
 key insights
	˽ Generative AI presents challenges and

opportunities for computing education,
necessitating updated pedagogical
strategies that focus on new skill sets.

	˽ Generative AI models are highly capable
of generating solutions to problems
typical of introductory programming
courses, raising concerns around
potential student overreliance and
misuse.

	˽ AI-driven tools transform the creation and
customization of educational resources
such as programming exercises, enabling
the efficient generation of personalized
learning materials.

	˽ Novel pedagogical approaches are
emerging to teach students how to
leverage generative AI, emphasizing
strategic problem decomposition and the
importance of accuracy when specifying
programming tasks to AI systems.

A N E W ER A is emerging in which artificial intelligence
(AI) will play an ever-increasing role in many facets of
daily life. One defining characteristic of this new era
is the ease with which novel content can be generated.
Large language models (LLMs)—neural network-based
models trained on vast quantities of text data4—are
capable of creating a variety of convincing human-like

outputs, including prose, poetry, and
source code. It is largely accepted that
synthesizing source code automati-
cally from natural-language prompts
is likely to improve the productivity of
professional developers26 and is being
actively explored by well-funded enti-
ties such as OpenAI (ChatGPT, GPT-
4a), Amazon (CodeWhispererb), and
Google (Alpha-Code,21 Bardc). In the
same way that high-level programming
languages offered large productiv-
ity advantages over assembly-language
programming many decades ago, AI
code-generation tools appear primed
to transform traditional programming
practices. Claims are already emerging
that a significant proportion of new
code is being produced by tools such as
GitHub Copilot,9 a plug-in for popular
integrated development environments
(IDEs), such as Visual Studio Code.

The current pace of development
in this area is staggering, with no-
ticeably more advanced versions be-
ing released several times per year.
The pace of advancement is so rapid
that in March 2023, a well-publicized
open letter appeared that encour-

a	 See https://openai.com/research/gpt-4
b	 See https://aws.amazon.com/codewhisperer
c	 See blog.google/technology/ai/code-with-bard

Computing
Education
in the Era of
Generative
AI

DOI:10.1145/3624720

Challenges and opportunities faced by
computing educators and students adapting
to LLMs capable of generating accurate
source code from natural-language problem
descriptions.

BY PAUL DENNY, JAMES PRATHER, BRETT A. BECKER,
JAMES FINNIE-ANSLEY, ARTO HELLAS, JUHO LEINONEN,
ANDREW LUXTON-REILLY, BRENT N. REEVES,
EDDIE ANTONIO SANTOS, AND SAMI SARSA

56 COMMUNICATIONS OF THE ACM | FEBRUARY 2024 | VOL. 67 | NO. 2

research

I
M

A
G

E
 C

R
E

A
T

E
D

 B
Y

 A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S
 W

I
T

H
 T

H
E

 A
S

S
I

S
T

A
N

C
E

 O
F

 S
H

U
T

T
E

R
S

T
O

C
K

.A
I

Corrected Vers ion of Record. V .1.1 . Publ ished Apri l 5 , 2024.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624720&domain=pdf&date_stamp=2024-01-25

FEBRUARY 2024 | VOL. 67 | NO. 2 | COMMUNICATIONS OF THE ACM 57

research

aged a public, verifiable, and imme-
diate pause of at least six months
on the training of AI systems more
powerful than GPT-4. Signed by Elon
Musk, Steve Wozniak, Moshe Vardi,
and thousands of others including
many AI leaders and Turing award
recipients,d the letter was addressed
to all AI labs and suggested potential
government-led moratoriums.

These developments raise urgent
questions about the future direction
of many aspects of society, including
computing education. For example,
one popular evidence-based pedago-
gy for teaching introductory program-
ming involves students writing many
small exercises that are checked either
manually or by automated grading
tools. However, these small problems
can now easily be solved by AI models.
Often, all that is required of a student
is to accept an auto-generated sugges-
tion by an IDE plug-in.10,11 This raises
concerns that students may use new
tools in ways that limit learning and
make the work of educators more dif-
ficult. Bommasani et al. highlight that
it has become much more complex for
teachers "to understand the extent of
a student's contribution" and "to reg-
ulate ineffective collaborations and
detect plagiarism."4 Alongside such
challenges emerge opportunities for
students to learn computing skills.2

This article discusses the chal-
lenges and opportunities such mod-
els present to computing educators,
with a focus on introductory program-
ming classrooms. This discussion is
organized around two foundational
articles from the computing educa-
tion literature written around the time
that awareness of code-generating lan-
guage models was just emerging. The
first, published in Jan. 2022, evaluated
the performance of code-generating
models on typical introductory-level
programming problems. The second,
published in Aug. 2022, explored the
quality and novelty of learning resourc-
es generated by these models. Now, we
consider implications for computing
education in light of new model capa-
bilities and as lessons emerge from
educators incorporating such models
into their teaching practices.

Large language models and code.

d	 See https://bit.ly/3tzJoHg

AI-driven coding has only been a vi-
able reality for the general public
since 2022, when GitHub’s Copilot
emerged from a period of techni-
cal preview. Originally pitched as
“your AI pair programmer,” at the
time of writing, Copilot claims to be
the “world’s most widely adopted AI
developer tool.”e Other AI-powered
code-generation tools are also broad-
ly accessible, including Amazon’s
CodeWhisperer and Google’s Bard.
The Codex model (discussed in this
article specifically) was the original
model to power Copilot. A descen-
dant of GPT-3, Codex was fine-tuned
with code from more than 50 million
public GitHub repositories totaling
159GB.5 Although now officially dep-
recated in favor of the newer chat
models, Codex was capable of taking
English-language prompts and gen-
erating code in several programming
and scripting languages, including
JavaScript, Go, Perl, PHP, Python,
Ruby, Swift, TypeScript, and shell.
It could also translate code between
programming languages, explain (in
several natural languages) the func-
tionality of code, and return the time
complexity of the code it generated.

The use of such tools in educa-
tion is nascent and changing rapidly.
Copilot was only made freely avail-
able to students in June 2022f and to
teachers in September 2022g after its
potential to impact education began
to unfold. In November 2022, Chat-
GPTh was released, followed by the
release of GPT-4 in March 2023. Ope-
nAI has continued to update these
models with new features, such as
data analysis from files, analyzing
images, and assisted Web search.
For a more technical overview of the
historical developments and future
trends of language models, read the
Communications article by Li.20

Challenges Ahead
Code-generation tools powered by
LLMs can correctly and reliably solve
many programming problems that
are typical in introductory courses.
This raises a number of important

e	 See https://github.com/features/copilot
f	 See https://bit.ly/41FcEsz
g	 See https://bit.ly/48euq8w
h	 See https://openai.com/blog/chatgpt

Instructors should
be extremely clear
about when and
how generative AI
tools are allowed
to be used on their
assessments.

58 COMMUNICATIONS OF THE ACM | FEBRUARY 2024 | VOL. 67 | NO. 2

research

questions for educators. For exam-
ple, just how good are these tools?
Can a student with no programming
knowledge, but who is armed with a
code-generating LLM, pass typical
programming assessments? Do we
need a different approach?

Putting them to the test. To explore
the performance of LLMs in the con-
text of introductory programming, we
prompted Codex with real exam ques-
tions and compared its performance
to that of students taking the same
exams. We also prompted Codex to
solve several variants of a well-known
CS1-level programming problem (the
“Rainfall problem”) and examined
the correctness and variety of solu-
tions produced. This work was origi-
nally performed in September 2021,
several weeks after OpenAI provided
API access to the Codex model. The re-
sulting paper, published in Jan. 2022,
was the first in a computing education
venue to assess the code-generating
capabilities of LLMs.10

My AI wants to know if its grade will
be rounded up. We took all questions
from two Python CS1 programming
exams that had already been taken
by students and provided them as
input (verbatim) to Codex. The exam
questions involved common Python
datatypes, including strings, tuples,
lists, and dictionaries. They ranged
in complexity from simple calcula-
tions, such as computing the sum of a
series of simulated dice rolls, to more
complex data manipulations, such
as extracting a sorted list of the keys
that are mapped to the maximum
value in a dictionary.

To evaluate the code generated, we
executed it against the same set of test
cases that were used in assessing the
student exams. This follows a simi-
lar evaluation approach employed by
the Codex developers.5 If the Codex
output differed from the expected
output with only a trivial formatting
error (for example, a missing comma
or period) we made the appropriate
correction, much as a student would
if using Codex to complete an exam.

To contextualize the performance
of the Codex model, we calculated the
score for its responses in the same
way as for real students using the
same question weights and accumu-
lated penalties for incorrect submis-

ample inputs and outputs.
Yes, I definitely wrote this code my-

self. To understand the amount of
variation in the responses, we pro-
vided Codex with seven variants of
the problem description for the well-
studied ‘Rainfall’ problem (which av-
erages values in a collection) a total
of 50 times each, generating 350 re-
sponses. Each response was executed
against 10 test cases (a total of 3,500
evaluations). Across all variants, Co-
dex had an average score close to
50%. Codex performed poorly on cas-
es where no valid values were provid-
ed as input—for example, where the
collection to be averaged was empty.

We also examined the number of
source lines of code for all Rainfall vari-
ants, excluding blank and comment
lines. In addition, we classified the gen-
eral algorithmic approach employed in
the solutions as an indicator of algorith-
mic variation. We found that Codex pro-
vides a diverse range of responses to the
same input prompt. Depending on the
prompt, the resulting programs used
varied programmatic structures, while
ultimately favoring expected methods
for each problem variation—that is,

sions. Codex scored 15.7/20 (78.5%) on
Exam 1 and 19.5/25 (78.0%) on Exam
2. Figure 1 plots the scores (scaled to
a maximum of 100) of 71 students en-
rolled in the CS1 course in 2020 who
completed both exams. Codex’s score
is marked with a blue ‘X’. Averag-
ing both Exam 1 and Exam 2 perfor-
mance, Codex ranks 17 amongst the
71 students, placing it within the top
quartile of class performance.

We observed that some of the Co-
dex answers contained trivial for-
matting errors. We also observed
that Codex performed poorly with
problems that disallowed the use
of certain language features (for ex-
ample, using split() to tokenize
a string). Codex often did not pro-
duce code that avoided using these
restricted features, and thus the
model (in these cases) often did not
pass the auto-grader. Codex also per-
formed poorly when asked to pro-
duce formatted ASCII output, such
as patterns of characters forming
geometric shapes, especially where
the requirements were not specified
in the problem description but had
to be inferred from the provided ex-

FEBRUARY 2024 | VOL. 67 | NO. 2 | COMMUNICATIONS OF THE ACM 59

Figure 1. Student scores on Exam 1 and Exam 2, represented by circles. Codex’s 2021
score is represented by the blue ‘X’. GPT-4’s 2023 score on the same questions is repre-
sented by the red ‘X’.

E
xa

m
 2

 (
/1

0
0

)

Exam 1 (/100)

100

80

60

40

20

0

0 20 40 60 80 100

research

clearly an issue that extends beyond
educational use of software, but as
educators it is our role to inform stu-
dents of their professional responsi-
bilities when reusing code.

Learner over-reliance. The devel-
opers of Codex noted that a key risk
of using code-generation models in
practice is users’ over-reliance.5 Novic-
es using such models, especially with
tools such as Copilot that embed sup-
port in an IDE, may quickly become
accustomed to auto-suggested solu-
tions. This could have multiple nega-
tive effects on student learning.

Metacognition. Developing compu-
tational thinking skills is important
for novice programmers as it can fos-
ter higher-order thinking and reflec-
tion.23 Metacognition, or “thinking
about thinking”, is a key aspect of
computational thinking (and prob-
lem-solving in general). Learning to
code is already a challenging process
that requires a high level of cognitive
effort to remember language syntax,
think computationally, and under-
stand domain-specific knowledge;
the use of metacognitive knowledge
and strategies can aid in problem-
solving and prevent beginners from
getting overwhelmed or lost. Relying
too heavily on code-generation tools
may hinder the development of these
crucial metacognitive skills.

When the models fail. Despite en-
couraging results such as those pre-
sented here, an analysis of solutions
generated by AlphaCode revealed that
11% of Python solutions were syntacti-
cally incorrect (produced a Syntax-
Error) and 35% of C++ solutions did
not compile.21 Recent work has shown
that as many as 20% of introductory
programming problems are not solved
sufficiently by code-generation mod-
els, even when allowing for expert
modification of the natural-language
problem descriptions.6 The developers
of Codex noted that it can recommend
syntactically incorrect code, including
variables, functions, and attributes
that are undefined or outside the scope
of the codebase, stating, “Codex may
suggest solutions that superficially
appear correct but do not actually per-
form the task the user intended. This
could particularly affect novice pro-
grammers and could have significant
safety implications depending on the

for-loops for processing lists and while-
loops for processing standard input.

Rapid progress. Given the improve-
ment in model capabilities over the
last two years, it is interesting to ob-
serve how well a state-of-the-art model
(GPT-4 at the time of writing) performs
on the same set of questions. In July
2023, a working group exploring LLMs
in the context of computing educa-
tion replicated this study using GPT-4
under identical conditions.29 GPT-4
scored 99.5% on Exam 1 and 94.4% on
Exam 2, this time outscored overall by
only three of the 71 students (GPT-4 is
represented by the red ‘X’ in Figure 1).
On the Rainfall problems, GPT-4 suc-
cessfully solved every variant, in some
cases producing the correct result but
with a trivial formatting error. Another
follow-up study looked at the perfor-
mance of generative AI on CS2 exam
questions and found that it performed
quite well in that context.11 Newer
models can also solve other types of
programming exercises, like Parsons
Problems, with decent accuracy that is
likely to only improve over time.31

Academic integrity. Software de-
velopment often encourages code re-
use and collaborative development
practices, which makes the concept
of academic integrity difficult to for-
malize in computing.35 Nevertheless,
individual work is still commonplace
in computing courses, and it is an ex-
pectation for students working on in-
dividual projects to produce their own
code rather than copy code written by
someone else. This is often verified
through the use of traditional pla-
giarism tools. However, recent work
has shown that common plagiarism
detection tools are often ineffective
against AI-generated solutions.3 This
raises significant concerns for educa-
tors monitoring academic integrity in
formal assessments.

Academic misconduct. Although aca-
demic misconduct has been discussed
in the computing education commu-
nity for quite some time,35 the advent
of LLMs provides a new and difficult
set of challenges. The first is categoriz-
ing exactly what type of academic mis-
conduct, if any, its usage falls into. A
recent working-group report on LLMs
in computing education considered
ethics and examined it in the context
of the ACM Code of Ethics and recent

university AI usage policies.29 They dis-
cussed plagiarism, collusion, contract
cheating, falsification, and the use of
unauthorized resources. Though many
university policies have placed AI us-
age into the category of plagiarism,
Prather et al. disagree.29 Plagiarism in-
volves stealing content from a person
with agency, which LLMs as next-token
generators clearly do not have. If gen-
erative AI tools are seen as productiv-
ity tools (such as IDE code-completion
or calculators for mathematical prob-
lems) that are used professionally,
then it makes sense to decide if the use
of such tools is appropriate for a given
context and communicate the decision
to students. If students persist in using
the tools when they are restricted, then
they would be engaging in academic
misconduct because they used an un-
authorized resource, not because of
some intrinsic characteristic of the
tool itself. Instructors should, there-
fore, be extremely clear about when
and how generative AI tools are al-
lowed to be used on their assessments.
The working-group report includes a
guide for students that could easily be
adapted by faculty into a helpful hand-
out or added to a course syllabus.

A recent interview study with com-
puting educators has revealed that
initial reactions are divided—from
banning all use of generative AI to
an acceptance that resistance is, ul-
timately, futile.17 Restricting the use
of generative AI tools is likely (at least
in the short term) to shift practice to-
ward increased use of secure testing
environments43 and a greater focus on
the development and assessment of
process skills.16

Code reuse and licensing. Potential
licensing issues arise when content is
produced using code-generation mod-
els, even when model data is publicly
available.21 Many different licenses
apply to much of the publicly available
code used to train LLMs, and typically
these licenses require those who re-
use to credit the code they used, even
when the code is open source. When
a developer generates code using
an AI model, they may end up using
code that requires license compliance
without being aware of it. Such issues
are already before the courts.i This is

i	 See https://githubcopilotlitigation.com

60 COMMUNICATIONS OF THE ACM | FEBRUARY 2024 | VOL. 67 | NO. 2

research

encryption and SQL injection.27 Per-
haps even more disturbing, the nov-
ice programmers in this study who
had access to an AI code-generating
tool were more likely to believe they
had written secure code. This reveals
a pressing need for increased student
and educator awareness around the
limitations of current models for gen-
erating secure code.

Computers in society. The use of
AI-generated code provides many op-
portunities for discussions on ethics
and the use of computers in society.
Moreover, these technologies may
serve as a vehicle to empower novice
users to explore more advanced ideas
earlier, leveraging the natural engage-
ment that comes from using technolo-
gies that are “in the news.” Teachers
of introductory courses have long told
themselves that students will learn
about testing, security, and other more
advanced topics in subsequent cours-
es. However, with growing numbers of
students taking introductory classes
but not majoring in computing, and
the capabilities that code generation
affords, the stakes are higher for CS1
and introductory classes to raise these
issues early, before the chance of real-
world harm is great.

Opportunities Ahead
Despite the challenges that must be
navigated, code-generation tools
have the potential to revolutionize
teaching and learning in the field of
computing.2 Indeed, developers of
such models specifically highlight
their potential to positively impact
education. When introducing Codex,
Chen et al. outline a range of possible
benefits, including to: “aid in edu-
cation and exploration.”5 Similarly,
the developers of AlphaCode suggest
such tools have “the potential for a
positive, transformative impact on
society, with a wide range of applica-
tions including computer science ed-
ucation.”21 In this section, we discuss
several concrete opportunities for
code- and text-generation models to
have a transformative effect on com-
puting education.

Plentiful learning resources. In-
troductory programming courses
typically use a wide variety of learn-
ing resources. For example, program-
ming exercises are a very common

context”.5 Students who have become
overly reliant on model outputs may
find it especially challenging to pro-
ceed when the suggested code is incor-
rect and cannot be resolved through
natural-language prompting.15

Bias and bad habits. The issue
of bias in AI is well known. In addi-
tion to general bias (subtle or overt)
that affects nearly all AI-generated
outputs, such as the representation
of particular demographics and
genders, there are also likely biases
unique to AI code generation.

Appropriateness for beginners. Nov-
ices usually start by learning simple
programming concepts and patterns,
gradually building their skills. How-
ever, much of the vast quantity of code
on which these AI models are trained
was written by experienced develop-
ers. Therefore, we should expect that
AI-generated code may sometimes be
too advanced or complex for novices
to understand and modify. Recent
work has shown that even the latest
generative AI models generate code
using concepts too advanced for nov-
ices or that are specifically outside the
curriculum.15

Harmful biases. The developers of
Codex found that code-generation
models raise bias and representation
issues—notably that Codex can gener-
ate code comments (and potentially
identifier names) that reflect negative
stereotypes about gender and race,
and may include other denigratory
outputs.5 Such biases are obviously
problematic, especially where novices
are relying on the outputs for learning
purposes. Notably, the feature list for
Amazon CodeWhisperer includes ca-
pabilities to remove harmful biases
from generated code.j Some recent
work (from competitor Microsoft) has
expressed doubt about the reliability
of this feature.33

Security. Unsurprisingly, AI-gener-
ated code can be insecure,25 and hu-
man oversight is required for the safe
use of AI code-generation systems.5
However, novice programmers lack
the knowledge to provide this over-
sight. A recent exploration of novices
using AI code-generation tools found
they consistently wrote insecure code
with specific vulnerabilities in string

j	 See https://go.aws/3NKd2Al

Developing
computational
thinking skills is
important for novice
programmers as it
can foster higher-
order thinking and
reflection.

FEBRUARY 2024 | VOL. 67 | NO. 2 | COMMUNICATIONS OF THE ACM 61

research

oughly, we generated a set of 240 pro-
gramming exercises by varying the
programming-related concepts and
contextual themes. We attempted to
execute the generated code against
the generated test cases and analyzed
statement coverage as a measure of the
thoroughness of the test suite. Table 1
summarizes these results and shows
that in most cases, the programming
exercises generated by the model in-
cluded sample solutions that were exe-
cutable. Similarly, most of the time, the
model also generated a set of tests, re-
sulting in a total of 165 programming
exercises with both a sample solution
and a set of tests. The sample solution
frequently did not pass all the generat-
ed tests, but when it did, the test suites
achieved full statement coverage in all
but three cases.

We also found that the vast majority
of exercises (around 80%) were entirely
novel, in that fragments of the problem
descriptions were not indexed by any
search engines. A similar fraction of
the exercises also matched the desired
topics and themes. Although this is far
from perfect, there is obvious potential
for generating new and useful resourc-
es in this manner and the cost of elimi-
nating poor results (which could be
automated) is almost certainly smaller
than manually generating a large num-
ber of exercises and accompanying test
cases. With the addition of filtering
steps that could be automated, it would
be possible to generate an almost end-
less supply of novel resources that are
contextualized to students’ interests.

Code explanations. Code explana-
tions can be generated at different
levels of abstraction, from high-level
summaries to detailed explanations
of every line. We focused on the latter,
as these are often useful for students
when debugging code. We prompt-
ed Codex using a simple input that
consisted of the source code to be
explained, the text “Step-by-step ex-
planation of the above program”, and
finally “1.” to influence the output to
include numbered lines. We analyzed
the resulting explanations in terms of
completeness and accuracy, finding
that 90% of the explanations covered
all parts of the code, and nearly 70% of
the explanations for individual lines
were correct. Common errors were
mostly related to relational operators

type of resource for helping students
practice writing code. Similarly, nat-
ural-language explanations of code
are another useful resource. They
can be valuable for helping students
understand how a complex piece of
code works or as a tool for evaluat-
ing student comprehension of code.
However, it is a significant challenge
for educators to generate a wide vari-
ety of high-quality exercises targeted
to the interests of individual learners
and to produce detailed explanations
at different levels of abstraction for
numerous code examples.

We explored the potential for
LLMs to reduce the effort needed by
instructors to generate the two types
of learning resources just discussed:
programming exercises and code
explanations. This work, which was
originally carried out in April 2022
and published in August 2022, was
the first paper in a computing educa-
tion venue to explore LLM-generated
learning resources.34

Programming exercises. Figure 2
shows an example of the input we used
to generate new programming exercis-
es using Codex. This ‘priming’ exercise
consists of a one-shot example (a com-
plete example similar to the desired
output) followed by a partial prompt to
prime the generation of a new output.
In this case, the format of the priming
exercise consists of a label (Exercise
1) followed by keywords for both the
contextual themes (donuts) and the
programming-related concepts (func-
tion, conditional) of the exercise, a
natural-language problem statement
and a solution (in the form of a Python
function). For space reasons, we omit
a list of test cases, but these can also
be included for programming prob-
lems. The priming input ends with the
explicit prompt for a new exercise to
be generated (Exercise 2), along with
the desired concepts and themes ex-
pressed as keywords (basketball, func-
tion, list, and for loop).

Figure 3 shows one output gener-
ated when the prompt in Figure 2 was
provided to Codex. In this case, as
requested by the keyword informa-
tion in the input prompt, the problem
statement is related to basketball and
the model solution consists of a func-
tion that involves a list and a for loop.
To evaluate this approach more thor-

The use of AI-
generated code
provides many
opportunities for
discussions on
ethics and the use
of computers in
society.

62 COMMUNICATIONS OF THE ACM | FEBRUARY 2024 | VOL. 67 | NO. 2

research

ror message to generate explanations
of the PEMs and actionable fixes. They
found that most of the explanations
created by Codex were comprehen-
sible, and Codex produced an output
with an explanation for most inputs.

More recent work has extended
this approach by implementing GPT-
enhanced LLM explanations of PEMs
directly into compilers or automated
assessment tools. Taylor et al. de-
ployed GPT explanations to a C/C++

and branching conditionals—for ex-
ample, where Codex stated “less than
or equal to x” when the corresponding
code was checking “less than x”.

Rapid progress. In this section, we
described early work in which code
explanations were generated using a
version of the Codex model that was
available in early 2022 (specifically,
‘code-davinci-001’). Less than a year
later, code explanations generated by
models such as ChatGPT are consider-
ably better and more consistently ac-
curate. Figure 4 illustrates one exam-
ple of a code explanation generated
by ChatGPT when provided only the
code shown in the “Sample solution”
area in Figure 3 and using the same
prompt for a line-by-line explanation
as described in this section.

The quality of LLM-generated
learning resources is likely to con-
tinue improving alongside model
capabilities. For example, MacNeil
et al. found that code explanations
generated by the GPT-3 model were
consistently more helpful than those
generated by Codex.24 They generated
several different kinds of code expla-
nations, deploying them in an online
interactive e-book, and found that
students reported high-level summa-
ries of code as being more useful for
their learning compared to lower-level
detailed explanations of each line. Re-
cent work has also found that LLM-
created code explanations are rated
more highly on average by students
than code explanations created by
their peers.18

We see great potential for LLMs to
be applied to the production of a vari-
ety of learning resources relevant to
computing education. We also expect
the quality and accuracy of the gener-
ated resources to improve consider-
ably over the near term based on re-
cent trends.

Better programming error mes-
sages. For more than 60 years, re-
searchers have identified poor pro-
gramming error messages (PEMs) as
problematic, and significant work
remains in this area. Recent work has
attempted to put error messages into
more natural language by focusing on
readability, which has been shown to
improve student understanding of er-
ror messages and the number of suc-
cessful code corrections.8 While it is

clear that increasing the readability of
PEMs is helpful to novices, doing so at
scale, and across languages, remains
a challenge.

Leinonen et al. explored the po-
tential of LLMs for improving PEMs.19
They collected Python error messages
that had been reported as most un-
readable in prior work and generated
code examples that produced these
error messages. They prompted the
Codex API with both the code and er-

Figure 2. A ‘priming’ exercise consisting of one complete example followed by the
prompt for a new one.

Figure 3. Example output generated by Codex using the priming exercise from Figure 2.

FEBRUARY 2024 | VOL. 67 | NO. 2 | COMMUNICATIONS OF THE ACM 63

research

sessment tasks that require students
to apply the critical analysis skills
needed for code evaluation. This can
facilitate discussions about different
approaches and the quality of solu-
tions, and provide opportunities for
refactoring exercises.10

New pedagogical approaches.
Computing educators are still work-
ing through the implications of LLMs
in their classrooms, and a consensus
about how to update pedagogy has
yet to form. However, some early ap-
proaches are emerging.

LLMs early. In a traditional CS1
course, the initial focus usually be-
gins with syntax and basic program-
ming principles, and it can take time
for students to become proficient in
these fundamentals. One novel ap-
proach for progressing more rapidly to
complex problems is to teach students
how to use LLMs to handle low-level
implementation details. This is ex-
emplified by the approach in the text-
book by Zingaro and Porter, “Learn
AI-Assisted Python Programming: With
GitHub Copilot and ChatGPT”.28 Stu-
dents are introduced to the GitHub
Copilot plug-in within the Visual Stu-
dio Code IDE before they have learned
to write a single line of Python code. A
top-down approach is followed, where
students decompose larger projects
into smaller functions that are then
solvable using Copilot by providing
natural-language comments. This
textbook provides a blueprint for how
introductory courses could initially
concentrate more on problem-solving
and algorithms, rely on automatic
code generation for implementation,
and defer in-depth and nuanced dis-
cussions of syntax until later.

Explaining algorithmic concepts
clearly. It is well known that the out-
puts produced by LLMs are very sensi-
tive to their inputs.32 In fact, “prompt
engineering,” where effective prompts
are crafted, has emerged as a distinct
(and nascent) skill when working with
these models. For example, when us-
ing Codex to solve probability and
statistics problems, engineering the
prompt to include explicit hints on
the strategy for solving a problem
is extremely effective.36 Denny et al.
found that prompt engineering strat-
egies, which described algorithmic
steps, were effective for solving pro-

Exemplar solutions. Students often
seek exemplar solutions when coding,
either to check against their own code
or to get help when struggling. Howev-
er, instructors may not have the time
to provide model solutions for every
exercise, including historical test and
exam questions. AI-generated code
offers a time-saving alternative, with
the ability to produce a variety of solu-
tions which can help students under-
stand and appreciate different trad-
eoffs in problem-solving, as suggested
by Thompson et al.38

The ability to generate exemplar
solutions automatically can shift the
emphasis from just ensuring that
code is correct to focusing on the
differences between multiple cor-
rect solutions, and the need to make
judgments on code style and quality.
Extensive research on the benefits of
peer review of code12 suggests it is
beneficial to consider multiple solu-
tions to a problem, even if some are
flawed. Code-generation models can
be used to create solutions of varying
quality, and these can be used for as-

compiler in CS1 and CS2 courses and
found it provided accurate explana-
tions in 90% of cases for compile-time
errors and 75% of cases for run-time
errors.37 Wang et al. found that stu-
dents receiving GPT-enhanced PEMs
in a large-scale introductory pro-
gramming course repeated an error
23.5% less often and resolved an er-
ror in 36.1% fewer attempts.40 While
there is still work to be done before
the decades-old problem is solved, the
potential to demystify PEMs in this
way is an exciting opportunity only re-
cently made possible.

Figure 4. Explanation generated by the ChatGPT model of the code shown in the ‘Sample
solution’ area in Figure 3.

Certainly! Here’s a step-by-step explanation of the program:

1. The function 'count_rebounds' takes in a list of players

as an argument. Each player is represented as a tuple

containing three elements: a player’s name (a string),

their number of points scored (an integer), and their

number of rebounds (also an integer).

2. The function initializes a variable 'total' to 0. This

variable will be used to store the total number of

rebounds among all the players.

3. The function enters a 'for' loop that iterates over each

player in the list of players.

4. For each player, the function adds the player’s number of

rebound to the 'total' variable.

5. After the 'for' loop completes, the function returns the

value of the 'total' variable. This is the total number of

rebounds among all the players.

Table 1. Analysis of 240 generated
programming exercises, showing the
proportion that met criteria regarding
sample solutions and test cases.

Has sample solution? 203/240 84.6%

Sample solution executable? 182/203 89.7%

Has test cases? 170/240 70.8%

All tests pass? 51/165 30.9%

Full (100%) statement
coverage?

48/51 94.1%

64 COMMUNICATIONS OF THE ACM | FEBRUARY 2024 | VOL. 67 | NO. 2

research

proach may require a shift in focus
toward tasks such as rewriting, refac-
toring, and debugging code, but it pro-
vides the opportunity to help students
maintain momentum in a realistic
setting where the ability to evaluate,
rewrite, and extend code is often more
important than writing every line of
code from scratch.

Designing LLM tools. Program-
mers around the world, not just nov-
ices, will be using code generators in
an increasing capacity moving for-
ward. Exploring the integration of
LLMs directly into educational envi-
ronments, such as auto-graders and
online textbooks, will be an impor-
tant area of research. There is a need
in such environments for appropriate
guardrails so that generated outputs
usefully support learning, without im-
mediately revealing solutions or over-
whelming novices with the complexi-
ty or quantity of feedback. Indeed, the
announcement of GPT-4k highlighted
the example of a ‘Socratic tutor’ that
would respond to a student’s requests
with probing questions rather than
revealing answers directly. One ex-
ample of this integration in comput-
ing education is the work of Liffiton et
al. on CodeHelp, an LLM-powered tool
that uses prompt-based guardrails to
provide programming students with
real-time help but without directly re-
vealing code solutions.22

In general, adapting the feedback
generated by LLMs to maximize
learning in educational environments
is likely to be an important research
focus in the near future. Concrete
recommendations are already begin-
ning to emerge from very recent work
in this space. First, the utilization of
code generators by novices will gen-
erally decrease the number of errors
they see. This seems like a positive
experience, though it appears they
are ill-equipped to deal with the er-
rors they do see when presented with
them.14 This means that tools must be
designed to help users (of all skill lev-
els) through the error-feedback loop.
Second, generating and inserting
large blocks of code may be counter-
productive for users at all levels. This
requires users to read through code
they did not write, sometimes at a

k	 See https://openai.com/research/gpt-4

gramming tasks for which Copilot ini-
tially generated incorrect solutions.6
Other recent work has shown that
developers are more successful work-
ing with Copilot when they decom-
pose larger programming statements
into smaller tasks and then explicitly
prompt Copilot for each of the sub-
tasks.1,13 It is likely that students will
need to develop new skills to commu-
nicate effectively with these models. A
key skill will be the ability to describe
the computational steps they wish to
achieve in natural language as a way
of guiding the model to produce valid
outputs.

Specification-focused tasks. One way
for students to learn how to create ef-
fective prompts is to focus on writing
task specifications. In a traditional
introductory course, novices are pre-
sented with problem statements that
have been very carefully specified by
the instructor to be clear and unam-
biguous. Such detailed specifications
provide excellent context for code-
generation models to produce correct
code solutions. New types of problems
could task students with generating
clear specifications themselves, and
thus strengthen skills around LLM
prompting. For example, this is the
goal of ‘Prompt Problems’,7 in which
students are presented with a visual
representation of a problem that il-
lustrates how input values should be
transformed to an output. Their task
is to devise a prompt that would guide
an LLM to generate the code required
to solve the problem. Prompt-gener-
ated code is evaluated automatically
and can be refined iteratively until it
successfully solves the problem. Re-
cent work investigating classroom
use of Prompt Problems has shown
that students find them useful for
strengthening their computational
thinking skills and exposing them to
new programming constructs.

A focus on refactoring. Students
sometimes experience difficulty get-
ting started on programming assign-
ments, sometimes referred to as the
programmer’s writer’s block. Recent
work found that Copilot can help stu-
dents overcome this barrier by im-
mediately providing starter code, en-
abling them to build upon existing
code rather than starting from scratch
with a blank code editor.39 This ap-

Students reported
high-level
summaries of
code as being
more useful for
their learning
compared to lower-
level detailed
explanations of
each line.

FEBRUARY 2024 | VOL. 67 | NO. 2 | COMMUNICATIONS OF THE ACM 65

research

more sophisticated level than they are
familiar with. Novices may be intimi-
dated by such code generation14 or may
spend too much time reading code
that does not further their goals.30
Therefore, AI code generators should
include a way for users to control the
amount of code insertion and to spec-
ify how to step through a multi-part
segment of generated code. Third, the
fact that AI code generators are black
boxes means that programmers of all
skill levels may struggle to create cor-
rect mental models of how they work,
which could harm their ability to fully
utilize them or learn from their out-
puts. Explainable AI (XAI) patterns
could be helpful here, such as expos-
ing to the user a confidence value and
user skill estimation above the gener-
ated code suggestion.30 These sugges-
tions are only the beginning of a new
avenue of research on how to helpfully
design usable AI code generators that
empower novice learners and en-
hance programmer productivity.

Where Do We Go from Here?
The emergence of powerful code-gen-
eration models has led to speculation
about the future of the computing dis-
cipline. In a recent Communications
Opinion article, Welsh claims they
herald the “end of programming”
and believes there is major upheaval
ahead for which few are prepared, as
the vast majority of classic computer
science will become irrelevant.41 In an
even more recent article on BLOG@
CACM, Meyer is equally impressed
by the breakthroughs, placing them
alongside the World Wide Web and
object-oriented programming as a
once-in-a-generation technology, but
takes a more optimistic view.l In fact,
Meyer predicts a resurgence in the
need for classic software-engineering
skills, such as requirements analysis,
formulating precise specifications,
and software verification.

Although the impact of generative
AI tools is already evident for software
developers, the long-term changes for
computing education are less clear.
Experts appreciate this new technol-
ogy only because they already under-
stand the underlying fundamentals.
The ability to quickly generate large

l	 See https://bit.ly/3TXEJKb

amounts of code does not eliminate
the need to understand, modify, and
debug code. Instead, it highlights how
important it is to develop these basic
competencies. Code literacy skills are
essential to critically analyze what is
being produced to ensure alignment
between one’s intentions and the gen-
erated code. Without the skills to read,
test, and verify that code does what is
intended, users risk becoming mere
consumers of the generated content,
relying on blind faith more than devel-
oped expertise. We argue that writing
code remains a valuable way for novic-
es to learn the fundamental concepts
essential for code literacy.

Although future professional devel-
opers may indeed spend less time writ-
ing ‘low-level’ code, we believe gener-
ated code will still need to be modified
and integrated into larger programs.
We do expect to see some shift in em-
phasis, even in introductory courses,
toward modifying code generated by
AI tools, but the ability to edit such
outputs and compose code in today’s
high-level languages will likely remain
a fundamental skill for computing stu-
dents. This aligns with Yellin’s recent
viewpoint that as programs increase in
complexity, natural language becomes
too imprecise an instrument with
which to specify them.42 At some point,
editing code directly is more effective
than issuing clarifying instructions in
natural language.

Harnessed correctly, tools such as
Copilot and ChatGPT have the poten-
tial to be valuable assistants for this
learning. We see these tools as serving
a valuable teaching support role: to ex-
plain concepts to a broad and diverse
range of learners, generate exemplar
code to illustrate those concepts, and
generate useful learning resources
that are contextualized to the inter-
ests of individuals. We also anticipate
the emergence of new pedagogies that
leverage code-generation tools, includ-
ing explicit teaching of effective ways
to communicate with the tools, and
tasks that focus on problem specifica-
tion rather than implementation.

In light of the rapid adoption of gen-
erative AI tools, it is essential that edu-
cators evolve their teaching methods
and approaches to assessment. Cur-
ricula should also expand to cover the
broader societal impact of generative

Computing
educators are still
working through
the implications
of LLMs in their
classrooms.

66 COMMUNICATIONS OF THE ACM | FEBRUARY 2024 | VOL. 67 | NO. 2

research

self-paced learning environment. In Proceedings of
the 23rd Koli Calling Conf. on Computing Education
Research (2023), 10.

16.	 Kussmaul, C. Process oriented guided inquiry
learning (POGIL) for computer science. In
Proceedings of the 43rd ACM Technical Symp.
on Computer Science Education. Association
for Computing Machinery (2012), 373–378;
10.1145/2157136.2157246

17.	 Lau, S. and Guo, P. From "ban it till we understand it"
to "resistance is futile": How university programming
instructors plan to adapt as more students use
AI code generation and explanation tools such as
ChatGPT and GitHub Copilot. In Proceedings of the
2023 ACM Conf. on Intern. Computing Education
Research 1, Association for Computing Machinery,
(2023), 106–121; 10.1145/3568813.3600138

18.	 Leinonen, J. et al. Comparing code explanations
created by students and large language models.
In Proceedings of the 2023 Conf. on Innovation
and Technology in Computer Science Education
1, Association of Computing Machinery, 124–
130; 10.1145/3587102.3588785.

19.	 Leinonen, J. et al. Using large language models
to enhance programming error messages.
In Proceedings of the 2023 ACM SIGCSE
Technical Symp. on Computer Science Education;
10.1145/3545945.3569770

20.	 Li, H. Language models: Past, present, and future.
Communications of the ACM 65, 7 (July 2022),
56–63; 10.1145/3490443

21.	 Li, Y. et al. Competition-level code generation with
AlphaCode. Science 378, 6624 (2022), 1092–1097;
10.1126/science.abq1158

22.	 Liffiton, M., Sheese, B., Savelka, J., and
Denny, P. CodeHelp: Using large language
models with guardrails for scalable support in
programming classes. In Proceedings of the
23rd Koli Calling Intern. Conf. on Computing
Education Research, Association for Computing
Machinery (2023); 10.1145/3631802.3631830

23.	 Loksa, D. et al. Metacognition and self-regulation in
programming education: Theories and exemplars of
use. ACM Trans. Computing Education 22, 4, Article
39 (Sept. 2022), 31; 10.1145/3487050

24.	 MacNeil, S. et al. Experiences from using code
explanations generated by large language
models in a Web software development e-book.
In Proceedings of the 54th ACM Technical Symp.
on Computer Science Education 1, Association
for Computing Machinery (2023), 931–
937; 10.1145/3545945.3569785

25.	 Pearce, H. et al. Asleep at the keyboard? Assessing
the security of GitHub Copilot's code contributions.
In 2022 IEEE Symp. on Security and Privacy,
754–768; 10.1109/SP46214.2022.9833571

26.	 Peng, S., Kalliamvakou, E., Cihon, P., and Demirer, M.
The impact of AI on developer productivity: Evidence
from GitHub Copilot (2023), arXiv:cs.SE/2302.06590

27.	 Perry, N., Srivastava, M., Kumar, D., and Boneh,
D. Do users write more insecure code with AI
assistants? In Proceedings of the 2023 ACM SIGSAC
Conf. on Computer and Communications Security,
Association for Computing Machinery, 2785–2799;
10.1145/3576915.3623157

28.	 Porter, L. and Zingaro, D. Learn AI-Assisted Python
Programming With GitHub Copilot and ChatGPT.
Manning, Shelter Island, NY, USA (2023); https://bit.
ly/4aE7CRa

29.	 Prather, J. et al. The robots are here: Navigating the
generative AI revolution in computing education.
In Proceedings of the 2023 Working Group Reports
on Innovation and Technology in Computer Science
Education, Association for Computing Machinery;
10.1145/3623762.3633499

30.	 Prather, J. et al. “It's weird that it knows what I
want”: Usability and interactions with Copilot for
novice programmers. ACM Trans. Comput.-Hum.
Interact (Aug. 2023); 10.1145/3617367.

31.	 Reeves, B. et al. Evaluating the performance of code
generation models for solving Parsons problems with
small prompt variations. In Proceedings of the 2023
Conf. on Innovation and Technology in Computer
Science Education 1. Association for Computing
Machinery, 299–305; 10.1145/3587102.3588805

32.	 Reynolds, L. and McDonell, K. Prompt programming
for large language models: Beyond the few-
shot paradigm. In Extended Abstracts of the
2021 CHI Conf. on Human Factors in Computing
Systems, Association for Computing Machinery, 7;
10.1145/3411763.3451760

AI, including pertinent legal, ethical,
and economic issues. We believe it is
imperative to get ahead of the use of
these tools, incorporate them into our
classrooms from the very beginning,
and teach students to use them respon-
sibly. In short, we must embrace these
changes or face being left behind. Em-
bracing this shift is not just essential—
it represents a chance to invigorate our
educational practices. 

References
1.	 Barke, S., James, M.B., and Polikarpova, N. Grounded

Copilot: How programmers interact with code-
generating models. In Proceedings of the ACM on
Programming Languages 7, 78 (2022), 85–111.

2.	 Becker, B.A. et al. Programming is hard – Or at
least it used to be: Educational opportunities and
challenges of AI code generation. In Proceedings
of the 54th SIGCSE Technical Symp. on Computer
Science Education 1, Association for Computing
Machinery (2023), 500–506.

3.	 Biderman, S. and Raff, E. Fooling MOSS detection
with pretrained language models. In Proceedings
of the 31st ACM Intern. Conf. on Information &
Knowledge Management (CIKM '22), Association
for Computing Machinery (2022), 2933–2943;
10.1145/3511808.3557079

4.	 Bommasani, R. et al. On the opportunities and risks of
foundation models; 10.48550/ARXIV.2108.07258

5.	 Chen, M. et al. Evaluating large language
models trained on code. (2021); https://arxiv.org/
abs/2107.03374.

6.	 Denny, P., Kumar, V. and Giacaman, N. Conversing
with Copilot: Exploring prompt engineering for
solving CS1 problems using natural language.
In Proceedings of the 54th ACM Technical Symp.
on Computer Science Education 1, Association
for Computing Machinery (2023), 1136–1142;
10.1145/3545945.3569823

7.	 Denny, P. et al. Prompt Problems: A new
programming exercise for the generative AI
era. In Proceedings of the 55th ACM Technical
Symp. on Computer Science Education 1,
Association for Computing Machinery (2024), 7;
10.1145/3626252.3630909

8.	 Denny, P. et al. On designing programming
error messages for novices: Readability and its
constituent factors. In Proceedings of the 2021 CHI
Conf. on Human Factors in Computing Systems,
Association for Computing Machinery, Article 55;
10.1145/3411764.3445696

9.	 Dohmke, T. GitHub Copilot for business is now
available. GitHub Blog, (2023); https://bit.ly/3twYP30.

10.	 Finnie-Ansley, J., Denny, P., Becker, B.A., and
Luxton-Reilly, A. The robots are coming:
Exploring the implications of OpenAI Codex on
introductory programming. In Proceedings of
the Australasian Computing Education Conf.,
Association for Computing Machinery (2022), 10–19;
10.1145/3511861.3511863

11.	 Finnie-Ansley, J. et al. My AI wants to know if this
will be on the exam: Testing OpenAI's Codex on CS2
programming exercises. In Proceedings of the 25th
Australasian Computing Education Conf, Association
for Computing Machinery, (2023), 97–104;
10.1145/3576123.3576134

12.	 Indriasari, T.D., Luxton-Reilly, A., and Denny, P. A
review of peer code review in higher education. ACM
Trans. Comput. Education 20, 3 (2020);

13.	 Jiang, E. et al. Discovering the syntax and strategies
of natural language programming with generative
language models. In Proceedings of the 2022 CHI
Conf. on Human Factors in Computing Systems,
Association for Computing Machinery, Article 386;
10.1145/3491102.3501870

14.	 Kazemitabaar, M. et al. Studying the effect of AI
code generators on supporting novice learners in
introductory programming. In Proceedings of the
2023 CHI Conf. on Human Factors in Computing
Systems, Association for Computing Machinery, 23;
10.1145/3544548.3580919.

15.	 Kazemitabaar, M. et al. How novices use LLM-based
code generators to solve CS1 coding tasks in a

33.	 Sarkar, A. et al. What is it like to program
with artificial intelligence? (2022); arXiv:cs.
HC/2208.06213

34.	 Sarsa, S., Denny, P., Hellas, A., and Leinonen, J.
Automatic generation of programming exercises
and code explanations using large language
models. In Proceedings of the 2022 ACM Conf.
on Intern. Computing Education Research 1,
Association for Computing Machinery, 27–43;
10.1145/3501385.3543957

35.	 Simon et al. Negotiating the maze of academic
integrity in computing education. In Proceedings
of the 2016 ITiCSE Working Group Reports,
Association for Computing Machinery, 57–80;
10.1145/3024906.3024910

36.	 Tang, L. et al. Solving probability and statistics
problems by probabilistic program synthesis
at human level and predicting solvability. In
Artificial Intelligence in Education. Posters and
Late Breaking Results, Workshops and Tutorials,
Industry and Innovation Tracks, Practitioners' and
Doctoral Consortium, M.M. Rodrigo, N. Matsuda,
A.I. Cristea, and V. Dimitrova (eds). Springer Intern.
Publishing (2022), 612–615.

37.	 Taylor, A., Vassar, A., Renzella, J. and Pearce, H. Dcc
--help: Transforming the Role of the Compiler by
Generating Context-Aware Error Explanations with
Large Language Models. In Proceedings of the 55th
ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2024). Association for
Computing Machinery, New York, NY, USA, 1314–1320.

38.	 Thompson, E., Whalley, J., Lister, R., and Simon, B.
Code classification as a learning and assessment
exercise for novice programmers. In Proceedings
of the 19th Annual Conf. of the National Advisory
Committee on Computing Qualifications (2006),
291–298.

39.	 Vaithilingam, P., Zhang, T., and Glassman, E.L.
Expectation vs. experience: Evaluating the usability
of code generation tools powered by large language
models. In CHI Conf. on Human Factors in
Computing Systems Extended Abstracts, Association
for Computing Machinery (2022), 1–7.

40.	Wang, S., Piech, C., and Mitchell, J.C. A large
scale RCT on effective error messages in CS1. In
Proceedings of the 55th ACM Technical Symp. on
Computer Science Education 1, Association for
Computing Machinery (2023), 7.

41.	 Welsh, M. The end of programming. Communications
of the ACM 66, 1 (Jan. 2023), 34–35;
10.1145/3570220

42.	 Yellin, D.M. The premature obituary of programming.
Communications of the ACM 66, 2 (Feb. 2023),
41–44; 10.1145/3555367

43.	 Zilles, C.B., West, M., Herman, G.L., and Bretl, T. Every
university should have a computer-based testing
facility. In Proceedings of the 11th Intern. Conf. on
Computer Supported Education, 1. H. Chad Lane, S.,
Zvacek, and J. Uhomoibhi (eds). SciTePress (2019),
414–420; 10.5220/0007753304140420

Paul Denny (paul@cs.auckland.ac.nz) is an associate
professor at the University of Auckland, Auckland, New
Zealand.

James Prather is an associate professor at Abilene
Christian University, Abilene, TX, USA.

Brett A. Becker is an assistant professor at University
College Dublin, Dublin, Ireland.

James Finnie-Ansley is a Ph.D. student at the University
of Auckland, Auckland, New Zealand.

Arto Hellas is a senior university lecturer at Aalto
University, Espoo, Finland.

Juho Leinonen is a postdoctoral fellow at the University
of Auckland, Auckland, New Zealand.

Andrew Luxton-Reilly is a professor at the University of
Auckland, Auckland, New Zealand.

Brent N. Reeves is an associate professor at Abilene
Christian University, Abilene, TX, USA.

Eddie Antonio Santos is a Ph.D. student at University
College Dublin, Dublin, Ireland.

Sami Sarsa is a doctoral researcher at Aalto University,
Espoo, Finland.

© 2024 Copyright held by the owner/author(s).

FEBRUARY 2024 | VOL. 67 | NO. 2 | COMMUNICATIONS OF THE ACM 67

