2307.16364v1 [cs.HC] 31 Jul 2023

arxXiv

Promptly: Using Prompt Problems to Teach Learners How to
Effectively Utilize Al Code Generators

Paul Denny
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Andrew Luxton-Reilly
The University of Auckland
Auckland, New Zealand
a.luxton-reilly@auckland.ac.nz

Juho Leinonen
The University of Auckland
Auckland, New Zealand
juho.leinonen@auckland.ac.nz

Thezyrie Amarouche
University of Toronto Scarborough
Toronto, ON, Canada
thezyrie.amarouche@mail.utoronto.ca

James Prather
Abilene Christian University
Abilene, TX, USA
james.prather@acu.edu

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

Brent N. Reeves
Abilene Christian University
Abilene, TX, USA
brent.reeves@acu.edu

ABSTRACT

With their remarkable ability to generate code, large language mod-
els (LLMs) are a transformative technology for computing education
practice. They have created an urgent need for educators to rethink
pedagogical approaches and teaching strategies for newly emerging
skill sets. Traditional approaches to learning programming have
focused on frequent and repeated practice at writing code. The ease
with which code can now be generated has resulted in a shift in fo-
cus towards reading, understanding and evaluating LLM-generated
code. In parallel with this shift, a new essential skill is emerging
— the ability to construct good prompts for code-generating mod-
els. This paper introduces a novel pedagogical concept known as
a ‘Prompt Problem’, designed to help students learn how to craft
effective prompts for LLMs. A Prompt Problem challenges a student
to create a natural language prompt that leads an LLM to produce
the correct code for a specific problem. To support the delivery of
Prompt Problems at scale, in this paper we also present a novel tool
called PrompTLY Which hosts a repository of Prompt Problems and
automates the evaluation of prompt-generated code. We report em-
pirical findings from a field study in which Promptly was deployed
in a first-year Python programming course (n = 54). We explore stu-
dent interactions with the tool and their perceptions of the Prompt
Problem concept. We found that Promptly was largely well-received
by students for its ability to engage their computational thinking
skills and expose them to new programming constructs. We also
discuss avenues for future work, including variations on the design
of Prompt Problems and the need to study their integration into
the curriculum and teaching practice.

1 INTRODUCTION

The advent of large language models (LLMs) that can generate code
is having a rapid and significant impact on computing education
practice, particularly at the introductory level. Traditional peda-
gogical approaches have focused on helping students learn how
to write code. This is typically achieved through frequent practice

involving many small problems [1, 7] or through scaffolding via ac-
tivities such as Parsons problems [10, 11]. However, LLMs are now
capable of producing code automatically and have demonstrated im-
pressive performance on problems that are typical in introductory
programming courses [12, 13, 28]. In addition to the opportunities
they present, educators have voiced concerns around the poten-
tial misuse of these models for plagiarism, and over-reliance on
Al-generated code by beginners [3], leading to a possible erosion
of traditional coding skills [9]. New pedagogical approaches are
needed to develop the changing skillsets that students require in
the era of generative AI [5].

Teaching students to read and understand code are longstanding
goals of introductory courses, and they are becoming increasingly
important skills given the ease with which code can be generated
by LLM-based tools. An equally important emerging skill is the
ability to formulate effective prompts for LLMs to generate code.
Recent work has shown that although many typical introductory
problems can be solved by LLMs using verbatim textbook or exam
problem statements [12, 13], this approach is not always sufficient.
For example, manual modification of the prompts to include explicit
algorithmic hints greatly improves code-generation performance
[30]. In recent work, Denny et al. argue that the ability to engineer
effective prompts that generate correct solutions is now an essential
skill for students, yet they do not propose concrete approaches for
how this skill can be taught [6].

To address this concern, in the current paper we introduce the
concept of a ‘Prompt Problem’ - a new exercise paradigm in which
students solve programming exercises by formulating natural lan-
guage prompts for code-generating LLMs. Students are presented
with a visual representation of a problem that illustrates how input
values should be transformed to an output. Their task is to devise a
prompt that would guide an LLM to generate the code required to
solve the problem.

In addition to conceptualizing the problem type, we make two
other contributions: we introduce a tool for delivering Prompt
Problems and we present empirical findings from the use of this
tool by introductory progamming students. To understand how

https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0003-2807-6042
https://orcid.org/0000-0001-8269-2909
https://orcid.org/0000-0003-3725-0049
https://orcid.org/0000-0003-1446-647X
https://orcid.org/0000-0001-5781-1136

Prompt Problems work in practice, we have developed a web-based
tool called PRompTLY. This tool displays a problem representation,
converts a prompt written by a student to code (via an API call to
an LLM), and then executes the code against a suite of test cases.
If the code fails to solve the problem, the student must revise and
resubmit their prompt. This iterative process continues until the
problem is solved. We hypothesize that solving Prompt Problems
will help students learn how to craft effective prompts.

We begin by presenting an illustrative example of a Prompt Prob-
lem, and we draw from the results of a pilot study to demonstrate
the difficulty that students commonly face in formulating effec-
tive prompts. We then describe the design of our tool, PROMPTLY,
for delivering Prompt Problems at scale and we deploy it in an
introductory Python programming course (n = 54). We report the
results of our analysis of student interactions with the tool and
their perceptions of the activity. We also discuss possible variations
of the problem design, and suggest ideas for future work.

2 RELATED WORK

It has been less than a year since LLMs began to dominate conver-
sations in the computing education community and a little more
than that since the first research papers began to emerge in the
computing education literature. Early work centered on the capa-
bilities of these tools, largely driven by concerns that they would
lead to a flood of cheating [23] and the effect that would have on
student learning. Sometimes, such work involved comparing LLM
and student performance, for example in generating explanations
of code [17]. Finnie-Ansley et al. demonstrated that Codex (based
on GPT-3) ranked in the top quartile of real introductory program-
ming (CS1) students on real exams [12]. A year later Finnie-Ansley
et al. extended this work to data structures and algorithms (CS2)
exams with very similar results [13]. Other studies on the capa-
bilities of LLMs have revealed impressive proficiency in dealing
with object-oriented programming tasks [4], Parsons problems [28],
and compiler error messages [18]. Many of these explorations also
revealed that LLMs are not infallible and can produce solutions
that don’t align with best programming practice [4], struggle with
longer and higher-level specifications [12], include unnecessary
elements [32], and cause students to become confused reading code
that they didn’t write themselves [14, 27]. Babe et al. showed that
LLMs can mislead students, causing them to believe that their own
prompts are more (or less) effective than they are in reality [2].
Recently, the focus has started to shift from assessing the capabili-
ties of LLMs to using them in teaching and learning practice [21, 24].
Sarsa et al. showed that LLMs can generate viable programming
questions including test cases and explanations [29]. Complement-
ing this reshaping of the practices of teaching and learning, the
importance of details such as context [18] and prompting [6] have
begun to emerge. For example, White et al. present a prompt struc-
turing framework for constructing prompts so they can be applied
across problem domains, a catalog of prompts that have been suc-
cessfully applied to improve LLM responses, and a demonstration
of how prompts can be constructed from patterns and how such
patterns can be combined effectively [33]. There is increasing inter-
est in understanding the types of prompts that students construct

Input Output
t, 21, # L[4, 21,
[3, 411 [3, 111
[ra, 2, 31, [re, 2, 31,
[4, 5, 61, q [4, 5, 61,

[7, 8, 911 17, 8, 111

i, 2, 3, 41, 111, 12, 3, 41,

[5 6, 7, 8], [1s, 16, 7, 8l,

[9, 10, 11, 12], q [9, 10, 1, 21,

[13, 14, 15, 16]] [13, 14, 5, 6]l
[ra, 2, 3, 4, sl, [[19, 20, 3, 4, 5I,
[6, 7, 8, 9, 10], [24, 25, 8, 9, 10],
[11, 12, 13, 14, 15], q [11, 12, 13, 14, 15],
[16, 17, 18, 19, 20], 16, 17, 18, 1, 21,
[21, 22, 23, 24, 25]] [21, 22, 23, 6, 711

Figure 1: An example Prompt Problem that displays the data
visually so that students cannot simply copy and paste the
description into an LLM. The goal is to swap the top-left and
bottom-right non-overlapping quadrants of the matrix.

when communicating with LLMs. Babe et al. developed a bench-
mark dataset of 1,749 prompts aimed at 48 problems, written by
80 novice Python programming students [2] which can be used by
others for LLM benchmarking as well as tool development.

A logical next step towards integrating LLMs into teaching prac-
tice is developing tools and resources to aid students in effectively
working with LLMs for learning. Lao and Guo interviewed 19 in-
troductory programming instructors from nine countries across
six continents and found that some instructors are embracing the
idea of integrating Al tools into current courses via mechanisms
such as giving personalized help to students and aiding instructors
with time-consuming tasks [16]. MacNeil et al. used LLM-generated
code explanations successfully in a web software development e-
book [22], and Zingaro and Porter are completing a textbook for
teaching introductory programming with Copilot and ChatGPT
from day one [26]. Integrating LLMs into computer science courses
seems inevitable and stands to transform the way the subject is
taught at all levels [5, 31]. We believe that Prompt Problems will be
one important step along the journey towards integrating the use
of LLMs in computer science education.

3 PILOT STUDY

In order to understand how students might try to use LLM tools like
ChatGPT to communicate program requirements, we asked a group
of graduate students at the University of Auckland to participate in
a prompt writing assignment. This assignment took place during a
single class session in April 2023. We provided a visual represen-
tation of a problem (see Figure 1) and asked participants to query
ChatGPT to write a program that could convert the shown input
to the shown output. The problem description was provided visu-
ally to prevent participants from easily copying and pasting it and,
instead, to encourage them to formulate a suitable prompt them-
selves. We also asked students to keep a log of their interactions
with ChatGPT, organized by their prompt followed by ChatGPT’s
response, etc. in sequential order. We hoped that this would provide

information about the challenges that students face when using
LLMs to write code, and to suggest where a tool might potentially
help to address those difficulties.

Thirty-six graduate students participated in the pilot study by
completing the activity described above and reflecting on it by
writing an open-response review of the task. Fifteen participants
chose to provide us with their ChatGPT conversations. We discuss
these below in Section 3.1. Thirty-one participants shared their
reflections on the task, which we discuss in Section 3.2.

3.1 Interactions

Listing 1 shows an example of a student in the pilot study going
back-and-forth with ChatGPT when trying to solve the problem.
Notice the ‘conversational’ beginning and the subsequent iterative
refinement. Each successive prompt attempts to refine the code that
is already generated, rather than modify the original prompt to be
more complete. We expected computer science graduate students to
have very few problems writing effective prompts, however several
interesting trends emerged from this activity. First, many students
began with an incomplete prompt, starting the conversation with
a greeting and no information on the code they wanted the LLM
to produce. In each of these cases, what followed was a series of
iterative attempts by the participant to incrementally clarify their
intent, rather than rewriting the original prompt. Several partici-
pants also struggled with understanding the problem and therefore
wrote poorly formed prompts with little chance of achieving the
desired result. In situations like these, many student conversations
with ChatGPT were full of requests for ineffectual changes.

Second, participants would prompt ChatGPT for code to solve
the problem, paste the code into the automated assessment tool used
in the exercise to check correctness, and then paste the failed test
cases back into ChatGPT verbatim without any additional prompts
or context. Participant #12, after several prompts that resulted in
code that was not quite complete, told ChatGPT: “This is very wrong,
do the same as you had before but make sure that the top right quarter
and the bottom left quarter are not edited by the function.” ChatGPT
responded with an apology and more almost-correct code.

Third, some students misunderstood the assignment altogether,
such as Participant #13 who initially prompted ChatGPT: “give
me a python 3 swap function which swap the the elements along
the diagonal”. After taking the code generated by ChatGPT and
submitting it to the automated assessment tool used in the activity,
they tried another incorrect prompt: “give me a python 3 swap
function which works by first swapping the elements of each row in
place, and then swapping the elements of each column in place.”

These examples indicate that many students, even ones many
years into their programming education, do not necessarily un-
derstand how to write effective prompts. They could benefit from
explicit prompt writing practice that could teach them to under-
stand the problem, write a single thorough prompt, and check the
code generated by the LLM as having complete test case coverage.

3.2 Reflections

When reflecting on the task in our pilot study, many of the students
mentioned that code producing LLMs need supervision to produce
correct code. After working with ChatGPT to produce correct code

Listing 1 Transcript of a conversation with ChatGPT.

Prompt 1: Hi, I want you to write a Python program.
ChatGPT response 1: Sure, what would you like the program to do?

Prompt 2: I have a square matrix, and I want to swap the first half of the
rows with the second half of the rows.

ChatGPT response 2: Here’s a Python program that should do what you’re
asking for:

def swap_matrix_rows(matrix):
n = len(matrix) half_n =n // 2
for i in range(half_n):
matrix[i], matrix[half_n + i] =
matrix[half_n + i], matrix[i]
return matrix

Prompt 3: That’s not exactly what I meant. I actually want to swap the
first half of the elements in each row with the corresponding elements in
the second half of the rows.

ChatGPT response 3: No problem, here’s an updated version of the Python
program that should swap the first half of the elements in each row with the
corresponding elements in the second half of the rows:

def swap_matrix_elements(matrix): n = len(matrix)
half_n =n // 2
for i in range(half_n):
for j in range(len(matrix[i]) // 2):

matrix[i][j], matrix[half_n + i]
[j - len(matrix[il) // 2] =
matrix[half_n + i]
[j - len(matrix[il) // 21,
matrix[i][j]

return matrix

Prompt 4: That’s not quite what I had in mind either. What I want to do is
swap the first half of the columns in the first half of the rows with the last
half of the columns in the last half of the rows.

ChatGPT response 4: My apologies, here’s an updated version of the
Python program that should swap the first half of the columns in the first half
of the rows with the last half of the columns in the last half of the rows:

def swap_matrix_elements(matrix): n = len(matrix)

half_n =n // 2

half_m = len(matrix[@]) // 2

for i in range(half_n): for j in range(half_m):
matrix[i1[j], matrix[half_n + i]
[half_m + j] = matrix[half_n + i]
[half_m + jJ, matrix[iJ[j]

return matrix

Prompt 5: Oops, sorry, I wasn’t clear. I actually want to swap the first half
of the elements in the first half of the rows with the corresponding
elements in the last half of the rows.

run against test cases, many students realized that writing code this
way required a different kind of critical thinking. Instead of thinking
through how to structure code to properly address the requirements,
users instead need to carefully read and test the code generated for
them to ensure it precisely fits their needs. Participants recognized

that training was needed — both training of novice students in how
to use LLMs so that they are more of a help than a hindrance, and
training of the models so that they provide responses targeted to
novice learners. For instance, participants said:

P11: “[It] made me reflect on the importance of critical thinking
and proper supervision in using these models”

P19: “I think it’s a double-edged sword in itself. Perhaps they need
more supervision and training in the education field before
they can become the best study companion for students
outside of the classroom.”

Other students realized that prompt engineering to create code is
a different kind of programming compared to how they learned. Co-
ercing an LLM to generate correct code will need to be an iterative
exercise in prompt refinement, not prompt conversation. Telling
the LLM to revise its previous code, built from a previous prompt,
may or may not work due to the way tools like ChatGPT maintain
conversational context. Examples of this from participants can be
seen below:

P12: “T also found it interesting how difficult it was to get ChatGPT
to write a somewhat simple program. I understand now that
it is almost like a different kind of programming to get it
to do what you want, and I can see the potential uses in
education.”

P15: “The most difficult part of this exercise is to properly instruct
ChatGPT so that it could fully understand the requirements.
ChatGPT appears to be ‘polite but stubborn’, as it would
generate code that could be run successfully but does not
produce the correct output. When asking ChatGPT for a
fix, it would politely provide a new snippet of code but the
new code didn’t effectively fix the problem, and sometimes
there were no modifications made to the new code at all”

These representative samples from the reflections by students
indicated to us that learning how to successfully write prompts
would need to be a skill taught explicitly in introductory program-
ming courses, alongside other skills that are traditionally taught.
We propose the idea of Prompt Problems to address this new gap
in programming education.

4 A TOOL FOR DELIVERING PROMPT
PROBLEMS AT SCALE: PROMPTLY

We have developed a web-based tool called PROMPTLY to support
one particular variation of Prompt Problems, in which the code
generated by the LLM is not editable by the learner (see Figure 2).
Other variations of Prompt Problems are possible and we discuss
these in Section 6.1.

Our concrete implementation of the tool uses React and Node]JS
as its key frameworks, and Material design for the styling of UI
components. The client-side React implementation is accessible via
Firebase Hosting, and the Express (Node]S) backend is powered by
Firebase Functions, operating within a serverless framework. The
backend communicates with OpenAI’s API and transmits responses
to a JobeInABox! sandbox which is hosted on an EC2 AWS instance.
We explored the use of several specific OpenAl models, including
text-davinci-003 and gpt-3.5-turbo. Our current implementation uses

1github.com/trampgeek/jobeinabox

| |
T -V
LA — ‘_,</>_>_x

Visual Learner LLM generates Code
representation enters code from executed
of problem prompt prompt against tests

Figure 2: The PROMPTLY tool implements a simple variation
of Prompt Problems in which the code generated by the LLM
is automatically executed against a set of test cases and can
not be edited directly. In order to modify the code, the learner
is directed to edit the prompt.

text-davinci-003 which, although now officially a legacy model, is
less likely to generate superfluous text and comments in the re-
sponses. We found that the gpt-3.5-turbo model requires significant
additional prompting to increase the likelihood of generating only
executable code, but that relying on prompting alone can be unre-
liable. Future work will explore additional filtering approaches in
order to transition to this newer model. All relevant data, including
prompts, responses and testing outcomes is stored using Firestore’s
NoSQL database.

4.1 Tool Design

Within the PROMPTLY tool, sets of Prompt Problems are organized
into course repositories from which students can select after logging
in. Each Prompt Problem within a course repository consists of a
visual representation of a problem - that is, an image that does not
include a textual description of the problem - and a set of associated
test cases that are used to verify the code that is generated by the
LLM.

Each set of Prompt Problems for a given course are presented in
order, and a student can navigate through these using ‘Back’ and
‘Next’ buttons (see Figure 3). Once a Prompt Problem is selected,
the student is shown the visual representation of the problem, and
a partial prompt to complete. For problems where the solution is
a Python program, this partial prompt begins: “Write a Python
program that..”, which provides guidance to the student. If the
problem requires students to write a single function, then the partial
prompt is: “Write a Python function called..”. As soon as any text for
extending the prompt is entered by the student, the “Click here to
ask ChatGPT!” button is enabled. Clicking this button constructs a
prompt that is sent to the LLM. This prompt consists of the verbatim
text entered by the student, as well as some additional prompting to
guide the model to produce only code and no additional explanatory
text.

Once the code response is received from the LLM, it is then sent
to a sandbox for execution against the set of test cases. We use
the publicly available sandbox associated with the CodeRunner
tool [19]. If the generated code passes all of the test cases for the
prompt problem, then the student receives a success message and
is directed to progress to the next problem. If any of the test cases
fail, then the first failing test case is shown to the student. At this

https://github.com/trampgeek/jobeinabox

e Exercise #1

o Class Registration

Enter your name: Bob
Hello Bob

m
m
5]
@
]
i
rd
m
ot
=
@
=
i
]

Visual representation of

A

problem (in this case, an
animation illustrates user
interaction with program)

Write me a Python program that asks the user to enter their name, and then prinis the word "Hello” followed by

a space, followed by their name

WWrite your ChatGPT prompt here

CLICK HERE TO ASK CHATGPT!

ChatGPT response:

G

Code Running response:

You pass \("o~)/ !

\ Prompt entry
/ LLM response

Execution output (in this case, a

A

BACK NEXT

success message as all tests pass)

Figure 3: Interface layout for a Prompt Problem within the web-based PRoMPTLY tool (with figure annotations added in blue).

point, they are able to edit the prompt and resubmit in order to
generate a new code response.

Figure 3 shows a screenshot of the tool interface once the learner
has logged in and selected their course. The following instructional
message is shown but not included in the screenshot: “Your task is to
view the visual representation of the problem and then type a prompt
which describes the task sufficiently well for the language model to
generate a correct solution in Python. If the code that is generated is
not correct, you will see test output below the coding area and you
can try again by modifying the prompt!”. In the screenshot in Figure
3, the first problem in a sequence of three problems for the course
is shown, and has just been solved by the learner.

4.2 Classroom Evaluation

Prompt Problems are a novel type of activity for learners in an
introductory programming course, and so we are interested in un-
derstanding their perceptions of the PROMPTLY tool, and on their
interactions with it when solving problems. We organise our inves-
tigation of the way students use PROMPTLY around the following
two research questions:

RQ1: How do students interact with the PROMPTLY tool in terms
of overall success rates and on the lengths of the prompts
they construct?

RQ2: What are students’ perceptions of the PROMPTLY tool and
on learning programming through constructing prompts
for LLMs?

Enter a number: 3
Child

Below 8 Child
8-12 Tween
13-19 Teenager
20 or above Adult

Figure 4: Producing a categorization based on age.

To explore these questions, we deployed PROMPTLY as an un-
graded (i.e. optional) laboratory task in a large introductory Python
programming course taught at the University of Auckland. Students
in this course typically have no prior programming experience. The
lab was conducted in the second week of the course, at which point
students were writing single-file scripts, without the use of func-
tions, and had learned about standard input and output, arithmetic,
and conditional statements.

Three problems were available on PrRoMpTLY for students to
attempt. The first of these was the problem previously illustrated

Enter five decimal numbers (separated by spaces): 2.0 3.0 3.0 3.0 4.
3.0

v oOX _M-»w
GGG IES R

- 6.5+7.0+6.0 - 6.5

HHHHH™

Figure 5: Calculating the average of the “middle” values out
of a set of five values (using the metaphor of judges scoring
an athletic competition, where the highest and lowest values
are excluded).

in Figure 3, where the goal was to write a program that would
ask the user to enter their name, accept input from the command
line, and then display “Hello ” followed by the name as standard
output. The other two problems are illustrated in Figures 4 and 5.
The second problem (Figure 4) required a program that accepts an
integer input from the user representing an age, and then prints
a textual cateogrization of that age. The third problem (Figure 5)
required a program that accepted five floating point inputs and
then calculated the average of the three middle values (i.e. after
removing the maximum and minimum values).

For all three problems, the visual representation of the problem
included a short animated image (~10 second duration), shown as
a command-prompt style window. The command-prompt anima-
tion illustrated entry of user input, one key at a time, and then the
subsequent display of output from the program. For the second
and third problems, the visual representation also included a corre-
sponding image that highlighted several pairs of inputs with their
corresponding output.

In terms of interactions with the tool (RQ1) we calculate, for each
of the three problems, the average number of prompt submissions
that were required to solve it, the number of students who were
successful, and the average number of words used in the submitted
prompts. To investigate student perceptions of the activity and tool
(RQ2), students were invited to provide feedback on their experience
using PRoMpTLY. This feedback was not graded, and was given in
response to the following prompt: “We would appreciate hearing
about your experiences completing the exercises and in particular,
how you think the experience of writing prompts may help you to
learn programming”.

5 RESULTS

Our study was conducted in July 2023, and participation by students
was optional. A total of 54 students attempted at least one problem
on PromPTLY, Which represents approximately 12% of the enrolled
students in the course.

5.1 Student interactions with PRoMPTLY

We measured several performance indicators around student use
of PROMPTLY, such as prompt lengths and number of submissions.
As summarized in Table 1, on average participants submitted 2.70
attempts for problem 1, 2.16 submissions for problem 2, and 6.4
submissions for problem 3. On this basis, problem 3 appeared to
be the most difficult for students, and this is further supported by
student reflections (which are reported in more detail in Section
5.2), with one student commenting: “The instruction for the third
exercise is not clear I don’t get it.” Listing 2 shows three prompts
that were submitted by different students attempting problem 3.
Some students found it difficult to infer the goal from the problem
representation. For example, the first prompt shown in Listing 2 is
an example where the student has incorrectly inferred that values
included in the average calculation should be sufficiently close to
their predecessors. Trying to generate code for the wrong problem
can be frustrating, which may explain the following part of the
prompt written by the student: “If the user has not provided numbers
that sufficiently meet this criteria, call them an idiot”.

In the second example in Listing 2, the student has not attempted
to provide a prompt that demonstrates they have understood what
the problem is asking, but instead they have created a prompt
that simply parrots back to the tool the three example tests cases
shown in the problem description. The student then asks the model:
“Can you please replicate this program?”. The student submitted this
prompt four times in a row, but all attempts were unsuccessful.
Finally, the third example in Listing 2 is the shortest successful
prompt that was submitted for this problem.

Overall, the average number of words in prompts for each of the
problems was 13, 38, and 36, respectively. The number of students
that solved the problems was 43, 32, and 19, respectively.

Figures 6, 7 and 8 illustrate, for each of the three problems, trends
regarding how the average word count of prompts, and the number
of students writing them, change across subsequent submissions.
For example, the left most column in Figure 6 shows that 54 students
made an initial submission to this task and that on average, the word
length of all of these submitted prompts was 15. As students either
solve or abandon the problem, fewer students make subsequent
submissions. Comparing the three problems, prompt lengths tend
to decrease over subsequent submissions for problems 1 and 2, but
tend to slightly increase for problem 3.

Table 1: Summary of usage of PRompPTLY. For each question,
the average number of submissions required to solve the
problem is shown, along with the number of students who
successfully solved the problem and the average number of
words in prompts submitted.

Problem Average Students Average
id submissions solved words
1 2.7 43 13
2.2 32 38
6.4 19 36

Q1: Average Word Count and Number of Students who Submitted
@ Average Word Count Number of Students Who Submitted

60

20 115 .
10

\ ?*-\'_;/
3 4

1 2

” 13

12 1
%% 6 5 & & /."’\0
112 13 14 15 16 17

15
8 8
7 g
5 6 7 8 9 10 1 18 19 20

Figure 6: The average number of words in each subsequent
submission for problem 1 compared to the number of partic-
ipants that submitted.

Q2: Average Word Count and Number of Students who Submitted

® Average Word Count

Number of Students who Submitted

Figure 7: The average number of words in each subsequent
submission for problem 2 compared to the number of partic-
ipants that submitted.

Q3: Average Word Count and Number of Students who Submitted

@ Average Word Count Number of Students who Submitted

60 —

20 +

Figure 8: The average number of words in each subsequent
submission for problem 3 compared to the number of partic-
ipants that submitted.

Listing 2 Three student-submitted prompts for Problem 3

Misinterpreting the problem:

Write me a Python program that does the following:

1. Prompts the user to enter five decimal numbers (1dp) between 1.0 and
10.0 separated by spaces.

2. Chooses three of these numbers using the following rules: a number
chosen be different from the previously chosen numbers and each
subsequently chosen value must be within 0.5 of its predecessor. If the user
has not provided numbers that sufficiently meet this criteria, call them an
idiot and prompt them for another five values.

3. Find the average of these numbers and round the result to 2dp. Precede
this result with the numbers chosen.

Parroting the tests:

A Python program requests the user "enter five decimal numbers
(separated by spaces)". In the first example the user inputs the five numbers
2.0 3.0 3.0 3.0 4.0 to which the program outputs 3.0. In the second example
the user inputs the five numbers 8.0 9.5 7.5 6.0 9.0 to which the program
outputs 8.17 . In the third example the user inputs the five numbers 4.0 6.5
8.0 7.0 6.0 to which the program outputs 6.5. Can you please replicate this
program?

Successful:

Write me a Python program that takes five decimal number separated by
spaces, and outputs the average of the 3 median numbers as a decimal
rounded to 2dp.

5.2 Student reflections on PRomPTLY

We analyzed feedback from 58 students who provided a response
to the reflection question. This is slightly greater than the number
of students who used PROMPTLY, but as we report below, some
students indicated a resistance to using LLMs for generating code
and thus responded to the reflection statement without using the
tool. We report the main themes that emerged from our analysis
below.

5.2.1 Exposure to new coding constructs. Given that our evaluation
was conducted early in the course, the code that was generated
would sometimes contain features that were unfamiliar to students.
For the most part, students commented positively on this aspect,
and a theme emerged around the way the tool introduced students
to new programming constructs and techniques. As one student
commented: “These exercises introduced me to new functions... so
this method of writing code could help increase my programming
vocabulary”. Another response aligning with this theme was: “Hon-
estly that was pretty cool, I like the way it works and how we can see
the code afterwards. Even if we don’t know how to code some of the
features, knowing the steps and then seeing how it’s meant to be done
is very helpful”.

One student commented on the value of seeing both the structure
and syntax of the code generated by the LLM: “The main benefit
gained from using ChatGPT in this environment was observing the
logical structure of the programs that it created to fulfill the established
requirements. In all three cases it used functions that I was previously
unaware of, allowing me to gain an understanding of how they could
be used and the correct syntax for implementing them.”

5.2.2 Enhancement of computational thinking. We also found stu-
dents valued the way in which the tool challenged them to think

carefully about how to solve a problem and communicate precise
specifications: “You would have to understand what the question is
asking to be able to give a working prompt to the Al so it seems very
good for making you think properly about the question”. Writing
clear prompts can involve communicating problem solving steps,
and thus draws on computational thinking skills. This is illustrated
well by the quote: “Writing prompts helps learn programming by
making you have to think about what the task at hand and to split
it up into segments of which you need to describe to the AL.. I would
say that this would help students with the act of breaking down a big
project into little tasks.”. Another similar response highlighted how
the tool helped in visualizing the problem solving process: “Writing
the prompts can help you with visualizing the steps required in the
programming”.

5.2.3 General Positive Feedback. Around one-third of the partici-
pants expressed generally positive sentiments about the PROMPTLY
tool, and this was the most common theme overall. Representative
comments include: ‘T think that is was a good for practicing asking
AI” and “Asking Al to write promps help a lot in programming!!l”.
One student who viewed the tool positively, also expressed some
concern about the power of the underlying code-generating mod-
els: “Tt is absolutely a great tool, however in this regard it’s kind of
terrifying. It was able to process my instructions fluently.”

Some students also commented more generally about the impor-
tance of learning how to use generative Al responsibly in computing
courses, and the value of having explicit approaches for teaching
this. For example, ‘T think it is very smart ... to work on a way to
integrate and teach a responsible usage of machine learning!” and ‘T
think it would be very useful to have a section of a course that teaches
how to use prompts properly and provide a better understanding of
Al tools.”

5.2.4 Resistance and negative feedback. Although less common,
we found that some students appeared resistant to using the tool,
citing fears about potential impacts on their creativity. One student
expressed: ‘T don’t have much intention of using ChatGPT at the
moment as I major in design and I have a strong belief in personal
creativity”. Another was more blunt: ‘T refuse to use chatGPT for pro-
gramming”. Over-reliance on Al generated outputs is a commonly
cited concern within the education community, and several stu-
dents commented on this aspect, including: “it is critical for students
to learn the ability to write code independently rather than relying
only on Al-generated answers” and ‘T feel like it is too tempting of
a tool to use through the labs and not learn and develop these skills
yourself”. Further exploring these concerns would be an interesting
avenue for future work.

Overall, while most students reported finding PROMPTLY benefi-
cial, particularly for exposure to new programming constructs and
for strengthening computational thinking skills when communicat-
ing a problem, a minority of students were hesitant about the use
of generative Al tools for learning programming.

6 DISCUSSION

Beginning typically with very small problems in CS1 and proceed-
ing on to semester- or year-long applied problems in software
engineering, CS curricula expose students to both top-down and

bottom-up approaches. The problems presented in PROMPTLY can
be considered to be “bottom-up”, since students start with input-
output pairs and have to infer a problem description. And yet, the
prompts that the students write can be considered “top-down” since
the system requires students to abstract the meaning of the input-
output pairs into English sentences and not code. Students need to
understand the problem before they can correctly generate prompts
that cause the LLM to produce correct code.

In contrast to other tools students use, such as compilers, learn-
ing to use LLMs presents unique challenges. Although the literature
continues to document the difficulty students have with compiler
error messages, one thing we have never worried about teaching
students is that compilers might sometimes just get it wrong. In con-
trast, at this point in time, LLMs sometimes generate answers that
are syntactically and semantically incorrect. Deliberate exposure
to the inconsistencies of outputs generated by LLMs can serve to
highlight the importance of a “critical eye” in evaluating generated
code and may help to moderate the potential for over-reliance on
these tools. The use of LLMs to generate code from prompts places
the responsibility for ensuring correctness on the user, so adequate
testing becomes more important. Future tools that focus on prompt
generation would benefit from the integration of user-generated
tests to ensure students are explicit about the program require-
ments when they create prompts. Tasking students with generating
test cases (before writing code) has previously been studied as an
approach to help improve problem understanding [8, 25].

It is worth noting that our tool does not provide instruction
for students about how to create prompts effectively. It merely
requires them to complete a task that involves prompt creation.
This is aligned with most other Automated Assessment Tools that
provide assessment tasks to support learning, but little explicit
instruction [15]. Neither the students in our pilot study nor those in
our classroom evaluation of the tool were taught prompt creation,
so currently we have focused on students’ intuitions around prompt
generation. Future work will explore how to more directly teach
students to generate prompts in structured ways to determine if
such instruction positively impacts their performance using tools
that assess prompt generation.

Although the current system evaluates prompt effectiveness in
producing correct programs, it does not evaluate the efficiency of
the prompts. Our unit tests consider only whether the given inputs
are translated to the expected outputs. A prompt could include
irrelevant words and generate irrelevant code constructs, and as
long as it still translates the given inputs to the expected outputs,
our system will treat the task as completed successfully. Future
work must address how to go beyond effective prompts to efficient
(and effective) prompts.

6.1 Variations

Prompt Problems are a class of problems where learners generate
prompts that are given to LLMs to produce code. There are various
ways that such problems can be implemented, and several con-
siderations for designing them. Our tool currently makes certain
implementation trade-offs. It does not allow dialogue, it does not
allow students to edit the code that is generated by the LLM, and it
evaluates only a single solution at a time.

6.1.1 No dialogue. ChatGPT interfaces include support for “dia-
logue”. This interaction style is natural and easy on the beginner.
The reason we did not support this interaction and forced the stu-
dent to “start from scratch” each time is that we were deliberately
focusing the student on creating a complete, top-down, problem
description. Although it is more cognitively demanding to require
the student to provide all relevant information in a single prompt,
we were interested in teaching exactly that process.

6.1.2 No access to the code. Although students who are more ad-
vanced may find it easier to simply write the code than construct
a prompt, our interest is in providing students with experience in
generating prompts. For this reason, we did not allow students to
edit the code that was generated. We did show the code and stu-
dents were able to study the generated code along with the unit test
results to modify their prompts for another submission. Our system
is not intended to be a realistic IDE for code development, but future
tools that support Prompt Problems could allow code editing to
provide refactoring practice and a more authentic experience.

6.1.3 Single solution generated. LLMs generate different variations
of output for the same input prompt. Our tool does not currently
address the possible variation in generated content. Prompts can
be brittle, as sometimes the same prompt may work and other
times it may not. Non-deterministic behaviour of the models may
be frustrating for students, as simply resubmitting a previously
unsuccessful prompt may actually work. Nevertheless, this may be
a useful learning experience for students, as it helps to highlight
this inherent LLM behaviour. A different variation of the current
tool design could generate multiple code implementations every
time a single prompt is submitted, allowing students to compare
them and see which ones satisfy the problem. Viewing multiple
correct, but different, implementations of the same algorithm is
useful for helping students understand that there are frequently
many correct solutions to a problem [20]. Future work could explore
how to present this aspect of LLMs to students who are learning to
write prompts.

6.2 Problem Design

Our restriction on “visual” problem representation is motivated
by a desire to prevent students from simply copying-and-pasting
into the LLM prompt. The most important feature of the problem
representation is that it does not provide the text that can be directly
used as a prompt. For problems where the desired code output
is a function, listing a set of test cases (input and output pairs)
is a convenient representation. In our current implementation of
PROMPTLY, this can be achieved with plain text, or with an image
to discourage copy-and-paste behaviour, as illustrated in Figure
9. There are several considerations for how to design a Prompt
Problem which we discuss here.

6.2.1 Avoiding textual clues. One of the biggest limitations in terms
of preparing Prompt Problems is that as an instructor, you have to
think about tasks that can be presented visually to learners. Even
simple tasks such as “Order the elements of the list in ascending
alphabetical order” which can be explained in few words, is quite
challenging to convey visually without the use of text. Without

counter([@, 2, 3, 4, 5, 6, 0]) => 2

counter([1@0, 2@, 30]) => @

counter([0, @, 0, @, 999]) = 4

'Write me a Python function called counter that returns the number of zero values in an input list

CLICK HERE TO ASK CHATGPT!

ChatGPT response:

Figure 9: A problem in PROMPTLY represented as a set of
input-output pairs, where the solution requires generating a
function (called ‘counter’) that returns a count of the number
of times zero occurs in a list. One possible prompt, and the
resulting code that correctly solves the problem, is shown.

a textual explanation, students are expected to use inductive rea-
soning to determine what problem is being solved from visual
examples that typically include specific cases. As we found, this can
be quite challenging in some cases. For example, many students
found problem 3 challenging in our classroom evaluation, with one
commenting on their reflection: “The last question seemed unneces-
sarily unclear, I can’t imagine there will be many instances where the
task I'm meant to do will be as vague as what was given in question
3” In this evaluation, we used short animations to illustrate data
being entered at the command prompt. Although such animations
can convey additional information, they are more difficult to create.

6.2.2 Accessibility. Educational resources should be accessible to
students with a visual impairment. This is typically satisfied with
a text-based description of visual media which can be read aloud.
However, if a text-based description of the image is provided, then
this may either (a) be sufficiently descriptive of the problem that it
could be passed directly to an LLM without requiring a student to
engage with the prompt construction strategy; or (b) add a further
layer of complexity to the inductive reasoning required to deter-
mine the problem that is being illustrated by the visualization. For
example, Figure 5 is intended to convey that a program should
accept 5 numbers and remove the highest and lowest values before
calculating the average of the central 3 values. However, a textual
description of the image may focus undue attention on the many
details that provide context, but which are not directly related to
the problem.

6.2.3 Natural language bias. Students for whom English is their
native language may, in general, be able to produce prompts in Eng-
lish that are more nuanced in their use of language, and are likely
to have greater success in improving partially correct prompts. Stu-
dents with more limited English language could be disadvantaged

in manipulating the LLM to produce the correct program, even
when they understand the problem and the programming solution
more effectively than a native English speaker. Instructors who
plan to use prompt generation activities as part of formal graded
assessment should consider the extent to which English language
skills should impact grades in their course.

6.2.4 Prompts and specificity. Creating a prompt that gives a gen-
eral description of the problem is reasonably straightforward, but as
instructors are aware, being precise and complete when describing
the requirements for a problem relies on experience and expertise.
Students are typically very familiar with following the specifica-
tions of a problem, but are often less familiar with the process of
specifying desired functionality with precision. For example, our
pilot study (see Section 3) revealed that graduate students were
frequently not providing sufficient information in their prompt
to the model. Similarly, traditional code writing exercises do not
encourage students to think about corner cases, because these are
typically provided in the problem description (usually carefully
worded by an instructor) or shown in test case output. This sug-
gests that explicitly training prompt construction, as we propose,
may make a valuable contribution to computing education by focus-
ing more attention on important dispositions, such as being precise
and paying attention to detail.

6.2.5 Inappropriate solutions. When solving Prompt Problems, the
LLM might produce code which is too advanced relative to the
timing of the course, and we may not wish to show this to learners.
This could be both negative and positive — it might show students
new approaches they have not seen before, but on the other hand
it could be confusing and demotivating as students may feel like
they should understand the code when they do not. For example,
in our classroom evaluation, although most students commented
positively on this aspect, we did see some evidence of students being
confused by the outputs: “when the question prompt got harder, the
code become harder as well and I wasn’t able to understand the code
that was being generated”, and “some of the functions used in the
latter exercises were new to me and I would not be able to diagnose
any code errors within it”. One way of handling this issue could
be through tool design, by including in the tool filters for certain
programming constructs that should be used for given problems
(instructors could define these along with the problems). These
filters could either be post-filters (i.e. rejecting a model completion
and requesting a new one if it includes concepts that are not desired)
or pre-filters (i.e. where the prompt is modified to include which
constructs are allowed).

6.2.6 Problem difficulty. Prompt creation is a new kind of task that
we (as a community) have limited experience with, and we have
not typically asked students to complete similar tasks. It may be
difficult for instructors to have an intuition for how hard it will be
for students to construct prompts for various problems. In addition,
further thought is needed about when to introduce such tasks into
the curriculum. Novices in a typical CS1 course could potentially
solve more complex problems earlier than they would otherwise if
they had to generate code from scratch. However, it may be useful
for students to have some minimal knowledge of programming in
order to be able to diagnose problems in code generated by LLMs.

7 CONCLUSION

In this work we present a novel pedagogical approach, known as
‘Prompt Problems’, designed to help students learn how to craft
effective prompts for generating code using large language models
(LLMs). This is an essential skill in the current era of rapidly advanc-
ing Al and automated code generation. Learning effective prompt
construction is important as it can help students express detailed
specifications, encourage them to think about corner cases and
apply computational thinking skills. Indeed, we motivate our work
by presenting the findings from a pilot study involving graduate
students which revealed struggles in providing sufficient details
when writing prompts.

We make three primary contributions in this paper. The first is
the conceptualization of Prompt Problems as a nascent pedagogical
strategy. The second is the design and implementation of a novel
tool, PROMPTLY, for delivering Prompt Problems at scale. The third
contribution is an empirical evaluation of PROMPTLY in a first-year
Python programming course, where we explore student interactions
with and perceptions of the tool. Future research should investigate
different variations of the approach we have described, including
permitting code-editing and dialogue-based interactions, which
present both benefits and challenges. It is also essential to explore
the right time to introduce students to the concept of prompt-based
code generation, and how to integrate these problems in parallel
with conventional teaching practices.

REFERENCES

[1] Joe Michael Allen, Kelly Downey, Kris Miller, Alex Daniel Edgcomb, and Frank
Vahid. 2019. Many Small Programs in CS1: Usage Analysis from Multiple Univer-
sities. In 2019 ASEE Annual Conference & Exposition ". ASEE Conferences, Tampa,
Florida, 1-13. https://peer.asee.org/33084.
Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, Arjun Guha, Molly Q Feld-
man, and Carolyn Jane Anderson. 2023. StudentEval: A Benchmark of Student-
Written Prompts for Large Language Models of Code. arXiv:2306.04556 [cs.LG]
[3] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AT Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery,
New York, NY, USA, 500-506. https://doi.org/10.1145/3545945.3569759
[4] Bruno Pereira Cipriano and Pedro Alves. 2023. GPT-3 vs Object Oriented Pro-
gramming Assignments: An Experience Report. In Proceedings of the 2023 Con-
ference on Innovation and Technology in Computer Science Education V. 1 (Turku,
Finland) (ITiCSE 2023). Association for Computing Machinery, New York, NY,
USA, 61-67. https://doi.org/10.1145/3587102.3588814
Paul Denny, Brett A. Becker, Juho Leinonen, and James Prather. 2023. Chat
Overflow: Artificially Intelligent Models for Computing Education - RenAls-
sance or ApocAlypse?. In Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE
2023). Association for Computing Machinery, New York, NY, USA, 3-4. https:
//doi.org/10.1145/3587102.3588773
[6] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language.
In Proceedings of the 54th ACM Technical Symposium on Computer Science Educa-
tion V. 1(Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machin-
ery, New York, NY, USA, 1136-1142. https://doi.org/10.1145/3545945.3569823
[7] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
CodeWrite: Supporting Student-Driven Practice of Java. In Proceedings of the
42nd ACM Technical Symposium on Computer Science Education (Dallas, TX,
USA) (SIGCSE ’11). Association for Computing Machinery, New York, NY, USA,
471-476. https://doi.org/10.1145/1953163.1953299
[8] Paul Denny, James Prather, Brett A. Becker, Zachary Albrecht, Dastyni Loksa, and
Raymond Pettit. 2019. A Closer Look at Metacognitive Scaffolding: Solving Test
Cases Before Programming. In Proceedings of the 19th Koli Calling International
Conference on Computing Education Research (Koli, Finland) (Koli Calling °19).
Association for Computing Machinery, New York, NY, USA, Article 11, 10 pages.
https://doi.org/10.1145/3364510.3366170

[2

5

https://arxiv.org/abs/2306.04556
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1145/3587102.3588814
https://doi.org/10.1145/3587102.3588773
https://doi.org/10.1145/3587102.3588773
https://doi.org/10.1145/3545945.3569823
https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1145/3364510.3366170

9]

[10

[11

[12]

[13]

[14

[15]

[16]

[17]

(18]

[19

[20]

[21]

[22

[23]

Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio San-
tos, and Sami Sarsa. 2023. Computing Education in the Era of Generative Al
arXiv:2306.02608 [cs.CY]

Yuemeng Du, Andrew Luxton-Reilly, and Paul Denny. 2020. A Review of Re-
search on Parsons Problems. In Proceedings of the Twenty-Second Australasian
Computing Education Conference (Melbourne, VIC, Australia) (ACE’20). As-
sociation for Computing Machinery, New York, NY, USA, 195-202. https:
//doi.org/10.1145/3373165.3373187

Barbara J. Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas, Juho
Leinonen, Craig S. Miller, Briana B. Morrison, Janice L. Pearce, and Susan H.
Rodger. 2022. Parsons Problems and Beyond: Systematic Literature Review
and Empirical Study Designs. In Proceedings of the 2022 Working Group Reports
on Innovation and Technology in Computer Science Education (Dublin, Ireland)
(ITiCSE-WGR °22). Association for Computing Machinery, New York, NY, USA,
191-234. https://doi.org/10.1145/3571785.3574127

James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of
OpenAlI Codex on Introductory Programming. In Proceedings of the 24th Aus-
tralasian Computing Education Conference (Virtual Event, Australia) (ACE "22).
Association for Computing Machinery, New York, NY, USA, 10-19. https:
//doi.org/10.1145/3511861.3511863

James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A. Becker. 2023. My AI Wants to Know If This Will
Be on the Exam: Testing OpenAI's Codex on CS2 Programming Exercises. In
Proceedings of the 25th Australasian Computing Education Conference (Melbourne,
VIC, Australia) (ACE "23). Association for Computing Machinery, New York, NY,
USA, 97-104. https://doi.org/10.1145/3576123.3576134

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI °23). Association for Computing Machinery, New York, NY, USA,
Article 455, 23 pages. https://doi.org/10.1145/3544548.3580919

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A Systematic Liter-
ature Review of Automated Feedback Generation for Programming Exercises.
ACM Transactions on Computing Education (TOCE) 19, 1 (2018), 1-43.

Sam Lau and Philip] Guo. 2023. From “Ban It Till We Understand It” to “Resistance
is Futile”: How University Programming Instructors Plan to Adapt as More
Students Use AI Code Generation and Explanation Tools such as ChatGPT and
GitHub Copilot. ACM ICER 2023 to appear. https://pg.ucsd.edu/publications/cs-
instructors-adapting-to-chatgpt-copilot-ai-tools_ICER-2023.pdf

Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. arXiv:2304.03938 [cs.CY]

Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James
Prather, and Brett A. Becker. 2023. Using Large Language Models to Enhance
Programming Error Messages. In Proceedings of the 54th ACM Technical Sym-
posium on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE
2023). Association for Computing Machinery, New York, NY, USA, 563-569.
https://doi.org/10.1145/3545945.3569770

Richard Lobb and Jenny Harlow. 2016. Coderunner: A Tool for Assessing
Computer Programming Skills. ACM Inroads 7, 1 (feb 2016), 47-51. https:
//doi.org/10.1145/2810041

Andrew Luxton-Reilly, Paul Denny, Diana Kirk, Ewan Tempero, and Se-Young Yu.
2013. On the Differences between Correct Student Solutions. In Proceedings of the
18th ACM Conference on Innovation and Technology in Computer Science Education
(Canterbury, England, UK) (ITiCSE ’13). Association for Computing Machinery,
New York, NY, USA, 177-182. https://doi.org/10.1145/2462476.2462505
Stephen MacNeil, Joanne Kim, Juho Leinonen, Paul Denny, Seth Bernstein,
Brett A. Becker, Michel Wermelinger, Arto Hellas, Andrew Tran, Sami Sarsa,
James Prather, and Viraj Kumar. 2023. The Implications of Large Language
Models for CS Teachers and Students. In Proceedings of the 54th ACM Tech-
nical Symposium on Computer Science Education V. 2 (Toronto ON, Canada)
(SIGCSE 2023). Association for Computing Machinery, New York, NY, USA, 1255.
https://doi.org/10.1145/3545947.3573358

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using
Code Explanations Generated by Large Language Models in a Web Software
Development E-Book. In Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). As-
sociation for Computing Machinery, New York, NY, USA, 931-937. https:
//doi.org/10.1145/3545945.3569785

Kamil Malinka, Martin Peresini, Anton Firc, Ondrej Hujnak, and Filip Janus.
2023. On the Educational Impact of ChatGPT: Is Artificial Intelligence Ready to
Obtain a University Degree?. In Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE
2023). Association for Computing Machinery, New York, NY, USA, 47-53. https:

[24]

[25]

[27

(28]

[29]

[30

(31]

(32

[33

//doi.org/10.1145/3587102.3588827

Steven Moore, Richard Tong, Anjali Singh, Zitao Liu, Xiangen Hu, Yu Lu, Joleen
Liang, Chen Cao, Hassan Khosravi, Paul Denny, Chris Brooks, and John Stamper.
2023. Empowering Education with LLMs-The Next-Gen Interface and Content
Generation. In International Conference on Artificial Intelligence in Education.
Springer, 32-37. https://doi.org/10.1007/978-3-031-36336-8_4

Yulia Pechorina, Keith Anderson, and Paul Denny. 2023. Metacodenition: Scaf-
folding the Problem-Solving Process for Novice Programmers. In Proceedings of
the 25th Australasian Computing Education Conference (Melbourne, VIC, Aus-
tralia) (ACE ’23). Association for Computing Machinery, New York, NY, USA,
59-68. https://doi.org/10.1145/3576123.3576130

Leo Porter and Daniel Zingaro. 2023. Learn Al-Assisted Python Programming:
With Github Copilot and ChatGPT. Manning, Shelter Island, NY.

James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. “It’s Weird That it Knows What I Want™’: Usability and Interactions
with Copilot for Novice Programmers. arXiv:2304.02491 [cs.HC]

Brent Reeves, Sami Sarsa, James Prather, Paul Denny, Brett A. Becker, Arto
Hellas, Bailey Kimmel, Garrett Powell, and Juho Leinonen. 2023. Evaluating the
Performance of Code Generation Models for Solving Parsons Problems With
Small Prompt Variations. In Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE
2023). Association for Computing Machinery, New York, NY, USA, 299-305.
https://doi.org/10.1145/3587102.3588805

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
Generation of Programming Exercises and Code Explanations Using Large Lan-
guage Models. In Proceedings of the 2022 ACM Conference on International Com-
puting Education Research - Volume 1 (Lugano and Virtual Event, Switzerland)
(ICER °22). Association for Computing Machinery, New York, NY, USA, 27-43.
https://doi.org/10.1145/3501385.3543957

Leonard Tang, Elizabeth Ke, Nikhil Singh, Bo Feng, Derek Austin, Nakul Verma,
and Iddo Drori. 2022. Solving Probability And Statistics Problems By Probabilis-
tic Program Synthesis At Human Level And Predicting Solvability. In Artificial
Intelligence in Education. Posters and Late Breaking Results, Workshops and Tuto-
rials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium: 23rd
International Conference, AIED 2022, Durham, UK, July 27-31, 2022, Proceedings,
Part IT (Durham, United Kingdom). Springer-Verlag, Berlin, Heidelberg, 612-615.
https://doi.org/10.1007/978-3-031-11647-6_127

Matti Tedre and Henriikka Vartiainen. 2023. K-12 Computing Education for the
Al Era: From Data Literacy to Data Agency. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (Turku, Finland)
(ITiCSE 2023). Association for Computing Machinery, New York, NY, USA, 1-2.
https://doi.org/10.1145/3587102.3593796

Michel Wermelinger. 2023. Using GitHub Copilot to Solve Simple Programming
Problems. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for
Computing Machinery, New York, NY, USA, 172-178. https://doi.org/10.1145/
3545945.3569830

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023.
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.
arXiv:2302.11382 [cs.SE]

https://arxiv.org/abs/2306.02608
https://doi.org/10.1145/3373165.3373187
https://doi.org/10.1145/3373165.3373187
https://doi.org/10.1145/3571785.3574127
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3544548.3580919
https://pg.ucsd.edu/publications/cs-instructors-adapting-to-chatgpt-copilot-ai-tools_ICER-2023.pdf
https://pg.ucsd.edu/publications/cs-instructors-adapting-to-chatgpt-copilot-ai-tools_ICER-2023.pdf
https://arxiv.org/abs/2304.03938
https://doi.org/10.1145/3545945.3569770
https://doi.org/10.1145/2810041
https://doi.org/10.1145/2810041
https://doi.org/10.1145/2462476.2462505
https://doi.org/10.1145/3545947.3573358
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3587102.3588827
https://doi.org/10.1145/3587102.3588827
https://doi.org/10.1007/978-3-031-36336-8_4
https://doi.org/10.1145/3576123.3576130
https://arxiv.org/abs/2304.02491
https://doi.org/10.1145/3587102.3588805
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1007/978-3-031-11647-6_127
https://doi.org/10.1145/3587102.3593796
https://doi.org/10.1145/3545945.3569830
https://doi.org/10.1145/3545945.3569830
https://arxiv.org/abs/2302.11382

	Abstract
	1 Introduction
	2 Related work
	3 Pilot Study
	3.1 Interactions
	3.2 Reflections

	4 A tool for delivering Prompt Problems at scale: Promptly
	4.1 Tool Design
	4.2 Classroom Evaluation

	5 Results
	5.1 Student interactions with Promptly
	5.2 Student reflections on Promptly

	6 Discussion
	6.1 Variations
	6.2 Problem Design

	7 Conclusion
	References

