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ABSTRACT

The computing education community has a rich history of peda-
gogical innovation with many efforts, especially at the introductory
level, focused on helping students learn how to program. Recent
advances in artificial intelligence have led to large language models
that can produce source code from natural language problem de-
scriptions with impressive accuracy. The wide availability of these
models and their ease of use is raising urgent questions for educa-
tors around the need to adapt their pedagogy as well as prompting
broader discussion on the computing curriculum. In this article,
we discuss the challenges and the opportunities that such mod-
els present to computing educators, with a focus on introductory
programming classrooms. We organize this discussion around two
foundational articles from the computing education literature that
were written around the time that awareness of code generating
language models was just beginning to emerge. The first of these
(in January 2022) evaluated the performance of code generating
models on typical introductory-level programming problems, and
the second (in August 2022) explored the quality and novelty of
learning resources generated by these models. Now, less than two
years since the first article was published, we consider implications
for computing education in light of new model capabilities and
as lessons emerge from educators incorporating such models into
their teaching practice.
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1 INTRODUCTION

A new era is emerging in which artificial intelligence will play an
ever-increasing role in many facets of daily life. One defining char-
acteristic of this new era is the ease with which novel content can
be generated. Large language models (LLMs), neural network-based
models trained on vast quantities of text data [4], are capable of cre-
ating a variety of convincing human-like outputs, including prose,
poetry, and source code. It is largely accepted that synthesizing
source code automatically from natural language prompts is likely
to improve the productivity of professional developers [26], and
is being actively explored by well-funded entities such as OpenAl
(ChatGPT, GPT-4!), Amazon (CodeWhisperer?), and Google (Alpha-
Code [21], Bard?). In the same way that high-level programming
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languages offered large productivity advantages over assembly lan-
guage programming in the 1970s, Al code generation tools look set
to transform traditional programming practices. Already, claims
are emerging that a significant proportion of new code is being
produced by tools such as GitHub Copilot [9], a plug-in for popular
IDEs such as Visual Studio Code.

The current pace of development in this area is staggering with
noticeably more advanced model versions being released several
times per year. The pace of advancement is so rapid that in March
2023, a well-publicized open letter appeared that encouraged a pub-
lic, verifiable, and immediate pause of at least six months duration
on the training of Al systems more powerful than GPT-4. Signed by
Elon Musk, Steve Wozniak, Moshe Vardi and thousands of others in-
cluding many Al-leaders and Turing award winners?, the letter was
addressed to all Al labs and suggested potential government-led
moratoriums.

These developments raise urgent questions about the future
direction of many aspects of society, including computing education.
For example, one popular evidence-based pedagogy for teaching
introductory programming involves students writing many small
exercises that are checked either manually or by automated grading
tools. However, these small problems can now easily be solved by
Al models. Often, all that is required of a student is to accept an
auto-generated suggestion by an IDE plugin [10, 11]. This raises
concerns that students may use new tools in ways that limit learning
and make the work of educators more difficult. Bommasani et al.
highlight that it will become “much more complex for teachers to
understand the extent of a student’s contribution” and to “regulate
ineffective collaborations and detect plagiarism” [4]. Alongside
such challenges come emerging opportunities for students to learn
computing skills [2].

In this article, we consider the implications of generative Al on
computing education, and explore how newly emerging tools are
likely to impact students and educators in introductory program-
ming classrooms. We organize this article into two main sections:
challenges and opportunities. With respect to challenges, we il-
lustrate the performance of code generation models on typical
introductory-level programming problems and discuss issues relat-
ing to plagiarism, learner over-reliance, and potential risks around
bias and bad habits. With respect to opportunities, we illustrate
how these models can be used to generate learning resources, in-
cluding programming exercises and code explanations, and further
discuss the potential for improving feedback to students, such as
error message reporting, and new pedagogical approaches.

1.1 Large Language Models and Code

Al-driven coding has only been a viable reality for the general pub-
lic since 2022, when GitHub’s Copilot emerged from a period of
technical preview. Originally pitched as “your Al pair programmer”,
at the time of writing, Copilot claims to be the “world’s most widely
adopted Al developer tool”. Other Al-powered code generation
tools are also broadly accessible, including Amazon’s CodeWhis-
perer and Google’s Bard. The Codex model (discussed in this article
specifically) was the original model to power Copilot. A descendant
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of GPT-3, Codex was fine-tuned with code from over 50 million
public GitHub repositories totaling 159 GB [5]. Although now of-
ficially deprecated in favor of the newer chat models, Codex was
capable of taking English-language prompts and generating code in
several programming and scripting languages, including JavaScript,
Go, Perl, PHP, Python Ruby, Swift, TypeScript, shell and more.

It could also translate code between programming languages,
explain (in several natural languages) the functionality of code, and
return the time complexity of the code it generated.

The use of such tools in education is nascent and changing
rapidly. Copilot was only made freely available to students in June
2022%, and to teachers in September 2022 after its potential to impact
education began to unfold’. In November 2022, ChatGPT® was
released, followed by the release of GPT-4 in March 2023. OpenAl
has continued to update these models with new features, such as
data analysis from files, analyzing images, and assisted web search.
For a more technical overview of the historical developments and
future trends of language models, we direct the reader to the CACM
article by Li [20].

2 CHALLENGES AHEAD

Code generation tools powered by LLMs appear to be able to cor-
rectly and reliably solve many programming problems that are
typical in introductory courses. This raises a number of impor-
tant questions for educators. For example, just how good are these
tools? Can a student with no programming knowledge, but who
is armed with a code-generating LLM, pass typical programming
assessments? Do we need a different approach?

2.1 Putting Them to the Test

To explore the performance of LLMs in the context of introductory
programming, we prompted Codex with real exam questions and
compared its performance to that of students taking the same exams.
We also prompted Codex to solve several variants of a well-known
CS1-level programming problem (the “Rainfall problem”) and ex-
amined both the correctness and the variety of solutions produced.
This work was originally performed in September 2021, several
weeks after OpenAl provided API access to the Codex model. The
resulting paper, published in January 2022, was the first in a comput-
ing education venue to document the code-generating capabilities
of LLMs [10].

2.1.1 My Al wants to know if its grade will be rounded up. We
took all questions from two Python CS1 programming exams that
had already been taken by students and provided them as input
(verbatim) to Codex. The exam questions involved common Python
datatypes including strings, tuples, lists, and dictionaries. They
ranged in complexity from simple calculations, such as computing
the sum of a series of simulated dice rolls, to more complex data
manipulations such as extracting a sorted list of the keys that are
mapped to the maximum value in a dictionary.

To evaluate the code generated, we executed it against the same
set of test cases that were used in assessing the student exams.
This follows a similar evaluation approach employed by the Codex
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developers [5]. If the Codex output differed from the expected
output with only a trivial formatting error (for example, a missing
comma or period) we made the appropriate correction, much as a
student would if using Codex to complete an exam.

To contextualize the performance of the Codex model, we calcu-
lated the score for its responses in the same way as for real students
using the same question weights and accumulated penalties for
incorrect submissions. Codex scored 15.7/20 (78.5%) on Exam 1 and
19.5/25 (78.0%) on Exam 2. Figure 1 plots the scores (scaled to a
maximum of 100) of 71 students enrolled in the CS1 course in 2020
who completed both exams. Codex’s score is marked with a blue
X’. Averaging both Exam 1 and Exam 2 performance, Codex ranks
17 amongst the 71 students, placing it within the top quartile of
class performance.
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Figure 1: Student scores on Exam 1 and Exam 2, represented
by circles. Codex’s 2021 score is represented by the blue ‘X’.
GPT-4’s 2023 score on the same questions is represented by
the red X’.

We observed that some of the Codex answers contained trivial
formatting errors. We also observed that Codex performed poorly
with problems that disallowed the use of certain language features
(e.g. using split() to tokenize a string). Codex often did not pro-
duce code that avoided using these restricted features, and thus the
model (in these cases) often did not pass the auto-grader. Codex
also performed poorly when asked to produce formatted ASCII
output such as patterns of characters forming geometric shapes,
especially where the requirements were not specified in the prob-
lem description but had to be inferred from the provided example
inputs and outputs.

2.1.2  Yes, | definitely wrote this code myself. To understand the
amount of variation in the responses, we provided Codex with seven
variants of the problem description for the well-studied ‘Rainfall’
problem (which averages values in a collection) a total of 50 times
each, generating 350 responses. Each response was executed against
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10 test cases (a total of 3500 evaluations). Across all variants, Codex
had an average score close to 50%. Codex performed poorly on
cases where no valid values were provided as input (e.g. where the
collection to be averaged was empty).

We also examined the number of source lines of code for all
Rainfall variants, excluding blank and comment lines. In addition,
we classified the general algorithmic approach employed in the
solutions as an indicator of algorithmic variation. We found that
Codex provides a diverse range of responses to the same input
prompt. Depending on the prompt, the resulting programs used
varied programmatic structures, while ultimately favoring expected
methods for each problem variation (i.e., for-loops for processing
lists, and while-loops for processing standard input).

2.1.3  Rapid progress. Given the improvement in model capabili-
ties over the last two years, it is interesting to observe how well a
state-of-the-art model (GPT-4 at the time of writing) performs on
the same set of questions. In July 2023, a working group exploring
LLMs in the context of computing education replicated this study
using GPT-4 under identical conditions [29]. GPT-4 scored 99.5% on
Exam 1 and 94.4% on Exam 2, this time outscored overall by only
three of the 71 students (represented by the red X’ in Figure 1). On
the Rainfall problems, GPT-4 successfully solved every variant, in
some cases producing the correct result but with a trivial format-
ting error. Another follow-up study looked at the performance of
generative Al on CS2 exam questions and found that it performed
quite well in that context [11]. Newer models can also solve other
types of programming exercises, like Parsons Problems, with decent
accuracy that is likely to only increase over time [31].

2.2 Academic Integrity

Software development often encourages code reuse and collabora-
tive development practices, which makes the concept of academic
integrity difficult to formalize in computing [35]. Nevertheless, indi-
vidual work is still commonplace in computing courses, and it is an
expectation for students working on individual projects to produce
their own code rather than copying code written by someone else.
This is often verified through the use of traditional plagiarism tools.
However, recent work has shown that common plagiarism detec-
tion tools are often ineffective against Al-generated solutions [3].
This raises significant concerns for educators monitoring academic
integrity in formal assessments.

2.2.1  Academic misconduct. Although academic misconduct has
been discussed in the computing education community for quite
some time [35], the advent of LLMs provides a new and difficult
set of challenges. The first is categorizing exactly what type of
academic misconduct, if any, its usage falls into. A recent working
group report on LLMs in computing education considered ethics
and examined it in the context of the ACM Code of Ethics and
recent university Al usage policies [29]. They discussed plagiarism,
collusion, contract cheating, falsification, and the use of unautho-
rized resources. Although many university policies have placed Al
usage into the category of plagiarism, Prather et al. disagree [29].
Plagiarism steals content from a person with agency, which Al
resources as next-token-generators do not have. If generative Al
tools are seen as productivity tools (such as IDE code-completion or
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calculators for mathematical problems) that are used professionally,
then it makes sense to decide if the use of such tools is appropriate
for a given context and communicate the decision to students. If
students persist in using the tools when they are restricted, then
they would be engaging in academic misconduct because they used
an unauthorized resource and not because of some intrinsic charac-
teristic of the tool itself. Instructors should, therefore, be extremely
clear about when and how generative Al tools are allowed to be
used on their assessments. The working group report includes a
guide for students (Appendix D) that could easily be adapted by
faculty into a helpful handout or added to a course syllabus.

A recent interview study with computing educators has revealed
that initial reactions are divided — from banning all use of gener-
ative Al to an acceptance that resistance is, ultimately, futile [17].
Restricting the use of generative Al tools is likely (at least in the
short term) to shift practice towards increased use of secure testing
environments [43], and a greater focus on the development and
assessment of process skills [16].

2.2.2 Code reuse and licensing. Potential licensing issues arise
when content is produced using code generation models, even
when the model data is publicly-available [21]. Many different
licenses apply to much of the publicly-available code used to train
LLMs, and typically these licenses require authors to credit the code
they used, even when the code is open-source. When a developer
generates code using an Al model, they may end up using code that
requires license compliance without being aware of it. Such issues
are already being worked out in court®. This is clearly an issue that
extends beyond educational use of software, but as educators it is
our role to inform students of their professional responsibilities
when reusing code.

2.3 Learner Over-reliance

The developers of Codex noted that a key risk of using code gener-
ation models in practice is users’ over-reliance [5]. Novices using
such models, especially with tools such as Copilot that embed sup-
port in an IDE, may quickly become accustomed to auto-suggested
solutions. This could have multiple negative effects on student
learning.

2.3.1 Metacognition. Developing computational thinking skills is
important for novice programmers as it can foster higher-order
thinking and reflection [23]. Metacognition, or “thinking about
thinking”, is a key aspect of computational thinking (and problem-
solving in general) and has been shown to be closely related to
it. While learning to code is already a challenging process that
requires a high level of cognitive effort to remember language
syntax, think computationally, and understand domain-specific
knowledge, the use of metacognitive knowledge and strategies
can aid in problem-solving and prevent beginners from getting
overwhelmed or lost. Relying too heavily on code generation tools
may hinder the development of these crucial metacognitive skills.

2.3.2  When the models fail. An analysis of solutions generated by
AlphaCode revealed that 11% of Python solutions were syntacti-
cally incorrect (produced a SyntaxError) and 35% of C++ solutions
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did not compile [21]. Recent work has shown that as many as 20%
of introductory programming problems are not solved sufficiently
by code generation models, even when allowing for expert mod-
ification of the natural language problem descriptions [6]. The
developers of Codex noted that it can recommend syntactically
incorrect code, including variables, functions, and attributes that
are undefined or outside the scope of the codebase, stating “Codex
may suggest solutions that superficially appear correct but do not
actually perform the task the user intended. This could particularly
affect novice programmers and could have significant safety impli-
cations depending on the context” [5]. Students who have become
overly reliant on model outputs may find it especially challenging
to proceed when the suggested code is incorrect and cannot be
resolved through natural language prompting [15].

2.4 Bias and Bad Habits

The issue of bias in Al is well known. In addition to general bias
(subtle or overt) that applies to almost all Al-generated outputs,
such as the representation of certain groups of people, genders, etc.,
there are likely biases specific to Al code generation.

24.1 Appropriateness for beginners. Novices usually start by learn-
ing simple programming concepts and patterns, gradually building
their skills. However, much of the vast quantity of code on which
these Al models are trained was written by experienced developers.
Therefore, we should expect that Al generated code may sometimes
be too advanced or complex for novices to understand and modify.
Recent work has shown that even the latest generative Al mod-
els continue to generate code utilizing concepts too advanced for
novices or that are specifically outside the curriculum [15].

2.4.2  Harmful biases. The developers of Codex found that code
generation models raise bias and representation issues — notably
that Codex can generate code comments (and potentially identifier
names) that reflect negative stereotypes about gender and race,
and may include other denigratory outputs [5]. Such biases are
obviously problematic, especially where novices are relying on the
outputs for learning purposes. Notably, the feature list for Amazon
CodeWhisperer includes capabilities to remove harmful biases from
generated code!?. Some recent work (from competitor Microsoft)
has expressed doubt about the reliability of this feature [33].

2.4.3  Security. Unsurprisingly, Al-generated code can be inse-
cure [25], and human oversight is required for the safe use of Al
code generation systems [5]. However, novice programmers lack
the knowledge to provide this oversight. Perry et al. recently exam-
ined whether novices using Al code generation tools wrote more
secure code, finding that novices consistently wrote insecure code
with specific vulnerabilities in string encryption and SQL injec-
tion [27]. Perhaps even more disturbing, novice programmers in
their study who had access to an Al code generating tool were
more likely to believe they had written secure code. This reveals a
pressing need for increased student and educator awareness around
the limitations of current models for generating secure code.

103ws.amazon.com/codewhisperer/features
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2.5 Computers in Society

The use of Al-generated code provides many opportunities for dis-
cussions on ethics and the use of computers in society. Moreover,
these technologies may serve as a vehicle to empower novice users
to explore more advanced ideas earlier, leveraging the natural en-
gagement that comes from utilizing technologies that are “in the
news”. Teachers of introductory courses have long told themselves
that students will learn about testing, security, and other more
advanced topics in subsequent courses. However, with growing
numbers of students taking introductory classes but not majoring
in computing, and the capabilities that code generation affords, the
stakes are higher for CS1 and introductory classes to raise these
issues early, before the chance of real-world harm is great.

3 OPPORTUNITIES AHEAD

Despite the challenges that must be navigated, code generation
tools have the potential to revolutionize teaching and learning in
the field of computing [2]. Indeed, the developers of such models
specifically highlight their potential to positively impact education.
When introducing Codex, Chen et al. outline a range of possible ben-
efits, including to: “aid in education and exploration” [5]. Similarly,
the developers of AlphaCode suggest such tools have “the potential
for a positive, transformative impact on society, with a wide range
of applications including computer science education” [21]. In this
section we discuss several concrete opportunities for code and text
generation models to have a transformative effect on computing
education.

3.1 Plentiful Learning Resources

Introductory programming courses typically utilize a wide vari-
ety of learning resources. For example, programming exercises
are a very common type of resource for helping students practice
writing code. Similarly, natural language explanations of code are
another useful resource. They can be valuable for helping students
understand how a complex piece of code works, or as a tool for eval-
uating student comprehension of code. However, it is a significant
challenge for educators to generate a wide variety of high-quality
exercises that are targeted to the interests of individual learners, and
to produce detailed explanations at different levels of abstraction
for numerous code examples.

We explored the potential for LLMs to reduce the effort needed by
instructors to generate the two types of learning resources just dis-
cussed: programming exercises and code explanations. This work,
which was originally carried out in April 2022 and published in
August 2022, was the first paper in a computing education venue
to explore LLM-generated learning resources [34].

3.1.1 Programming exercises. Figure 2 shows an example of the
input we used to generate new programming exercises using Codex.
This ‘priming’ exercise consists of a one-shot example (a complete
example similar to the desired output) followed by a partial prompt
to prime the generation of a new output. In this case, the format
of the priming exercise consists of a label (Exercise 1) followed
by keywords for both the contextual themes (i.e. donuts) and the
programming-related concepts (i.e. function, conditional) of the
exercise, a natural language problem statement and a solution (in
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the form of a Python function). For space reasons, we omit a list of
test cases but these can also be included for programming problems.
The priming input ends with the explicit prompt for a new exercise
to be generated (Exercise 2), along with the desired concepts and
themes expressed as keywords (i.e. basketball, function, list, and
for loop).

Figure 3 shows one output generated when the prompt in Fig-
ure 2 was provided to Codex. Note that in this case, as requested by
the keyword information in the input prompt, the problem state-
ment is related to basketball and the model solution consists of
a function that involves a list and a for loop. To evaluate this ap-
proach more thoroughly, we generated a set of 240 programming
exercises by varying the programming related concepts and contex-
tual themes. We attempted to execute the generated code against
the generated test cases, and analyzed statement coverage as a mea-
sure of the thoroughness of the test suite. Table 1 summarizes these
results, and shows that in most cases the programming exercises
generated by the model included sample solutions that were exe-
cutable. Similarly, most of the time the model also generated a set
of tests, resulting in a total of 165 programming exercises with both
a sample solution and a set of tests. The sample solution frequently
did not pass all of the generated tests, but in cases when it did, the
test suites achieved full statement coverage in all but three cases.

We also found that the vast majority of exercises (around 80%)
were entirely novel in that fragments of the problem descriptions
were not indexed by any search engines. A similar fraction of the
exercises also matched the desired topics and themes. Although
this is far from perfect, there is obvious potential for generating

"""Exercise 1
--Keywords--
donuts
function
conditional
--Problem statement--
Write a function called donut_cost that takes
— three inputs: the price of a donut, the
number of donuts bought, and whether or not
it is the weekend. The function should
return the total cost of the donuts. If it
is the weekend, the donuts cost twice as
— much.
--Sample solution--
def donut_cost(price, number, is_weekend):

if is_weekend:

return price * number * 2
else:
return price * number

"""Exercise 2
--Keywords--
basketball
function
list
for loop
--Problem statement--

rrets

Figure 2: A ‘priming’ exercise consisting of one complete
example followed by the prompt for a new one.



CACM, Jan, 2023, Magazine

Write a function called count_rebounds that
— takes a list of basketball players as an
input. The function should return the
total number of rebounds for the entire
team. Each element in the list is itself a
list containing the player's name, their
— points, and their rebounds.
--Sample solution--
def count_rebounds(players):

total = @

for player in players:

total = total + player[2]
return total

rrtets

Figure 3: Example output generated by Codex using the prim-
ing exercise from Figure 2.

Table 1: Analysis of 240 generated programming exercises,
showing the proportion that met criteria regarding sample
solutions and test cases.

203/240 84.6%
182/203  89.7%

Has sample solution?

Sample solution executable?
Has test cases? 170/240  70.8%
All tests pass? 51/165 30.9%
Full (100%) statement coverage?  48/51  94.1%

new and useful resources in this manner and the cost of eliminating
poor results (which could be automated) is almost certainly smaller
than generating a large number of exercises manually. With the
addition of filtering steps that could be automated, it would be
possible to generate an almost endless supply of novel resources
that are contextualized to students’ interests.

3.1.2  Code explanations. Code explanations can be generated at
different levels of abstraction, from high-level summaries to de-
tailed explanations of every line. We focused on the latter as these
are often useful for students when debugging code. We prompted
Codex using a simple input that consisted of the source code to be
explained, the text “Step-by-step explanation of the above program”,
and finally “1” to influence the output to include numbered lines.
We analyzed the resulting explanations in terms of completeness
and accuracy, finding that 90% of the explanations covered all parts
of the code, and nearly 70% of the explanations for individual lines
were correct. Common errors were mostly related to relational op-
erators and branching conditionals (e.g. where Codex stated “less
than or equal to x” when the corresponding code was checking
“less than x”).

3.1.3  Rapid progress. In this section, we described early work in
which code explanations were generated using a version of the
Codex model that was available in early 2022 (specifically, ‘code-
davinci-001’). Less than a year later, code explanations generated by
models such as ChatGPT are considerably better and more consis-
tently accurate. Figure 4 illustrates one example of a code explana-
tion generated by ChatGPT when provided only the code shown in
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the “Sample solution” area in Figure 3 and using the same prompt
for a line-by-line explanation as described in this section.

The quality of LLM-generated learning resources is likely to con-
tinue improving alongside model capabilities. For example, MacNeil
et al. found that code explanations generated by the more recent
GPT-3 model were consistently more helpful than those generated
by Codex [24]. They generated several different kinds of code ex-
planations, deploying them in an online interactive e-book, and
found that students reported high-level summaries of code as be-
ing more useful for their learning when compared to lower-level
detailed explanations of each line. Recent work has also found that
LLM-created code explanations are rated more highly on average
by students than code explanations created by their peers [18].

We see great potential for LLMs to be applied to the production
of a variety of learning resources relevant to computing education.
We also expect the quality and accuracy of the generated resources
to improve considerably over the near term based on recent trends.

Certainly! Here's a step-by-step explanation of the program:

1. The function * count_rebounds™ takes in a list of players
as an argument. Each player is represented as a tuple
containing three elements: a player's name (a string),
their number of points scored (an integer), and their
number of rebounds (alsc an integer).

2. The function initializes a variable * total® to 0. This
variable will be used to store the total number of
rebounds among all the players.

3. The function enters a * for™ loop that iterates over each
player in the list of players.

4. For each player, the function adds the player's number of

rebounds to the ~total™ variable.

(%3]

. After the * for® loop completes, the function returns the
value of the “total” variable. This is the total number of

rebounds among all the players.

Figure 4: Explanation generated by the ChatGPT model of
the code shown in the ‘Sample solution’ area in Figure 3.

3.2 Better Programming Error Messages

For over six decades, researchers have identified poor Program-
ming Error Messages (PEMs) as problematic, and significant work
remains in this area. Recent work has attempted to put error mes-
sages into more natural language by focusing on readability, which
has been shown to improve student understanding of error mes-
sages and the number of successful code corrections [8]. While it is
clear that increasing the readability of PEMs is helpful to novices,
doing so at scale, and across languages, remains a challenge.
Leinonen et al. explored the potential of LLMs for improving
PEMs [19]. They collected Python error messages that had been
reported as most unreadable in prior work and generated code
examples that produced these error messages. They prompted the
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Codex API with both the code and error message in order to gener-
ate explanations of the PEMs and actionable fixes. They found that
most of the explanations created by Codex were comprehensible,
and that Codex produced an output with an explanation for most
inputs.

More recent work has extended this approach by implementing
GPT-enhanced LLM explanations of PEMs directly into compilers
or automated assessment tools. Taylor et al. deployed GPT expla-
nations to a C/C++ compiler in CS1 and CS2 courses and found it
provided accurate explanations in 90% of cases for compile-time
errors and 75% of cases for run-time errors [37]. Wang et al. found
that students receiving GPT-enhanced PEMs in a large-scale intro-
ductory programming course repeated an error 23.5% less often
and resolved an error in 36.1% fewer attempts [40]. While there is
still work to be done before the decades-old problem is solved, the
potential to demystify PEMs in this way is an exciting opportunity
only recently made possible.

3.3 Exemplar Solutions

Students often seek exemplar solutions when coding, either to check
against their own code or to get help when struggling. However,
instructors may not have the time to provide model solutions for
every exercise, including historical test and exam questions. Al-
generated code offers a time-saving alternative, with the ability to
produce a variety of solutions which can help students understand
and appreciate different trade-offs in problem-solving, as suggested
by Thompson et al. [38].

The ability to generate exemplar solutions automatically can shift
the emphasis from just ensuring that code is correct to focusing on
the differences between multiple correct solutions, and the need to
make judgments on code style and quality. Extensive research on
the benefits of peer review of code [12], suggests that it is beneficial
to consider multiple solutions to a problem, even if some of them
are flawed. Code generation models can be used to create solutions
of varying quality, and these can be used for assessment tasks
that require students to apply the critical analysis skills needed
for code evaluation. This can facilitate discussions about different
approaches and the quality of solutions, and provide opportunities
for refactoring exercises [10].

3.4 New Pedagogical Approaches

Computing educators are still working through the implications
of LLMs in their classrooms and a consensus about how to update
pedagogy has yet to form. However, some early approaches are
emerging.

34.1 LLMs early. In a traditional CS1 course, the initial focus usu-
ally begins with syntax and basic programming principles, and it
can take time for students to become proficient in these fundamen-
tals. One novel approach for progressing more rapidly to complex
problems is to teach students how to use LLMs to handle low-level
implementation details. This is exemplified by the approach in the
textbook by Zingaro and Porter, “Learn Al-Assisted Python Pro-
gramming: With GitHub Copilot and ChatGPT” [28]. Students are
introduced to the GitHub Copilot plugin within the Visual Studio
Code IDE before they have learned to write a single line of Python
code. A top-down approach is followed, where students decompose
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larger projects into smaller functions that are then solvable using
Copilot by providing natural language comments. This textbook
provides a blueprint for how introductory courses could initially
concentrate more on problem-solving and algorithms, rely on auto-
matic code generation for implementation, and defer in-depth and
nuanced discussions of syntax until later.

3.4.2  Explaining algorithmic concepts clearly. It is well known that
the outputs produced by large language models are very sensitive
to their inputs [32]. In fact, “prompt engineering,” where effective
prompts are crafted, has emerged as a distinct (and nascent) skill
when working with these models. For example, when using Codex
to solve probability and statistics problems, engineering the prompt
to include explicit hints on the strategy for solving a problem is
extremely effective [36]. Denny et al. found that prompt engineering
strategies, which described algorithmic steps, were effective for
solving programming tasks for which Copilot initially generated
solutions that were incorrect [6]. Other recent work has shown that
developers are more successful working with Copilot when they
decompose larger programming statements into smaller tasks and
then explicitly prompt Copilot for each of the sub-tasks [1, 13]. It is
likely that students will need to develop new skills to communicate
effectively with these models. A key skill will be the ability to
describe the computational steps they wish to achieve in natural
language as a way of guiding the model to produce valid outputs.

3.4.3  Specification-focused tasks. One way for students to learn
how to create effective prompts is to focus on writing task specifi-
cations. In a traditional introductory course, novices are presented
with problem statements that have been very carefully specified by
the instructor to be clear and unambiguous. Such detailed speci-
fications provide excellent context for code generation models to
produce correct code solutions. New types of problems could task
students with generating clear specifications themselves, and thus
strengthen skills around LLM prompting. For example, this is the
goal of ‘prompt problems’ [7], in which students are presented
with a visual representation of a problem that illustrates how input
values should be transformed to an output. Their task is to devise
a prompt that would guide an LLM to generate the code required
to solve the problem. Prompt-generated code is evaluated auto-
matically and can be refined iteratively until it successfully solves
the problem. Recent work investigating classroom use of prompt
problems has shown that students find them useful for strengthen-
ing their computational thinking skills and exposing them to new
programming constructs.

3.4.4 A focus on refactoring. Students sometimes experience dif-
ficulty getting started on programming assignments, sometimes
referred to as the programmer’s writer’s block. Recent work found
that Copilot can help students overcome this barrier by immedi-
ately providing starter code, enabling them to build upon existing
code rather than starting from scratch with a blank code editor [39].
This approach may require a shift in focus towards tasks such as
rewriting, refactoring, and debugging code, but it provides the op-
portunity to help students maintain momentum in a realistic setting
where the ability to evaluate, rewrite, and extend code is often more
important than writing every line of code from scratch.
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3.5 Designing LLM Tools

Programmers around the world, not just novices, will be utilizing
code generators in an increasing capacity moving forward. Explor-
ing the integration of LLMs directly into educational environments,
such as auto-graders and online textbooks, will be an important
area of research moving forward. There is a need in such environ-
ments for appropriate guardrails so that generated outputs usefully
support learning, without immediately revealing solutions or over-
whelming novices with the complexity or quantity of feedback.
Indeed, the announcement of GPT-4!! highlighted the example of
a ‘Socratic tutor’ that would respond to a student’s requests with
probing questions rather than revealing answers directly. One ex-
ample of this integration in computing education is the work of
Liffiton et al. on CodeHelp, an LLM-powered tool that uses prompt-
based guardrails to provide programming students with real-time
help but without directly revealing code solutions [22].

In general, adapting the feedback generated by LLMs to maximize
learning in educational environments is likely to be an important
research focus in the near future. Concrete recommendations are
already beginning to emerge from very recent work in this space.
First, the over-utilization of code generators by novices will gen-
erally decrease the number of errors they see. This seems like a
positive experience, though it appears they are ill-equipped to deal
with the errors they do see when presented with them [14]. This
means that tools must be designed to help users (of all skill levels)
through the error-feedback loop. Second, generating and inserting
large blocks of code may be counter-productive for users at all
levels. This requires users to read through code they did not write,
sometimes at a more sophisticated level than they are familiar with.
Novices may be intimidated by such code generation [14] or may
spend too much time reading code that does not further their goals
[30]. Therefore, AI code generators should include a way for users
to control the amount of code insertion and to specify how to step
through a multi-part segment of generated code. Third, the fact
that AI code generators are black boxes means that programmers
of all skill levels may struggle to create correct mental models of
how they work, which could harm their ability to fully utilize them
or learn from their outputs. Explainable AI (XAI) patterns could
be helpful here, such as exposing to the user a confidence value
and user skill estimation above the generated code suggestion [30].
These three suggestions are only the beginning of a long line of
research on how to helpfully design usable Al code generators that
empower novice learners and enhance programmer productivity.

4 WHERE DO WE GO FROM HERE?

The emergence of powerful code generation models has led to
speculation about the future of the computing discipline. In a re-
cent CACM viewpoint article, Welsh claims they herald the “end
of programming” and believes there is major upheaval ahead for
which few are prepared, as the vast majority of classic computer sci-
ence will become irrelevant [41]. In an even more recent article on
BLOG@CACM, Meyer is equally impressed by the breakthroughs,
placing them alongside the World Wide Web and object-oriented
programming as a once-in-a-generation technology, but also takes

1 openai.com/research/gpt-4
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a more optimistic view'2. In fact, Meyer predicts a resurgence in
the need for classic software engineering skills such as require-
ments analysis, formulating precise specifications, and software
verification.

Although the impact of generative Al tools is already evident
for software developers, the long-term changes for computing edu-
cation are less clear. Experts appreciate this new technology only
because they already understand the underlying fundamentals. The
ability to quickly generate large amounts of code does not elimi-
nate the need to understand, modify, and debug code, but instead, it
highlights how important it is to develop these basic competencies!
Code literacy skills are essential in order to critically analyze what
is being produced to ensure alignment between one’s intentions
and the generated code. Without the skills to read, test, and verify
that code does what is intended, users risk becoming mere con-
sumers of the generated content, relying on blind faith more than
developed expertise. We argue that writing code remains a valuable
way for novices to learn the fundamental concepts essential for
code literacy.

Although professional developers may indeed spend less time in
the future writing ‘low-level’ code, we believe that generated code
will still need to be modified and integrated into larger programs.
Although we do expect to see some shift in emphasis, even in
introductory courses, towards modifying code generated by Al
tools, the ability to edit such outputs and compose code in today’s
high-level languages will likely remain a fundamental skill for
students of computing. This aligns with Yellin’s recent viewpoint
that as programs increase in complexity, natural language becomes
too imprecise an instrument with which to specify them [42]. At
some point, editing code directly is more effective than issuing
clarifying instructions in natural language.

Tools like Copilot and ChatGPT, harnessed correctly, have the
potential to be valuable assistants for this learning. We see these
tools as serving a valuable teaching support role, used to explain
concepts to a broad and diverse range of learners, generate exem-
plar code to illustrate those concepts, and generate useful learning
resources that are contextualized to the interests of individuals.
We also anticipate the emergence of new pedagogies that leverage
code generation tools, including explicit teaching of effective ways
to communicate with the tools, and tasks that focus on problem
specification rather than implementation.

In light of the rapid adoption of generative Al tools, it is essential
that educators evolve their teaching methods and approaches to
assessment. Curricula should also expand to cover the broader
societal impact of generative Al including pertinent legal, ethical
and economic issues. We believe it is imperative to get ahead of
the use of these tools, incorporate them into our classrooms from
the very beginning, and teach students to use them responsibly. In
short, we must adopt or perish. Adoption, in this case, is not just a
necessity — it’s an opportunity for revitalization.
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