the authors do not explicitly state that this is designed to
help students manage their time, it is an implicit incentive.

In the current study we are more explicit – we introduce a fixed
schedule of deadlines which enable students to submit their work
and receive automated feedback on their progress. Although submit-
ting work by these early deadlines is completely voluntary, our goal
is that the perceived value of the feedback and its fixed schedule
will encourage students to engage with the assignment early.

3 METHOD
Our study was conducted in an introductory programming course
for engineers at a mid-sized urban university in Auckland, New
Zealand. There were 978 students in the course which was con-
ducted over twelve teaching weeks and divided into two halves.
The first half introduced students to programming using MATLAB
(weeks 1–6) and the second half provided an introduction to the
C programming language (weeks 7–12). No prior knowledge of
programming was assumed. The assignment which is the subject of
this research is from the second half of the course and was released
at the beginning of week 10 (7th October) with the final submission
due at the end of the course (27th October). The assignment is an
individual take home assignment worth 12% of the overall grade
for the course.

Table 1: Key dates and assignment events.

Event Date & Time Day
Assignment released 7th October 0
Early Feedback (Round 1) 19th October 1:00pm 12
Early Feedback (Round 2) 24th October 7:00am 17
Final Submission 27th October 11:59pm 20

3.1 Assignment Tasks
The assignment, a game inspired by Sokoban [38], was presented
as ten smaller tasks in the context of an overarching larger project.
Each task involved completing part of the functionality for an
ASCII text-based console game called “The Warehouse”. Students
were provided with a source file (project.c) containing the function
declarations that required implementation. A separate source file,
which launched the game and made calls to the required functions,
was provided to students and did not require editing. The individual
tasks, along with the corresponding required functions, are listed
below.
1. int TimeWorked(int minA, int secA, int minB, int secB)
2. int WarehouseAddress(int max)
3. void Advertise(char *words)
4. int WinningBid(int *values, int length)
5. void BoxDesign(char *design, int width, int height)
6. void WorkerRoute(int warehouse[10][10])
7-10. int MakeMove(int warehouse[10][10], char move)

Task 7, the MakeMove() function, implements the basic move-
ment of the player in the Sokoban-style game – that is, allows a
player to move a character and push boxes around a 2D grid. Tasks
8–10 extend task 7 by requiring progressively more complex cases
to be handled by the MakeMove() function, such as adding targets
and pushing multiple boxes in a single turn. The goal of the game
is for the player to move all of the boxes on top of the targets.

3.2 Assignment Feedback Mechanism
Students had approximately twenty days to complete the assign-
ment from the time it was released to the class. Prior to the final
deadline, two additional scheduled deadlines were announced. Both
of these “early” deadlines were optional for students, as they were
ungraded, but they provided an opportunity for students to re-
ceive some early feedback on their progress. The first of these was
roughly half-way between the date the assignment was released
and the final deadline. Table 1 shows the key dates and times.

An online submission tool was used, and students were free
to submit their code (project.c) at any time, and as many times as
they wished. However, no feedback was provided at the time of
submission. Upon making a submission, students only received a
receipt comprised of a basic “confirmation” that their file had been
accepted by the system. At precisely the time of each deadline, the
most recent submission of a student’s source file was automatically
marked using a test program consisting of 200 test cases (20 per
task). Students who had submitted code prior to a deadline would
receive a report by email which showed a total score out of 100
and a score for each task out of 20 (the total number of tests which
passed). If running the code submitted for a task resulted in either

ACE ’21, February 2–4, 2021, Virtual, SA, Australia Paul Denny, Jacqueline Whalley, and Juho Leinonen

a time-out (e.g. an infinite loop) or a crash (e.g. an invalid memory
access) it was indicated in the feedback provided to the student
using the code “TIMEOUT-OR-CRASH”. Submissions that failed to
compile were marked as “DID-NOT-COMPILE” and were awarded
a total score of zero. An example of a feedback report provided to a
student is given in Figure 1. For each student, the submission made
closest and prior to the final submission deadline was the one used
to determine their grade for the assignment.

YOUR PERSONAL RESULTS
————————–
– Number of tests passed for each task (out of 20 tests per task):

– Task 1 (/20 tests) = 20
– Task 2 (/20 tests) = 13
– Task 3 (/20 tests) = 20
– Task 4 (/20 tests) = 7
– Task 5 (/20 tests) = TIMEOUT-OR-CRASH
– Task 6 (/20 tests) = 0
– Task 7 (/20 tests) = 0
– Task 8 (/20 tests) = 0
– Task 9 (/20 tests) = 0
– Task 10 (/20 tests) = 0

===============================
Final project mark (/100) = 30
===============================

Figure 1: Feedback provided to a student for the first early
submission deadline (19th October).

3.3 Data
The data we analyse is based on the log files of the assignment
submission system during the C programming module of the course
(Weeks 7–12), and the computed student scores after each feedback
round. We identify “at-risk” students as those who received a failing
score (<50%) in the MATLAB programming module (weeks 1–6),
computed across laboratory, assignment and end of module test
results. These students are at particular risk of failing the course
overall, as the two modules contribute 50% each towards a student’s
final grade in the course.

4 RESULTS
We organise our results into three subsections, one for each of our
research questions. In Section 4.1 we present a summary of student
submission patterns and explore whether students were motivated
by the early feedback deadlines. In Section 4.2 we examine the
relationship between receiving early feedback and performance on
the assignment, and we compare the results of students who took
advantage of one or both of the early feedback rounds with those
who did not. Finally, in Section 4.3 we focus on the at-risk students,
and investigate how the early feedback opportunities impact their
final assignment performance.

We use the term scoring submission (adopted from Edwards et
al. [15]) to refer to a submission by a student that is processed to
generate feedback for either of the two early feedback rounds or
for the final assignment deadline.

Figure 2: Frequency of first submissions by hours in advance
of the final deadline.

Across all three rounds, of the 2,969 submissions made by 952
students 1,954 were scoring submissions.

4.1 Submission Patterns
Table 2 gives, for each feedback round, a summary of the number
and timing of submissions relative to the corresponding deadline.
Submissions made less than one hour after a deadline were counted
as “late submissions” and not included in the earliest and average
submission calculations presented in this table. Most of the late
submissions were committed within five minutes of the deadline
and, in the case of Rounds 1 and 2, all had an existing submission
prior to the deadline. This suggests that the students making these
late submissions may have identified a small error that was quickly
rectified upon receiving feedback, or submitted the wrong file.

Figure 2 provides a histogram of the distance between the time
of all scoring submissions and the final deadline grouped into equal
width bins of one hour.

The red lines show the three submission deadlines (left to right:
Round 1, Round 2, Final deadline). Peaks in activity can be seen
close to each of the deadlines, although note the distinctly differ-
ent patterns of submission for the first and second early feedback
deadlines. These were set at 1:00pm and 7:00am respectively, the
latter seeing much less last-minute activity.

In Round 1, 49% of all students made a submission. Of the 468
scoring submissions made, 26 did not compile and received a mark
of zero. An additional two late submissions were made. The mean
first submission time was 18 hours before the Round 1 deadline and
scoring submissions on average were submitted 15 hours ahead of
the deadline. On average those students who submitted in Round 1
made 1.40 submissions, with 122 students making more than one
submission. The longest time between a first and scoring submission
recorded for an individual student in Round 1 was five days and
three and a half hours. The maximum number of submissions made
by an individual was eight.

In Round 2, 70% of all students made a submission. Of the 670
scoring submissions, 25 failed to compile. In total 1039 submissions

Promoting Early Engagement with Programming Assignments Using Scheduled Automated Feedback ACE ’21, February 2–4, 2021, Virtual, SA, Australia

Event Students Submissions Earliest Average First Submission Average Scoring Submission
Round 1 468 655 7 days 19 hours early 0 days 18 hours early 15 hours 0 minutes early
Round 2 670 1039 5 days 5 hours early 1 day 5 hours early 20 hours 40 minutes early
Final 816 1275 3 days 14 hours early 1 day 4 hours early 21 hours 41 minutes early

Table 2: Submissions relative to deadlines.

were made with 1.6 submissions per student on average. Five stu-
dents had scoring submissions that failed to compile in both Rounds
1 and 2. Of the students who submitted in Round 1, 51 did not make
a submission to Round 2. In this round, 38% of scoring submissions
were from students who had not submitted in Round 1.

For the Final deadline, 1275 submissions were made by 816
students. Of these, 231 students (28%) had not submitted to the
early feedback rounds. Only 13 students (1.6%) of the students
who submitted to the final round made a scoring submission that
failed to compile. These non-compiling solutions were all first time
submissions.

A total of 952 students received a mark for the assignment – that
is, they made at least one submission at some point before the final
deadline.

4.2 Early Feedback and Performance
There is a clear relationship between receiving early feedback and
final performance on the assignment. The average final assignment
mark for students who made their first submission before the first
early feedback deadline was 95.8% (𝑛 = 468, SD=9.3), compared
to 89.8% (𝑛 = 253, SD=14.7) for students who initially submitted
prior to the second early feedback deadline. Students who only
submitted after the Round 2 deadline, and therefore did not receive
any early feedback, earned an average mark for the assignment of
64.3% (𝑛 = 231, SD=29.3). A Kruskal-Wallis rank sum test indicates
there is a statistically significant difference in assignment scores
between these three groups (𝜒2 = 343.68, p < .001).

Twenty four students made a scoring submission to Round 1 of
100%, and of these, only two resubmitted in Round 2 and one in
the final round. Figure 3 shows the time to deadline for scoring
submissions, for all three rounds, with submissions grouped by
grade. A clear trend is observable across each round, where sub-
missions that received a lower grade were more likely to have been
made closer to the deadline. Interestingly, as a result of the early
morning deadline (7:00am) for the second round of feedback, few
submissions were made immediately leading up to the deadline
(hence the “Round 2” boxes are elevated from the x-axis).

4.2.1 Performance by task. Figure 4 shows the average mark by
task (out of the 10 tasks for the assignment) and round for the 318
students who submitted a scoring submission prior to both of the
early rounds and prior to the final deadline. These students, who
received the automated feedback for both of the early feedback
rounds, were able to progressively improve their performance on
every task in the assignment across their three submissions. A
contributing factor to this trend is that students were more likely
to submit incomplete work for the earlier rounds.

Not unsurprisingly, the more difficult the task the more valuable
the early submission feedback appears to be. The students found

Figure 3: Scoring submissions grouped based on grade level
by time of submission, in hours, prior to event deadline.
Grades: A (90-100%); B (65-79%); C (50-64%); D (0-49%).

Figure 4: Average mark by task and round for students who
submitted to all three rounds.

Task 10, as measured by performance, the hardest task. In Round
1 only 57 students (18%) gave a fully correct answer for Task 10
but by Round 2 this figure had increased to 142, and in the final
submission 54% of students gave a fully correct answer for Task 10.

4.2.2 Pathways to completion. Figure 5 illustrates the pathways
through which students moved across the three submission dead-
lines. The students are grouped into three rows (or bands) in the
y-axis based on the mark their submission achieved, while the x-
axis (or columns) represents the three consecutive deadlines. The
circle size is proportional to the number of students making a sub-
mission within that grade band. The lines indicate movement of
students between the various grade bands and rounds, moving left
to right. The line thickness indicates the proportion of students

ACE ’21, February 2–4, 2021, Virtual, SA, Australia Paul Denny, Jacqueline Whalley, and Juho Leinonen

Table 3: Assignment performance of “at-risk” students (who
failed prior module), classified by first submission round.

Event 𝑛 Prior module avg. (SD) Assignment avg. (SD)
Round 1 6 39.2% (9.2) 72.7% (27.6)
Round 2 15 40.3% (7.0) 69.5% (26.1)
Final 61 37.9% (8.7) 40.2% (30.1)

making a particular shift. While most students who scored in the
top third continued through to the final submission within that
grade band, a small number were happy with their grade and chose
not to submit at Round 2. All students were required to submit by
the final deadline in order to receive a mark for the assignment. Of
those students whose first submission scored <=33%, 77% were able
to improve on their first submission in Round 2.

4.3 Effects for At-Risk Students
A total of 82 students failed the first course module (Weeks 1–6)
and were therefore classified as “at-risk”. This group of students
achieved an average mark of 38.4% on the first module. Table 3
breaks down this group of students based on the feedback round to
which theymade their first submission, and shows the averagemark
ultimately achieved on the assignment. Amongst this at-risk group,
25% submitted to at least one of the early feedback rounds. There
is no difference in prior module performance for these students
based on the round to which they first submitted (Kruskal-Wallis
𝜒2 = 0.794, p = .672). In contrast, when comparing performance on
the final assignment, students who received at least some feedback
from an early round performed significantly better (Kruskal-Wallis
𝜒2 = 16.392, p < .001).

5 DISCUSSION
With regards to RQ1, there is evidence that the voluntary feedback
opportunities were motivating for many students. Around half of
the students in the course made a submission more than a week
prior to the final assignment deadline, and the submission patterns
in Figure 2 show a distinctive ramping up in activity in the days

Figure 5: Pathways to completion: top third (mark > 66); mid
third (33 < mark <= 66), low third (mark <= 33)

prior to each deadline. This suggests that many students perceived
value in the feedback, and submitted their code earlier than they
otherwise would have. Indeed, several responses by students on the
end of course evaluations indicated the early feedback prompted
them to engage with the assignment, for example:

“I cannot express how helpful for my learning the early sub-
mission feedback was for me. Not only does it give me feedback
when I am all alone without giving any concrete hints, it helped
me stop procrastinating till the last minute”.

In answer to RQ2, the relationship between receiving early feed-
back and subsequent assignment performance was clear – students
who submitted prior to the early feedback deadlines performed
significantly better than students who did not, and the average
score for each assignment task increased from one round to the
next. It is also interesting to note that the 13 students who received
zero for the assignment (as a result of submitting non-compiling
code) did not receive any early feedback.

Finally, with respect to RQ3, at-risk students benefited greatly if
they submitted their work early. The 25% who chose to take advan-
tage of at least one early feedback round were not necessarily the
top performing of the at-risk students, scoring no better overall on
the first course module (see Table 3). However, they scored signifi-
cantly better on the assignment by the time of the final deadline.
This may be a consequence of being prompted to start the assign-
ment earlier, thus getting an initial sense of how much time the
assignment would take them, and how they should allocate their
available time across the tasks.

5.1 Limitations
We make the claim that the early feedback deadlines encouraged
students to start work earlier on their programming assignments.
We see an impact on submission behaviour, with an obvious sharp
increase in activity immediately prior to each deadline. However,
we haven’t directly collected data on when students actually started
work, only on when they submitted their code for feedback.

We also have no data on how students made use of the feedback,
however we suspect that once students passed all of the tests for a
task they would no longer allocate time to working on that task.
In some cases, given the nature of the feedback, it may have been
frustrating for students who failed just one or two tests as they were
not given an indication of which tests failed. We did not investigate
how understandable this simpler feedback is or what challenges
this form of feedback might pose for the students, this is a potential
area for future work.

Finally, there was no feedback generated on code quality, nor did
we analyse any stylistic elements of the submitted code. This may
have resulted in the submission of functionally correct, but poorly
organised code, and future work incorporating some automatic
feedback on code style is warranted [6]. Future work should also
explore the effects of variations in the feedback provided, such as
including details of one or more failing test cases.

6 CONCLUSIONS
In this work we explored the use of optional early feedback dead-
lines, allowing students to receive automated feedback on the cor-
rectness of their code, as a way to promote early engagement with

Promoting Early Engagement with Programming Assignments Using Scheduled Automated Feedback ACE ’21, February 2–4, 2021, Virtual, SA, Australia

a programming assignment. We found that these voluntary feed-
back opportunities were highly motivating for some students, with
half of the class submitting their work more than a week before
the final deadline for grading. In addition, the feedback appears to
have been useful in helping students improve their scores despite
its simple format. Basic feedback about the degree of correctness,
broken down by task to allow for some high-level localisation of
issues, is sufficient for helping most novice programmers improve
their solutions. Finally, like much prior literature on novice pro-
grammers, we find that students who start an assignment early, as
indicated by early scoring submissions, are more likely to receive a
high grade on the assignment.

REFERENCES
[1] Tapio Auvinen. 2015. Harmful Study Habits in Online Learning Environments

with Automatic Assessment. In 2015 International Conference on Learning and
Teaching in Computing and Engineering. 50–57.

[2] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages Con-
sidered Unhelpful: The Landscape of Text-Based Programming Error Message
Research. In Proceedings of the Working Group Reports on Innovation and Technol-
ogy in Computer Science Education (ITiCSE-WGR ’19). ACM, New York, NY, USA,
177–210. https://doi.org/10.1145/3344429.3372508

[3] Brent J. Bowman and William A. Newman. 1990. Software Metrics as a Pro-
gramming Training Tool. J. Syst. Softw. 13, 2 (Oct. 1990), 139–147. https:
//doi.org/10.1016/0164-1212(90)90119-7

[4] Rachel Cardell-Oliver. 2011. How Can Software Metrics Help Novice Program-
mers?. In Proceedings of the Thirteenth Australasian Computing Education Confer-
ence - Volume 114 (ACE ’11). Australian Computer Society, Inc., AUS, 55–62.

[5] Rachel Cardell-Oliver, Lu Zhang, Rieky Barady, You Hai Lim, Asad Naveed, and
Terry Woodings. 2010. Automated Feedback for Quality Assurance in Soft-
ware Engineering Education. In Proceedings of the 2010 21st Australian Software
Engineering Conference (ASWEC ’10). IEEE Computer Society, USA, 157–164.
https://doi.org/10.1109/ASWEC.2010.24

[6] Rohan Roy Choudhury, HeZheng Yin, JosephMoghadam, and Armando Fox. 2016.
AutoStyle: Toward Coding Style Feedback At Scale. In Proceedings of the 19th
ACM Conference on Computer Supported Cooperative Work and Social Computing
Companion (CSCW ’16 Companion). Association for Computing Machinery, New
York, NY, USA, 21–24. https://doi.org/10.1145/2818052.2874315

[7] Sophie H. Cormack, Laurence A. Eagle, and Mark S. Davies. 2020. A
large-scale test of the relationship between procrastination and perfor-
mance using learning analytics. Assessment & Evaluation in Higher Ed-
ucation 0, 0 (2020), 1–14. https://doi.org/10.1080/02602938.2019.1705244
arXiv:https://doi.org/10.1080/02602938.2019.1705244

[8] Paul Denny, Brett A. Becker, Michelle Craig, Greg Wilson, and Piotr Ba-
naszkiewicz. 2019. Research This! Questions That Computing Educators Most
Want Computing Education Researchers to Answer. In Proceedings of the 2019
ACM Conference on International Computing Education Research (ICER ’19). As-
sociation for Computing Machinery, New York, NY, USA, 259–267. https:
//doi.org/10.1145/3291279.3339402

[9] Paul Denny, Andrew Luxton-Reilly, Michelle Craig, and Andrew Petersen. 2018.
Improving Complex Task Performance Using a Sequence of Simple Practice Tasks.
In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2018). Association for Computing Machinery,
New York, NY, USA, 4–9. https://doi.org/10.1145/3197091.3197141

[10] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
CodeWrite: Supporting Student-Driven Practice of Java. In Proceedings of the
42nd ACM Technical Symposium on Computer Science Education (SIGCSE ’11).
Association for Computing Machinery, New York, NY, USA, 471–476. https:
//doi.org/10.1145/1953163.1953299

[11] Paul Denny, James Prather, and Brett A. Becker. 2020. Error Message Readability
and Novice Debugging Performance. In Proceedings of the 2020 ACMConference on
Innovation and Technology in Computer Science Education (ITiCSE ’20). Association
for Computing Machinery, New York, NY, USA, 480–486. https://doi.org/10.
1145/3341525.3387384

[12] Stephen H. Edwards, Joshua Martin, and Clfford A. Shaffer. 2015. Examining
Classroom Interventions to Reduce Procrastination. In Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’15). Association for Computing Machinery, New York, NY, USA, 254–259.
https://doi.org/10.1145/2729094.2742632

[13] Stephen H. Edwards and Krishnan Panamalai Murali. 2017. CodeWorkout: Short
Programming Exercises with Built-in Data Collection. In Proceedings of the 2017

ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’17). Association for Computing Machinery, New York, NY, USA, 188–193.
https://doi.org/10.1145/3059009.3059055

[14] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Auto-
matically Grading Programming Assignments. In Proceedings of the 13th An-
nual Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’08). Association for Computing Machinery, New York, NY, USA, 328.
https://doi.org/10.1145/1384271.1384371

[15] Stephen H. Edwards, Jason Snyder, Manuel A. Pérez-Quiñones, Anthony Allevato,
Dongkwan Kim, and Betsy Tretola. 2009. Comparing Effective and Ineffective Be-
haviors of Student Programmers. In Proceedings of the Fifth InternationalWorkshop
on Computing Education ResearchWorkshop (ICER ’09). Association for Computing
Machinery, New York, NY, USA, 3–14. https://doi.org/10.1145/1584322.1584325

[16] Tommy Färnqvist and Fredrik Heintz. 2016. Competition and Feedback through
Automated Assessment in a Data Structures and Algorithms Course. In Proceed-
ings of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’16). Association for Computing Machinery, New York, NY,
USA, 130–135. https://doi.org/10.1145/2899415.2899454

[17] James B. Fenwick, Cindy Norris, Frank E. Barry, Josh Rountree, Cole J. Spicer, and
Scott D. Cheek. 2009. Another Look at the Behaviors of Novice Programmers. In
Proceedings of the 40th ACM Technical Symposium on Computer Science Education
(SIGCSE ’09). Association for ComputingMachinery, New York, NY, USA, 296–300.
https://doi.org/10.1145/1508865.1508973

[18] Yoshiko Goda, Masanori Yamada, Hiroshi Kato, Takeshi Matsuda, Yutaka Saito,
and Hiroyuki Miyagawa. 2015. Procrastination and other learning behavioral
types in e-learning and their relationship with learning outcomes. Learning and
Individual Differences 37 (2015), 72 – 80. https://doi.org/10.1016/j.lindif.2014.11.
001

[19] Keith Gregory and Sue Morón-García. 2009. Assignment submission, student
behaviour and experience. Engineering Education 4, 1 (2009), 16–28. https:
//doi.org/10.11120/ened.2009.04010016

[20] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of Recent Systems for Automatic Assessment of Programming Assignments.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli Calling ’10). Association for Computing Machinery, New
York, NY, USA, 86–93. https://doi.org/10.1145/1930464.1930480

[21] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,
and Daniel Toll. 2015. Educational Data Mining and Learning Analytics in
Programming: Literature Review and Case Studies. In Proceedings of the 2015
ITiCSE on Working Group Reports (ITICSE-WGR ’15). Association for Computing
Machinery, New York, NY, USA, 41–63. https://doi.org/10.1145/2858796.2858798

[22] Kalle Ilves, Juho Leinonen, and Arto Hellas. 2018. Supporting self-regulated
learning with visualizations in online learning environments. In Proceedings of
the 49th ACM Technical Symposium on Computer Science Education. 257–262.

[23] Michael S. Irwin and Stephen H. Edwards. 2019. Can Mobile Gaming Psychol-
ogy Be Used to Improve Time Management on Programming Assignments?. In
Proceedings of the ACM Conference on Global Computing Education (CompEd
’19). Association for Computing Machinery, New York, NY, USA, 208–214.
https://doi.org/10.1145/3300115.3309517

[24] Lucy Jiang, Robert Rewcastle, Paul Denny, and Ewan Tempero. 2020. Com-
pareCFG: Providing Visual Feedback on Code Quality Using Control Flow Graphs.
In Proceedings of the 2020 ACM Conference on Innovation and Technology in Com-
puter Science Education (ITiCSE ’20). Association for Computing Machinery, New
York, NY, USA, 493–499. https://doi.org/10.1145/3341525.3387362

[25] Ayaan M. Kazerouni, Stephen H. Edwards, and Clifford A. Shaffer. 2017. Quantify-
ing Incremental Development Practices and Their Relationship to Procrastination.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research (ICER ’17). Association for Computing Machinery, New York, NY, USA,
191–199. https://doi.org/10.1145/3105726.3106180

[26] Hieke Keuning, Johan Jeuring, and BastiaanHeeren. 2018. A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. ACM
Trans. Comput. Educ. 19, 1, Article Article 3 (Sept. 2018), 43 pages. https://doi.
org/10.1145/3231711

[27] Pardha Koyya, Lee Young, and Jeong Yang. 2013. Feedback for Programming
Assignments Using Software-Metrics and Reference Code. ISRN Software Engi-
neering (2013). https://doi.org/10.1155/2013/805963

[28] Lauri Malmi, Ville Karavirta, Ari Korhonen, and Jussi Nikander. 2005. Expe-
riences on Automatically Assessed Algorithm Simulation Exercises with Dif-
ferent Resubmission Policies. J. Educ. Resour. Comput. 5, 3 (Sept. 2005), 7–es.
https://doi.org/10.1145/1163405.1163412

[29] Keir Mierle, Kevin Laven, Sam Roweis, and Greg Wilson. 2005. Mining Stu-
dent CVS Repositories for Performance Indicators. In Proceedings of the 2005
International Workshop on Mining Software Repositories (MSR ’05). Association
for Computing Machinery, New York, NY, USA, 1–5. https://doi.org/10.1145/
1083142.1083150

https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1016/0164-1212(90)90119-7
https://doi.org/10.1016/0164-1212(90)90119-7
https://doi.org/10.1109/ASWEC.2010.24
https://doi.org/10.1145/2818052.2874315
https://doi.org/10.1080/02602938.2019.1705244
http://arxiv.org/abs/https://doi.org/10.1080/02602938.2019.1705244
https://doi.org/10.1145/3291279.3339402
https://doi.org/10.1145/3291279.3339402
https://doi.org/10.1145/3197091.3197141
https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1145/3341525.3387384
https://doi.org/10.1145/3341525.3387384
https://doi.org/10.1145/2729094.2742632
https://doi.org/10.1145/3059009.3059055
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/1584322.1584325
https://doi.org/10.1145/2899415.2899454
https://doi.org/10.1145/1508865.1508973
https://doi.org/10.1016/j.lindif.2014.11.001
https://doi.org/10.1016/j.lindif.2014.11.001
https://doi.org/10.11120/ened.2009.04010016
https://doi.org/10.11120/ened.2009.04010016
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/2858796.2858798
https://doi.org/10.1145/3300115.3309517
https://doi.org/10.1145/3341525.3387362
https://doi.org/10.1145/3105726.3106180
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1155/2013/805963
https://doi.org/10.1145/1163405.1163412
https://doi.org/10.1145/1083142.1083150
https://doi.org/10.1145/1083142.1083150

ACE ’21, February 2–4, 2021, Virtual, SA, Australia Paul Denny, Jacqueline Whalley, and Juho Leinonen

[30] Nick Parlante. 2007. Nifty Reflections. SIGCSE Bull. 39, 2 (June 2007), 25–26.
https://doi.org/10.1145/1272848.1272876

[31] James Prather, Brett A. Becker, Michelle Craig, Paul Denny, Dastyni Loksa,
and Lauren Margulieux. 2020. What Do We Think We Think We Are Do-
ing?: Metacognition and Self-Regulation in Programming. In Proceedings of
the 2020 ACM Conference on International Computing Education Research (ICER
’20). Association for Computing Machinery, New York, NY, USA, 12. https:
//doi.org/10.1145/3372782.3406263

[32] Paul Ramsden. 1992. Learning to Teach in Higher Education. Routledge, London.
[33] Jaime Spacco, Paul Denny, Brad Richards, David Babcock, David Hovemeyer,

James Moscola, and Robert Duvall. 2015. Analyzing Student Work Patterns Using
Programming Exercise Data. In Proceedings of the 46th ACM Technical Sympo-
sium on Computer Science Education (SIGCSE ’15). Association for Computing
Machinery, New York, NY, USA, 18–23. https://doi.org/10.1145/2676723.2677297

[34] Jaime Spacco and William Pugh. 2006. Helping Students Appreciate Test-Driven
Development (TDD). In Companion to the 21st ACM SIGPLAN Symposium on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’06).
Association for Computing Machinery, New York, NY, USA, 907–913. https:
//doi.org/10.1145/1176617.1176743

[35] Claudia Szabo, Nickolas Falkner, Antti Knutas, and Mohsen Dorodchi. 2018.
Understanding the Effects of Lecturer Intervention on Computer Science Student

Behaviour. In Proceedings of the 2017 ITiCSE Conference on Working Group Reports
(ITiCSE-WGR ’17). Association for Computing Machinery, New York, NY, USA,
105–124. https://doi.org/10.1145/3174781.3174787

[36] Rebecca Vivian, Katrina Falkner, and Nickolas Falkner. 2013. Computer Science
Students’ Causal Attributions for Successful and Unsuccessful Outcomes in
Programming Assignments. In Proceedings of the 13th Koli Calling International
Conference on Computing Education Research (Koli Calling ’13). Association for
Computing Machinery, New York, NY, USA, 125–134. https://doi.org/10.1145/
2526968.2526982

[37] Jacqueline L. Whalley and Anne Philpott. 2011. A Unit Testing Approach to Build-
ing Novice Programmers’ Skills and Confidence. In Proceedings of the Thirteenth
Australasian Computing Education Conference - Volume 114 (ACE ’11). Australian
Computer Society, Inc., AUS, 113–118. https://dl.acm.org/doi/10.5555/2459936.
2459950

[38] Wikipedia. 2020. Sokoban – Wikipedia. https://en.wikipedia.org/wiki/Sokoban
[39] Salla Willman, Rolf Lindén, Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso,

and Tapio Salakoski. 2015. On study habits on an introductory course on
programming. Computer Science Education 25, 3 (2015), 276–291. https:
//doi.org/10.1080/08993408.2015.1073829

https://doi.org/10.1145/1272848.1272876
https://doi.org/10.1145/3372782.3406263
https://doi.org/10.1145/3372782.3406263
https://doi.org/10.1145/2676723.2677297
https://doi.org/10.1145/1176617.1176743
https://doi.org/10.1145/1176617.1176743
https://doi.org/10.1145/3174781.3174787
https://doi.org/10.1145/2526968.2526982
https://doi.org/10.1145/2526968.2526982
https://dl.acm.org/doi/10.5555/2459936.2459950
https://dl.acm.org/doi/10.5555/2459936.2459950
https://en.wikipedia.org/wiki/Sokoban
https://doi.org/10.1080/08993408.2015.1073829
https://doi.org/10.1080/08993408.2015.1073829

	Abstract
	1 Introduction
	2 Related Work
	2.1 Feedback and Learning to Program
	2.2 Automated Feedback
	2.3 Influencing Positive Work Behaviors

	3 Method
	3.1 Assignment Tasks
	3.2 Assignment Feedback Mechanism
	3.3 Data

	4 Results
	4.1 Submission Patterns
	4.2 Early Feedback and Performance
	4.3 Effects for At-Risk Students

	5 Discussion
	5.1 Limitations

	6 Conclusions
	References

