
 key insights
	˽ Generative AI presents challenges and 

opportunities for computing education, 
necessitating updated pedagogical 
strategies that focus on new skill sets.

	˽ Generative AI models are highly capable 
of generating solutions to problems 
typical of introductory programming 
courses, raising concerns around 
potential student overreliance and 
misuse.

	˽ AI-driven tools transform the creation and 
customization of educational resources 
such as programming exercises, enabling 
the efficient generation of personalized 
learning materials.

	˽ Novel pedagogical approaches are 
emerging to teach students how to 
leverage generative AI, emphasizing 
strategic problem decomposition and the 
importance of accuracy when specifying 
programming tasks to AI systems.

A N E W ER A is emerging in which artificial intelligence 
(AI) will play an ever-increasing role in many facets of 
daily life. One defining characteristic of this new era 
is the ease with which novel content can be generated. 
Large language models (LLMs)—neural network-based 
models trained on vast quantities of text data4—are 
capable of creating a variety of convincing human-like 

outputs, including prose, poetry, and 
source code. It is largely accepted that 
synthesizing source code automati-
cally from natural-language prompts 
is likely to improve the productivity of 
professional developers26 and is being 
actively explored by well-funded enti-
ties such as OpenAI (ChatGPT, GPT-
4a), Amazon (CodeWhispererb), and 
Google (Alpha-Code,21 Bardc). In the 
same way that high-level programming 
languages offered large productiv-
ity advantages over assembly-language 
programming many decades ago, AI 
code-generation tools appear primed 
to transform traditional programming 
practices. Claims are already emerging 
that a significant proportion of new 
code is being produced by tools such as 
GitHub Copilot,9 a plug-in for popular 
integrated development environments 
(IDEs), such as Visual Studio Code.

The current pace of development 
in this area is staggering, with no-
ticeably more advanced versions be-
ing released several times per year. 
The pace of advancement is so rapid 
that in March 2023, a well-publicized 
open letter appeared that encour-

a	 See https://openai.com/research/gpt-4
b	 See https://aws.amazon.com/codewhisperer
c	 See blog.google/technology/ai/code-with-bard
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aged a public, verifiable, and imme-
diate pause of at least six months 
on the training of AI systems more 
powerful than GPT-4. Signed by Elon 
Musk, Steve Wozniak, Moshe Vardi, 
and thousands of others including 
many AI leaders and Turing award 
recipients,d the letter was addressed 
to all AI labs and suggested potential 
government-led moratoriums.

These developments raise urgent 
questions about the future direction 
of many aspects of society, including 
computing education. For example, 
one popular evidence-based pedago-
gy for teaching introductory program-
ming involves students writing many 
small exercises that are checked either 
manually or by automated grading 
tools. However, these small problems 
can now easily be solved by AI models. 
Often, all that is required of a student 
is to accept an auto-generated sugges-
tion by an IDE plug-in.10,11 This raises 
concerns that students may use new 
tools in ways that limit learning and 
make the work of educators more dif-
ficult. Bommasani et al. highlight that 
it has become much more complex for 
teachers "to understand the extent of 
a student's contribution" and "to reg-
ulate ineffective collaborations and 
detect plagiarism."4 Alongside such 
challenges emerge opportunities for 
students to learn computing skills.2

This article discusses the chal-
lenges and opportunities such mod-
els present to computing educators, 
with a focus on introductory program-
ming classrooms. This discussion is 
organized around two foundational 
articles from the computing educa-
tion literature written around the time 
that awareness of code-generating lan-
guage models was just emerging. The 
first, published in Jan. 2022, evaluated 
the performance of code-generating 
models on typical introductory-level 
programming problems. The second, 
published in Aug. 2022, explored the 
quality and novelty of learning resourc-
es generated by these models. Now, we 
consider implications for computing 
education in light of new model capa-
bilities and as lessons emerge from 
educators incorporating such models 
into their teaching practices.

Large language models and code. 

d	 See https://bit.ly/3tzJoHg

AI-driven coding has only been a vi-
able reality for the general public 
since 2022, when GitHub’s Copilot 
emerged from a period of techni-
cal preview. Originally pitched as 
“your AI pair programmer,” at the 
time of writing, Copilot claims to be 
the “world’s most widely adopted AI 
developer tool.”e Other AI-powered 
code-generation tools are also broad-
ly accessible, including Amazon’s 
CodeWhisperer and Google’s Bard. 
The Codex model (discussed in this 
article specifically) was the original 
model to power Copilot. A descen-
dant of GPT-3, Codex was fine-tuned 
with code from more than 50 million 
public GitHub repositories totaling 
159GB.5 Although now officially dep-
recated in favor of the newer chat 
models, Codex was capable of taking 
English-language prompts and gen-
erating code in several programming 
and scripting languages, including 
JavaScript, Go, Perl, PHP, Python, 
Ruby, Swift, TypeScript, and shell. 
It could also translate code between 
programming languages, explain (in 
several natural languages) the func-
tionality of code, and return the time 
complexity of the code it generated.

The use of such tools in educa-
tion is nascent and changing rapidly. 
Copilot was only made freely avail-
able to students in June 2022f and to 
teachers in September 2022g after its 
potential to impact education began 
to unfold.  In November 2022, Chat-
GPTh was released, followed by the 
release of GPT-4 in March 2023. Ope-
nAI has continued to update these 
models with new features, such as 
data analysis from files, analyzing 
images, and assisted Web search. 
For a more technical overview of the 
historical developments and future 
trends of language models, read the 
Communications article by Li.20

Challenges Ahead
Code-generation tools powered by 
LLMs can correctly and reliably solve 
many programming problems that 
are typical in introductory courses. 
This raises a number of important 

e	 See https://github.com/features/copilot
f	 See https://bit.ly/41FcEsz
g	 See https://bit.ly/48euq8w
h	 See https://openai.com/blog/chatgpt

Instructors should 
be extremely clear 
about when and 
how generative AI 
tools are allowed 
to be used on their 
assessments.

58    COMMUNICATIONS OF THE ACM   |   FEBRUARY 2024  |   VOL.  67  |   NO.  2



research

questions for educators. For exam-
ple, just how good are these tools? 
Can a student with no programming 
knowledge, but who is armed with a 
code-generating LLM, pass typical 
programming assessments? Do we 
need a different approach?

Putting them to the test. To explore 
the performance of LLMs in the con-
text of introductory programming, we 
prompted Codex with real exam ques-
tions and compared its performance 
to that of students taking the same 
exams. We also prompted Codex to 
solve several variants of a well-known 
CS1-level programming problem (the 
“Rainfall problem”) and examined 
the correctness and variety of solu-
tions produced. This work was origi-
nally performed in September 2021, 
several weeks after OpenAI provided 
API access to the Codex model. The re-
sulting paper, published in Jan. 2022, 
was the first in a computing education 
venue to assess the code-generating 
capabilities of LLMs.10

My AI wants to know if its grade will 
be rounded up. We took all questions 
from two Python CS1 programming 
exams that had already been taken 
by students and provided them as 
input (verbatim) to Codex. The exam 
questions involved common Python 
datatypes, including strings, tuples, 
lists, and dictionaries. They ranged 
in complexity from simple calcula-
tions, such as computing the sum of a 
series of simulated dice rolls, to more 
complex data manipulations, such 
as extracting a sorted list of the keys 
that are mapped to the maximum 
value in a dictionary.

To evaluate the code generated, we 
executed it against the same set of test 
cases that were used in assessing the 
student exams. This follows a simi-
lar evaluation approach employed by 
the Codex developers.5 If the Codex 
output differed from the expected 
output with only a trivial formatting 
error (for example, a missing comma 
or period) we made the appropriate 
correction, much as a student would 
if using Codex to complete an exam.

To contextualize the performance 
of the Codex model, we calculated the 
score for its responses in the same 
way as for real students using the 
same question weights and accumu-
lated penalties for incorrect submis-

ample inputs and outputs.
Yes, I definitely wrote this code my-

self. To understand the amount of 
variation in the responses, we pro-
vided Codex with seven variants of 
the problem description for the well-
studied ‘Rainfall’ problem (which av-
erages values in a collection) a total 
of 50 times each, generating 350 re-
sponses. Each response was executed 
against 10 test cases (a total of 3,500 
evaluations). Across all variants, Co-
dex had an average score close to 
50%. Codex performed poorly on cas-
es where no valid values were provid-
ed as input—for example, where the 
collection to be averaged was empty.

We also examined the number of 
source lines of code for all Rainfall vari-
ants, excluding blank and comment 
lines. In addition, we classified the gen-
eral algorithmic approach employed in 
the solutions as an indicator of algorith-
mic variation. We found that Codex pro-
vides a diverse range of responses to the 
same input prompt. Depending on the 
prompt, the resulting programs used 
varied programmatic structures, while 
ultimately favoring expected methods 
for each problem variation—that is, 

sions. Codex scored 15.7/20 (78.5%) on 
Exam 1 and 19.5/25 (78.0%) on Exam 
2. Figure 1 plots the scores (scaled to 
a maximum of 100) of 71 students en-
rolled in the CS1 course in 2020 who 
completed both exams. Codex’s score 
is marked with a blue ‘X’. Averag-
ing both Exam 1 and Exam 2 perfor-
mance, Codex ranks 17 amongst the 
71 students, placing it within the top 
quartile of class performance.

We observed that some of the Co-
dex answers contained trivial for-
matting errors. We also observed 
that Codex performed poorly with 
problems that disallowed the use 
of certain language features (for ex-
ample, using split() to tokenize 
a string). Codex often did not pro-
duce code that avoided using these 
restricted features, and thus the 
model (in these cases) often did not 
pass the auto-grader. Codex also per-
formed poorly when asked to pro-
duce formatted ASCII output, such 
as patterns of characters forming 
geometric shapes, especially where 
the requirements were not specified 
in the problem description but had 
to be inferred from the provided ex-
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Figure 1. Student scores on Exam 1 and Exam 2, represented by circles. Codex’s 2021 
score is represented by the blue ‘X’. GPT-4’s 2023 score on the same questions is repre-
sented by the red ‘X’.
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clearly an issue that extends beyond 
educational use of software, but as 
educators it is our role to inform stu-
dents of their professional responsi-
bilities when reusing code.

Learner over-reliance. The devel-
opers of Codex noted that a key risk 
of using code-generation models in 
practice is users’ over-reliance.5 Novic-
es using such models, especially with 
tools such as Copilot that embed sup-
port in an IDE, may quickly become 
accustomed to auto-suggested solu-
tions. This could have multiple nega-
tive effects on student learning.

Metacognition. Developing compu-
tational thinking skills is important 
for novice programmers as it can fos-
ter higher-order thinking and reflec-
tion.23 Metacognition, or “thinking 
about thinking”, is a key aspect of 
computational thinking (and prob-
lem-solving in general). Learning to 
code is already a challenging process 
that requires a high level of cognitive 
effort to remember language syntax, 
think computationally, and under-
stand domain-specific knowledge; 
the use of metacognitive knowledge 
and strategies can aid in problem-
solving and prevent beginners from 
getting overwhelmed or lost. Relying 
too heavily on code-generation tools 
may hinder the development of these 
crucial metacognitive skills.

When the models fail. Despite en-
couraging results such as those pre-
sented here, an analysis of solutions 
generated by AlphaCode revealed that 
11% of Python solutions were syntacti-
cally incorrect (produced a Syntax-
Error) and 35% of C++ solutions did 
not compile.21 Recent work has shown 
that as many as 20% of introductory 
programming problems are not solved 
sufficiently by code-generation mod-
els, even when allowing for expert 
modification of the natural-language 
problem descriptions.6 The developers 
of Codex noted that it can recommend 
syntactically incorrect code, including 
variables, functions, and attributes 
that are undefined or outside the scope 
of the codebase, stating, “Codex may 
suggest solutions that superficially 
appear correct but do not actually per-
form the task the user intended. This 
could particularly affect novice pro-
grammers and could have significant 
safety implications depending on the 

for-loops for processing lists and while-
loops for processing standard input.

Rapid progress. Given the improve-
ment in model capabilities over the 
last two years, it is interesting to ob-
serve how well a state-of-the-art model 
(GPT-4 at the time of writing) performs 
on the same set of questions. In July 
2023, a working group exploring LLMs 
in the context of computing educa-
tion replicated this study using GPT-4 
under identical conditions.29 GPT-4 
scored 99.5% on Exam 1 and 94.4% on 
Exam 2, this time outscored overall by 
only three of the 71 students (GPT-4 is 
represented by the red ‘X’ in Figure 1). 
On the Rainfall problems, GPT-4 suc-
cessfully solved every variant, in some 
cases producing the correct result but 
with a trivial formatting error. Another 
follow-up study looked at the perfor-
mance of generative AI on CS2 exam 
questions and found that it performed 
quite well in that context.11 Newer 
models can also solve other types of 
programming exercises, like Parsons 
Problems, with decent accuracy that is 
likely to only improve over time.31

Academic integrity. Software de-
velopment often encourages code re-
use and collaborative development 
practices, which makes the concept 
of academic integrity difficult to for-
malize in computing.35 Nevertheless, 
individual work is still commonplace 
in computing courses, and it is an ex-
pectation for students working on in-
dividual projects to produce their own 
code rather than copy code written by 
someone else. This is often verified 
through the use of traditional pla-
giarism tools. However, recent work 
has shown that common plagiarism 
detection tools are often ineffective 
against AI-generated solutions.3 This 
raises significant concerns for educa-
tors monitoring academic integrity in 
formal assessments.

Academic misconduct. Although aca-
demic misconduct has been discussed 
in the computing education commu-
nity for quite some time,35 the advent 
of LLMs provides a new and difficult 
set of challenges. The first is categoriz-
ing exactly what type of academic mis-
conduct, if any, its usage falls into. A 
recent working-group report on LLMs 
in computing education considered 
ethics and examined it in the context 
of the ACM Code of Ethics and recent 

university AI usage policies.29 They dis-
cussed plagiarism, collusion, contract 
cheating, falsification, and the use of 
unauthorized resources. Though many 
university policies have placed AI us-
age into the category of plagiarism, 
Prather et al. disagree.29 Plagiarism in-
volves stealing content from a person 
with agency, which LLMs as next-token 
generators clearly do not have. If gen-
erative AI tools are seen as productiv-
ity tools (such as IDE code-completion 
or calculators for mathematical prob-
lems) that are used professionally, 
then it makes sense to decide if the use 
of such tools is appropriate for a given 
context and communicate the decision 
to students. If students persist in using 
the tools when they are restricted, then 
they would be engaging in academic 
misconduct because they used an un-
authorized resource,  not because of 
some intrinsic characteristic of the 
tool itself. Instructors should, there-
fore, be extremely clear about when 
and how generative AI tools are al-
lowed to be used on their assessments. 
The working-group report includes a 
guide for students that could easily be 
adapted by faculty into a helpful hand-
out or added to a course syllabus.

A recent interview study with com-
puting educators has revealed that 
initial reactions are divided—from 
banning all use of generative AI to 
an acceptance that resistance is, ul-
timately, futile.17 Restricting the use 
of generative AI tools is likely (at least 
in the short term) to shift practice to-
ward increased use of secure testing 
environments43 and a greater focus on 
the development and assessment of 
process skills.16

Code reuse and licensing. Potential 
licensing issues arise when content is 
produced using code-generation mod-
els, even when model data is publicly 
available.21 Many different licenses 
apply to much of the publicly available 
code used to train LLMs, and typically 
these licenses require those who re-
use to credit the code they used, even 
when the code is open source. When 
a developer generates code using 
an AI model, they may end up using 
code that requires license compliance 
without being aware of it. Such issues 
are already before the courts.i This is 

i	 See https://githubcopilotlitigation.com
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encryption and SQL injection.27 Per-
haps even more disturbing, the nov-
ice programmers in this study who 
had access to an AI code-generating 
tool were more likely to believe they 
had written secure code. This reveals 
a pressing need for increased student 
and educator awareness around the 
limitations of current models for gen-
erating secure code.

Computers in society. The use of 
AI-generated code provides many op-
portunities for discussions on ethics 
and the use of computers in society. 
Moreover, these technologies may 
serve as a vehicle to empower novice 
users to explore more advanced ideas 
earlier, leveraging the natural engage-
ment that comes from using technolo-
gies that are “in the news.” Teachers 
of introductory courses have long told 
themselves that students will learn 
about testing, security, and other more 
advanced topics in subsequent cours-
es. However, with growing numbers of 
students taking introductory classes 
but not majoring in computing, and 
the capabilities that code generation 
affords, the stakes are higher for CS1 
and introductory classes to raise these 
issues early, before the chance of real-
world harm is great.

Opportunities Ahead
Despite the challenges that must be 
navigated, code-generation tools 
have the potential to revolutionize 
teaching and learning in the field of 
computing.2 Indeed, developers of 
such models specifically highlight 
their potential to positively impact 
education. When introducing Codex, 
Chen et al. outline a range of possible 
benefits, including to: “aid in edu-
cation and exploration.”5 Similarly, 
the developers of AlphaCode suggest 
such tools have “the potential for a 
positive, transformative impact on 
society, with a wide range of applica-
tions including computer science ed-
ucation.”21 In this section, we discuss 
several concrete opportunities for 
code- and text-generation models to 
have a transformative effect on com-
puting education.

Plentiful learning resources. In-
troductory programming courses 
typically use a wide variety of learn-
ing resources. For example, program-
ming exercises are a very common 

context”.5 Students who have become 
overly reliant on model outputs may 
find it especially challenging to pro-
ceed when the suggested code is incor-
rect and cannot be resolved through 
natural-language prompting.15

Bias and bad habits. The issue 
of bias in AI is well known. In addi-
tion to general bias (subtle or overt) 
that affects nearly all AI-generated 
outputs, such as the representation 
of particular demographics and 
genders, there are also likely biases 
unique to AI code generation.

Appropriateness for beginners. Nov-
ices usually start by learning simple 
programming concepts and patterns, 
gradually building their skills. How-
ever, much of the vast quantity of code 
on which these AI models are trained 
was written by experienced develop-
ers. Therefore, we should expect that 
AI-generated code may sometimes be 
too advanced or complex for novices 
to understand and modify. Recent 
work has shown that even the latest 
generative AI models generate code 
using concepts too advanced for nov-
ices or that are specifically outside the 
curriculum.15

Harmful biases. The developers of 
Codex found that code-generation 
models raise bias and representation 
issues—notably that Codex can gener-
ate code comments (and potentially 
identifier names) that reflect negative 
stereotypes about gender and race, 
and may include other denigratory 
outputs.5 Such biases are obviously 
problematic, especially where novices 
are relying on the outputs for learning 
purposes. Notably, the feature list for 
Amazon CodeWhisperer includes ca-
pabilities to remove harmful biases 
from generated code.j Some recent 
work (from competitor Microsoft) has 
expressed doubt about the reliability 
of this feature.33

Security. Unsurprisingly, AI-gener-
ated code can be insecure,25 and hu-
man oversight is required for the safe 
use of AI code-generation systems.5 
However, novice programmers lack 
the knowledge to provide this over-
sight. A recent exploration of novices 
using AI code-generation tools found 
they consistently wrote insecure code 
with specific vulnerabilities in string 

j	 See https://go.aws/3NKd2Al

Developing 
computational 
thinking skills is 
important for novice 
programmers as it 
can foster higher-
order thinking and 
reflection.
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oughly, we generated a set of 240 pro-
gramming exercises by varying the 
programming-related concepts and 
contextual themes. We attempted to 
execute the generated code against 
the generated test cases and analyzed 
statement coverage as a measure of the 
thoroughness of the test suite. Table 1 
summarizes these results and shows 
that in most cases, the programming 
exercises generated by the model in-
cluded sample solutions that were exe-
cutable. Similarly, most of the time, the 
model also generated a set of tests, re-
sulting in a total of 165 programming 
exercises with both a sample solution 
and a set of tests. The sample solution 
frequently did not pass all the generat-
ed tests, but when it did, the test suites 
achieved full statement coverage in all 
but three cases.

We also found that the vast majority 
of exercises (around 80%) were entirely 
novel, in that fragments of the problem 
descriptions were not indexed by any 
search engines. A similar fraction of 
the exercises also matched the desired 
topics and themes. Although this is far 
from perfect, there is obvious potential 
for generating new and useful resourc-
es in this manner and the cost of elimi-
nating poor results (which could be 
automated) is almost certainly smaller 
than manually generating a large num-
ber of exercises and accompanying test 
cases. With the addition of filtering 
steps that could be automated, it would 
be possible to generate an almost end-
less supply of novel resources that are 
contextualized to students’ interests.

Code explanations. Code explana-
tions can be generated at different 
levels of abstraction, from high-level 
summaries to detailed explanations 
of every line. We focused on the latter, 
as these are often useful for students 
when debugging code. We prompt-
ed Codex using a simple input that 
consisted of the source code to be 
explained, the text “Step-by-step ex-
planation of the above program”, and 
finally “1.” to influence the output to 
include numbered lines. We analyzed 
the resulting explanations in terms of 
completeness and accuracy, finding 
that 90% of the explanations covered 
all parts of the code, and nearly 70% of 
the explanations for individual lines 
were correct. Common errors were 
mostly related to relational operators 

type of resource for helping students 
practice writing code. Similarly, nat-
ural-language explanations of code 
are another useful resource. They 
can be valuable for helping students 
understand how a complex piece of 
code works or as a tool for evaluat-
ing student comprehension of code. 
However, it is a significant challenge 
for educators to generate a wide vari-
ety of high-quality exercises targeted 
to the interests of individual learners 
and to produce detailed explanations 
at different levels of abstraction for 
numerous code examples.

We explored the potential for 
LLMs to reduce the effort needed by 
instructors to generate the two types 
of learning resources just discussed: 
programming exercises and code 
explanations. This work, which was 
originally carried out in April 2022 
and published in August 2022, was 
the first paper in a computing educa-
tion venue to explore LLM-generated 
learning resources.34

Programming exercises. Figure  2 
shows an example of the input we used 
to generate new programming exercis-
es using Codex. This ‘priming’ exercise 
consists of a one-shot example (a com-
plete example similar to the desired 
output) followed by a partial prompt to 
prime the generation of a new output. 
In this case, the format of the priming 
exercise consists of a label (Exercise 
1) followed by keywords for both the 
contextual themes (donuts) and the 
programming-related concepts (func-
tion, conditional) of the exercise, a 
natural-language problem statement 
and a solution (in the form of a Python 
function). For space reasons, we omit 
a list of test cases, but these can also 
be included for programming prob-
lems. The priming input ends with the 
explicit prompt for a new exercise to 
be generated (Exercise 2), along with 
the desired concepts and themes ex-
pressed as keywords (basketball, func-
tion, list, and for loop).

Figure  3 shows one output gener-
ated when the prompt in Figure 2 was 
provided to Codex. In this case, as 
requested by the keyword informa-
tion in the input prompt, the problem 
statement is related to basketball and 
the model solution consists of a func-
tion that involves a list and a for loop. 
To evaluate this approach more thor-

The use of AI-
generated code 
provides many 
opportunities for 
discussions on 
ethics and the use 
of computers in 
society.
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ror message to generate explanations 
of the PEMs and actionable fixes. They 
found that most of the explanations 
created by Codex were comprehen-
sible, and Codex produced an output 
with an explanation for most inputs.

More recent work has extended 
this approach by implementing GPT-
enhanced LLM explanations of PEMs 
directly into compilers or automated 
assessment tools. Taylor et al. de-
ployed GPT explanations to a C/C++ 

and branching conditionals—for ex-
ample, where Codex stated “less than 
or equal to x” when the corresponding 
code was checking “less than x”.

Rapid progress. In this section, we 
described early work in which code 
explanations were generated using a 
version of the Codex model that was 
available in early 2022 (specifically, 
‘code-davinci-001’). Less than a year 
later, code explanations generated by 
models such as ChatGPT are consider-
ably better and more consistently ac-
curate. Figure 4 illustrates one exam-
ple of a code explanation generated 
by ChatGPT when provided only the 
code shown in the “Sample solution” 
area in Figure 3 and using the same 
prompt for a line-by-line explanation 
as described in this section.

The quality of LLM-generated 
learning resources is likely to con-
tinue improving alongside model 
capabilities. For example, MacNeil 
et al. found that code explanations 
generated by the GPT-3 model were 
consistently more helpful than those 
generated by Codex.24 They generated 
several different kinds of code expla-
nations, deploying them in an online 
interactive e-book, and found that 
students reported high-level summa-
ries of code as being more useful for 
their learning compared to lower-level 
detailed explanations of each line. Re-
cent work has also found that LLM-
created code explanations are rated 
more highly on average by students 
than code explanations created by 
their peers.18

We see great potential for LLMs to 
be applied to the production of a vari-
ety of learning resources relevant to 
computing education. We also expect 
the quality and accuracy of the gener-
ated resources to improve consider-
ably over the near term based on re-
cent trends.

Better programming error mes-
sages. For more than 60 years, re-
searchers have identified poor pro-
gramming error messages (PEMs) as 
problematic, and significant work 
remains in this area. Recent work has 
attempted to put error messages into 
more natural language by focusing on 
readability, which has been shown to 
improve student understanding of er-
ror messages and the number of suc-
cessful code corrections.8 While it is 

clear that increasing the readability of 
PEMs is helpful to novices, doing so at 
scale, and across languages, remains 
a challenge.

Leinonen et al. explored the po-
tential of LLMs for improving PEMs.19 
They collected Python error messages 
that had been reported as most un-
readable in prior work and generated 
code examples that produced these 
error messages. They prompted the 
Codex API with both the code and er-

Figure 2. A ‘priming’ exercise consisting of one complete example followed by the 
prompt for a new one.

Figure 3. Example output generated by Codex using the priming exercise from Figure 2.
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sessment tasks that require students 
to apply the critical analysis skills 
needed for code evaluation. This can 
facilitate discussions about different 
approaches and the quality of solu-
tions, and provide opportunities for 
refactoring exercises.10

New pedagogical approaches. 
Computing educators are still work-
ing through the implications of LLMs 
in their classrooms, and a consensus 
about how to update pedagogy has 
yet to form. However, some early ap-
proaches are emerging.

LLMs early. In a traditional CS1 
course, the initial focus usually be-
gins with syntax and basic program-
ming principles, and it can take time 
for students to become proficient in 
these fundamentals. One novel ap-
proach for progressing more rapidly to 
complex problems is to teach students 
how to use LLMs to handle low-level 
implementation details. This is ex-
emplified by the approach in the text-
book by Zingaro and Porter, “Learn 
AI-Assisted Python Programming: With 
GitHub Copilot and ChatGPT”.28 Stu-
dents are introduced to the GitHub 
Copilot plug-in within the Visual Stu-
dio Code IDE before they have learned 
to write a single line of Python code. A 
top-down approach is followed, where 
students decompose larger projects 
into smaller functions that are then 
solvable using Copilot by providing 
natural-language comments. This 
textbook provides a blueprint for how 
introductory courses could initially 
concentrate more on problem-solving 
and algorithms, rely on automatic 
code generation for implementation, 
and defer in-depth and nuanced dis-
cussions of syntax until later.

Explaining algorithmic concepts 
clearly. It is well known that the out-
puts produced by LLMs are very sensi-
tive to their inputs.32 In fact, “prompt 
engineering,” where effective prompts 
are crafted, has emerged as a distinct 
(and nascent) skill when working with 
these models. For example, when us-
ing Codex to solve probability and 
statistics problems, engineering the 
prompt to include explicit hints on 
the strategy for solving a problem 
is extremely effective.36 Denny et al. 
found that prompt engineering strat-
egies, which described algorithmic 
steps, were effective for solving pro-

Exemplar solutions. Students often 
seek exemplar solutions when coding, 
either to check against their own code 
or to get help when struggling. Howev-
er, instructors may not have the time 
to provide model solutions for every 
exercise, including historical test and 
exam questions. AI-generated code 
offers a time-saving alternative, with 
the ability to produce a variety of solu-
tions which can help students under-
stand and appreciate different trad-
eoffs in problem-solving, as suggested 
by Thompson et al.38

The ability to generate exemplar 
solutions automatically can shift the 
emphasis from just ensuring that 
code is correct to focusing on the 
differences between multiple cor-
rect solutions, and the need to make 
judgments on code style and quality. 
Extensive research on the benefits of 
peer review of code12 suggests it is 
beneficial to consider multiple solu-
tions to a problem, even if some are 
flawed. Code-generation models can 
be used to create solutions of varying 
quality, and these can be used for as-

compiler in CS1 and CS2 courses and 
found it provided accurate explana-
tions in 90% of cases for compile-time 
errors and 75% of cases for run-time 
errors.37 Wang et al. found that stu-
dents receiving GPT-enhanced PEMs 
in a large-scale introductory pro-
gramming course repeated an error 
23.5% less often and resolved an er-
ror in 36.1% fewer attempts.40 While 
there is still work to be done before 
the decades-old problem is solved, the 
potential to demystify PEMs in this 
way is an exciting opportunity only re-
cently made possible.

Figure 4. Explanation generated by the ChatGPT model of the code shown in the ‘Sample 
solution’ area in Figure 3.

Certainly! Here’s a step-by-step explanation of the program:

1. The function 'count_rebounds' takes in a list of players

as an argument. Each player is represented as a tuple

containing three elements: a player’s name (a string),

their number of points scored (an integer), and their

number of rebounds (also an integer).

2. The function initializes a variable 'total' to 0. This

variable will be used to store the total number of 

rebounds among all the players.

3. The function enters a 'for' loop that iterates over each

player in the list of players.

4. For each player, the function adds the player’s number of

rebound to the 'total' variable.

5. After the 'for' loop completes, the function returns the

value of the 'total' variable. This is the total number of

rebounds among all the players.

Table 1. Analysis of 240 generated  
programming exercises, showing the 
proportion that met criteria regarding 
sample solutions and test cases.

Has sample solution? 203/240 84.6%

Sample solution executable? 182/203 89.7%

Has test cases? 170/240 70.8%

All tests pass? 51/165 30.9%

Full (100%) statement  
coverage?

48/51 94.1%

64    COMMUNICATIONS OF THE ACM   |   FEBRUARY 2024  |   VOL.  67  |   NO.  2



research

proach may require a shift in focus 
toward tasks such as rewriting, refac-
toring, and debugging code, but it pro-
vides the opportunity to help students 
maintain momentum in a realistic 
setting where the ability to evaluate, 
rewrite, and extend code is often more 
important than writing every line of 
code from scratch.

Designing LLM tools. Program-
mers around the world, not just nov-
ices, will be using code generators in 
an increasing capacity moving for-
ward. Exploring the integration of 
LLMs directly into educational envi-
ronments, such as auto-graders and 
online textbooks, will be an impor-
tant area of research. There is a need 
in such environments for appropriate 
guardrails so that generated outputs 
usefully support learning, without im-
mediately revealing solutions or over-
whelming novices with the complexi-
ty or quantity of feedback. Indeed, the 
announcement of GPT-4k highlighted 
the example of a ‘Socratic tutor’ that 
would respond to a student’s requests 
with probing questions rather than 
revealing answers directly. One ex-
ample of this integration in comput-
ing education is the work of Liffiton et 
al. on CodeHelp, an LLM-powered tool 
that uses prompt-based guardrails to 
provide programming students with 
real-time help but without directly re-
vealing code solutions.22

In general, adapting the feedback 
generated by LLMs to maximize 
learning in educational environments 
is likely to be an important research 
focus in the near future. Concrete 
recommendations are already begin-
ning to emerge from very recent work 
in this space. First, the utilization of 
code generators by novices will gen-
erally decrease the number of errors 
they see. This seems like a positive 
experience, though it appears they 
are ill-equipped to deal with the er-
rors they do see when presented with 
them.14 This means that tools must be 
designed to help users (of all skill lev-
els) through the error-feedback loop. 
Second, generating and inserting 
large blocks of code may be counter-
productive for users at all levels. This 
requires users to read through code 
they did not write, sometimes at a 

k	 See https://openai.com/research/gpt-4

gramming tasks for which Copilot ini-
tially generated incorrect solutions.6 
Other recent work has shown that 
developers are more successful work-
ing with Copilot when they decom-
pose larger programming statements 
into smaller tasks and then explicitly 
prompt Copilot for each of the sub-
tasks.1,13 It is likely that students will 
need to develop new skills to commu-
nicate effectively with these models. A 
key skill will be the ability to describe 
the computational steps they wish to 
achieve in natural language as a way 
of guiding the model to produce valid 
outputs.

Specification-focused tasks. One way 
for students to learn how to create ef-
fective prompts is to focus on writing 
task specifications. In a traditional 
introductory course, novices are pre-
sented with problem statements that 
have been very carefully specified by 
the instructor to be clear and unam-
biguous. Such detailed specifications 
provide excellent context for code-
generation models to produce correct 
code solutions. New types of problems 
could task students with generating 
clear specifications themselves, and 
thus strengthen skills around LLM 
prompting. For example, this is the 
goal of ‘Prompt Problems’,7 in which 
students are presented with a visual 
representation of a problem that il-
lustrates how input values should be 
transformed to an output. Their task 
is to devise a prompt that would guide 
an LLM to generate the code required 
to solve the problem. Prompt-gener-
ated code is evaluated automatically 
and can be refined iteratively until it 
successfully solves the problem. Re-
cent work investigating classroom 
use of Prompt Problems has shown 
that students find them useful for 
strengthening their computational 
thinking skills and exposing them to 
new programming constructs.

A focus on refactoring. Students 
sometimes experience difficulty get-
ting started on programming assign-
ments, sometimes referred to as the 
programmer’s writer’s block. Recent 
work found that Copilot can help stu-
dents overcome this barrier by im-
mediately providing starter code, en-
abling them to build upon existing 
code rather than starting from scratch 
with a blank code editor.39 This ap-

Students reported 
high-level 
summaries of 
code as being 
more useful for 
their learning 
compared to lower-
level detailed 
explanations of 
each line.
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more sophisticated level than they are 
familiar with. Novices may be intimi-
dated by such code generation14 or may 
spend too much time reading code 
that does not further their goals.30 
Therefore, AI code generators should 
include a way for users to control the 
amount of code insertion and to spec-
ify how to step through a multi-part 
segment of generated code. Third, the 
fact that AI code generators are black 
boxes means that programmers of all 
skill levels may struggle to create cor-
rect mental models of how they work, 
which could harm their ability to fully 
utilize them or learn from their out-
puts. Explainable AI (XAI) patterns 
could be helpful here, such as expos-
ing to the user a confidence value and 
user skill estimation above the gener-
ated code suggestion.30 These sugges-
tions are only the beginning of a new 
avenue of research on how to helpfully 
design usable AI code generators that 
empower novice learners and en-
hance programmer productivity.

Where Do We Go from Here?
The emergence of powerful code-gen-
eration models has led to speculation 
about the future of the computing dis-
cipline. In a recent Communications 
Opinion article, Welsh claims they 
herald the “end of programming” 
and believes there is major upheaval 
ahead for which few are prepared, as 
the vast majority of classic computer 
science will become irrelevant.41 In an 
even more recent article on BLOG@
CACM, Meyer is equally impressed 
by the breakthroughs, placing them 
alongside the World Wide Web and 
object-oriented programming as a 
once-in-a-generation technology, but 
takes a more optimistic view.l In fact, 
Meyer predicts a resurgence in the 
need for classic software-engineering 
skills, such as requirements analysis, 
formulating precise specifications, 
and software verification.

Although the impact of generative 
AI tools is already evident for software 
developers, the long-term changes for 
computing education are less clear. 
Experts appreciate this new technol-
ogy only because they already under-
stand the underlying fundamentals. 
The ability to quickly generate large 

l	 See https://bit.ly/3TXEJKb

amounts of code does not eliminate 
the need to understand, modify, and 
debug code. Instead, it highlights how 
important it is to develop these basic 
competencies. Code literacy skills are 
essential to critically analyze what is 
being produced to ensure alignment 
between one’s intentions and the gen-
erated code. Without the skills to read, 
test, and verify that code does what is 
intended, users risk becoming mere 
consumers of the generated content, 
relying on blind faith more than devel-
oped expertise. We argue that writing 
code remains a valuable way for novic-
es to learn the fundamental concepts 
essential for code literacy.

Although future professional devel-
opers may indeed spend less time writ-
ing ‘low-level’ code, we believe gener-
ated code will still need to be modified 
and integrated into larger programs. 
We do expect to see some shift in em-
phasis, even in introductory courses, 
toward modifying code generated by 
AI tools, but the ability to edit such 
outputs and compose code in today’s 
high-level languages will likely remain 
a fundamental skill for computing stu-
dents. This aligns with Yellin’s recent 
viewpoint that as programs increase in 
complexity, natural language becomes 
too imprecise an instrument with 
which to specify them.42 At some point, 
editing code directly is more effective 
than issuing clarifying instructions in 
natural language.

Harnessed correctly, tools such as 
Copilot and ChatGPT have the poten-
tial to be valuable assistants for this 
learning. We see these tools as serving 
a valuable teaching support role: to ex-
plain concepts to a broad and diverse 
range of learners, generate exemplar 
code to illustrate those concepts, and 
generate useful learning resources 
that are contextualized to the inter-
ests of individuals. We also anticipate 
the emergence of new pedagogies that 
leverage code-generation tools, includ-
ing explicit teaching of effective ways 
to communicate with the tools, and 
tasks that focus on problem specifica-
tion rather than implementation.

In light of the rapid adoption of gen-
erative AI tools, it is essential that edu-
cators evolve their teaching methods 
and approaches to assessment. Cur-
ricula should also expand to cover the 
broader societal impact of generative 

Computing 
educators are still 
working through 
the implications 
of LLMs in their 
classrooms.
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AI, including pertinent legal, ethical, 
and economic issues. We believe it is 
imperative to get ahead of the use of 
these tools, incorporate them into our 
classrooms from the very beginning, 
and teach students to use them respon-
sibly. In short, we must embrace these 
changes or face being left behind. Em-
bracing this shift is not just essential—
it represents a chance to invigorate our 
educational practices. 
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