
Prompt Problems: A New Programming Exercise for the
Generative AI Era

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Juho Leinonen
University of Auckland
Auckland, New Zealand

juho.leinonen@auckland.ac.nz

James Prather
Abilene Christian University

Abilene, TX, USA
james.prather@acu.edu

Andrew Luxton-Reilly
University of Auckland
Auckland, New Zealand

a.luxton-reilly@auckland.ac.nz

Thezyrie Amarouche
University of Toronto Scarborough

Toronto, ON, Canada
thezyrie.amarouche@mail.utoronto.ca

Brett A. Becker
University College Dublin

Dublin, Ireland
brett.becker@ucd.ie

Brent N. Reeves
Abilene Christian University

Abilene, Texas, USA
brent.reeves@acu.edu

ABSTRACT

Large language models (LLMs) are revolutionizing the field of com-
puting education with their powerful code-generating capabilities.
Traditional pedagogical practices have focused on code writing
tasks, but there is now a shift in importance towards reading, com-
prehending and evaluating LLM-generated code. Alongside this
shift, an important new skill is emerging – the ability to solve pro-
gramming tasks by constructing good prompts for code-generating
models. In this work we introduce a new type of programming
exercise to hone this nascent skill: ‘Prompt Problems’. Prompt Prob-
lems are designed to help students learn how to write effective
prompts for AI code generators. A student solves a Prompt Prob-
lem by crafting a natural language prompt which, when provided
as input to an LLM, outputs code that successfully solves a spec-
ified programming task. We also present a new web-based tool
called Promptly which hosts a repository of Prompt Problems and
supports the automated evaluation of prompt-generated code. We
deploy Promptly in one CS1 and one CS2 course and describe our
experiences, which include student perceptions of this new type of
activity and their interactions with the tool. We find that students
are enthusiastic about Prompt Problems, and appreciate how the
problems engage their computational thinking skills and expose
them to new programming constructs. We discuss ideas for the
future development of new variations of Prompt Problems, and the
need to carefully study their integration into classroom practice.

CCS CONCEPTS

• Social and professional topics→Computing education;CS1.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0423-9/24/03.
https://doi.org/10.1145/3626252.3630909

KEYWORDS

AI code generation; artificial intelligence; generative AI; large lan-
guage models; LLMs; prompt engineering; prompt problems
ACM Reference Format:

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Prompt Problems:
A New Programming Exercise for the Generative AI Era. In Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2024), March 20–23, 2024, Portland, OR, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3626252.3630909

1 INTRODUCTION

The advent of large language models (LLMs) is having a rapid and
significant impact on computing education practice, particularly
at the introductory level [25]. Traditional pedagogical approaches
have focused on helping students learn how to write code. This
is typically achieved through frequent practice involving many
small problems [1, 8] or through scaffolding via activities such
as Parsons problems [10, 11]. However, LLMs are now capable of
producing code automatically and have demonstrated impressive
performance on problems that are typical in introductory program-
ming courses [13, 14, 27]. Despite the opportunities that LLMs may
afford, educators have voiced concerns around potential misuse of
these models for plagiarism, as well as over-reliance by beginners
on AI-generated code [3], leading to a possible erosion of tradi-
tional coding skills [9]. New pedagogical approaches are needed to
develop the changing skillsets that students require in the era of
generative AI [6].

Teaching students to read and understand code are longstanding
goals of introductory courses, and they are becoming increasingly
important skills given the ease with which code can be generated
by LLM-based tools. An equally important emerging skill is the abil-
ity to formulate effective prompts for LLMs to generate code. Indeed,
coding via natural language may vastly increase end-user program-
ming activities across a wide range of applications and tasks [28].
Recent work has shown that although many typical introductory
problems can be solved by LLMs using verbatim textbook or exam

https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0003-2807-6042
https://orcid.org/0000-0001-8269-2909
https://orcid.org/0000-0003-3725-0049
https://orcid.org/0000-0003-1446-647X
https://orcid.org/0000-0001-5781-1136
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626252.3630909
https://doi.org/10.1145/3626252.3630909


SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Paul Denny et al.

problem statements [13, 14], this approach is not always sufficient.
For example, manual modification of the prompts to include explicit
algorithmic hints greatly improves code-generation performance
[30]. In recent work, Denny et al. argue that the ability to engineer
effective prompts is now an essential skill for computing students,
although they do not propose concrete approaches for how this can
be taught [7].

In the current paper we introduce the concept of a ‘Prompt
Problem’ – a new exercise paradigm in which students solve pro-
gramming exercises by formulating natural language prompts for
code-generating LLMs. Students are presented with a represen-
tation of a problem that illustrates how input values should be
transformed to an output. Their task is to devise a prompt that
guides an LLM to generate the code required to solve the problem.

In addition to conceptualizing the problem type, we make two
other contributions in this work: (1) we introduce a tool (called
Promptly) for delivering Prompt Problems, that displays a problem
representation, converts a prompt written by a student to code (via
an API call to an LLM), and then executes the code against a suite
of test cases; and (2) we present our observations from deploying
Prompt Problems to programming students in a CS1 course and
a CS2 course, and reflect on our experiences of using them in our
teaching for the first time.

2 RELATEDWORK

Early work studying LLMs in computing education centered on
their capabilities, largely driven by concerns that they would lead
to a flood of cheating [23] and the effect that would have on stu-
dent learning. Sometimes, such work involved comparing LLM and
student performance, for example in generating explanations of
code [18]. Finnie-Ansley et al. demonstrated that Codex (based on
GPT-3) ranked in the top quartile of real introductory programming
(CS1) students on real exams [13]. A year later Finnie-Ansley et al.
extended this work to data structures and algorithms (CS2) exams
with very similar results [14]. Other studies on the capabilities of
LLMs have revealed impressive proficiency in dealing with object-
oriented programming tasks [5], Parsons problems [27], mathe-
matical questions for computer graphics [12], and compiler error
messages [19]. Many of these explorations also revealed that LLMs
are not infallible and can produce solutions that do not align with
best programming practice [5], struggle with longer and higher-
level specifications [13], and cause students to become confused
when reading code that they did not write themselves [16, 26]. Babe
et al. even found that LLMs can mislead students, causing them
to believe that their own prompts are more (or less) effective than
they are in reality [2].

Recently, the focus has started to shift from assessing the capabil-
ities of LLMs to using them in teaching and learning practice [21].
For example, Sarsa et al. showed that LLMs can generate viable
programming exercises including test cases and explanations [29],
and Liffiton et al. describe the use of an LLM-powered teaching
assistant with guardrails suitable for computing courses [20]. There
is growing acceptance for the use of AI in the classroom. Lao and
Guo interviewed 19 introductory programming instructors from
nine countries across six continents and found that some instruc-
tors are embracing the idea of integrating AI tools into current

Figure 1: An example Prompt Problem that displays the data

visually to prevent copying and pasting of the description

into an LLM. The goal is to swap the top-left and bottom-

right non-overlapping quadrants of the matrix.

courses via mechanisms such as giving personalized help to stu-
dents and aiding instructors with time-consuming tasks [17]. New
resources are also being developed, with one notable example being
the recent textbook by Zingaro and Porter for teaching introductory
programming using Copilot and ChatGPT [24].

A logical next step towards integrating LLMs into teaching prac-
tice is the development of new tools to aid students in effectively
working with LLMs for learning. MacNeil et al. used LLM-generated
code explanations successfully in a web software development e-
book [22], and Jury et al. describe a tool that automatically generates
interactive worked examples for students learning programming
[15]. Further integration of LLMs into computing courses seems
inevitable and stands to transform the way the subject is taught
at all levels [6, 31]. We believe that Prompt Problems will be one
important step along the journey towards regular use of LLMs in
computing education.

3 PILOT STUDY

To motivate the need for our work, and to understand how stu-
dents might use LLM tools like ChatGPT to communicate program
requirements, we asked a group of graduate students at the Uni-
versity of Auckland to participate in a prompt writing assignment
pilot study. This assignment took place during a single class session
in April 2023. We provided a visual representation of a problem
(see Fig. 1) and asked participants to query ChatGPT to write a
program that could convert the shown inputs to the corresponding
example outputs. The problem description was provided visually to
prevent participants from easily copying and pasting it and, instead,
to encourage them to formulate a suitable prompt themselves.

Fifteen graduate students participated in the pilot, completing
the activity described above, reflecting on it by writing an open-
response review of the task, and opting to share their work with
us. We expected computer science graduate students to have few
problems writing effective prompts, however this was not the case.
Students wrote incomplete prompts (e.g. “I have a square matrix,
and I want to swap the first half of the rows with the second half of



Prompt Problems: A New Programming Exercise for the Generative AI Era SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

Figure 2: Interface layout for a Prompt Problem within the

web-based Promptly tool (with figure annotations added in

blue). The layout is compressed for space reasons.

the rows” ), tried to engage in conversations with the tool to refine
the generated code, and tried to solve the wrong problem (e.g. “give
me a function which works by first swapping the elements of each row
in place, and then swapping the elements of each column in place” ).
It became apparent to us that students, even at the graduate level,
could benefit from explicit prompt writing practice that could teach
them to understand the problem, write a single thorough prompt,
and check the code generated by the LLM as having complete test
case coverage. We therefore propose the idea of Prompt Problems
to address this new gap in programming education.

4 PRACTICING PROMPT PROBLEMS

To deliver Prompt Problems to students, we developed a web-based
tool called Promptly. In the current implementation, the code gen-
erated by the LLM is not editable so the prompt must be complete
and self-contained. Other variations are possible and we discuss
these in Section 6.1.

4.1 Tool Design

Within the Promptly tool, sets of Prompt Problems are organized
into course repositories which students select after logging in. Each
Prompt Problem within a course repository consists of a visual
representation of a problem – an image that does not include a
textual description of the problem – and a set of associated test
cases that are used to verify the code that is generated by the LLM.

When viewing a Prompt Problem, the student is shown the visual
representation of the problem, and a partial prompt to complete.

For problems where the solution is a Python program, this partial
prompt begins: “Write a Python program that...”, to guide the stu-
dent. If the problem requires students to write a single function,
then the partial prompt is: “Write a Python function called...”. When
any text is entered, the “Click here to ask ChatGPT!” button is
enabled, and clicking this button constructs a prompt that is sent to
the LLM. This prompt consists of the verbatim text entered by the
student, as well as some additional prompting to guide the model
to produce only code and no additional explanatory text.

Once the response is received from the LLM, it is then sent to
a sandbox for execution against a test suite. We use the publicly
available sandbox associated with the CodeRunner tool1. If the
generated code passes the tests for the Prompt Problem, then the
student receives a success message and is directed to progress to
the next problem. If any of the test cases fail, then the first failing
test case is shown to the student. They are then able to edit the
prompt and resubmit in order to generate a new code response.

Figure 2 shows a screenshot of the tool interface (slightly com-
pressed for space reasons). In the screenshot, the learner has logged
in, selected their course and exercise, and has entered a prompt that
successfully solves the problem. In our implementation, students
must solve each problem in order to progress to the next problem.

4.2 Classroom Evaluation

Prompt Problems are a novel task for learners in programming
courses, and we are interested in understanding what students
think about them. They are also novel for instructors – and so we
are particularly interested in understanding whether the problems
we have created are appropriately challenging.

We deployed Promptly as an ungraded (i.e. optional) laboratory
task in two Python-based courses (one CS1 and one CS2) taught
at the University of Auckland, New Zealand. The CS1 lab was con-
ducted in the second week of the course, at which point students
were writing single-file scripts, without the use of functions, and
had learned about standard input and output, arithmetic, and con-
ditional statements. For the CS2 course, the lab was also conducted
in the second week of the course and all students in this course
were familiar with the concept of functions.

Three problems were available on Promptly for each course.
Table 1 provides a very brief description of each problem (note, these
descriptions were not shown to students but are listed here for the
benefit of the reader) alongside one example that illustrates one
input with a corresponding output. The CS1 problems all required
the generation of a program that processed standard input and
printed output, whereas the CS2 problems all required a function
that returned a value. The first problem in the CS1 course was the
problem previously illustrated in Figure 2. To evaluate the first use
of Prompt Problems in our teaching, we explore the following two
questions around how students interact with the problems and their
opinions on this new type of learning activity:
• When solving Prompt Problems, how many attempts do stu-
dents require and to what extent do successful prompts vary in
terms of length?

• What are students’ perceptions of Prompt Problems and on
learning programming through constructing prompts for LLMs?

1https://github.com/trampgeek/jobe

https://github.com/trampgeek/jobe


SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Paul Denny et al.

Table 1: Summary of student interactions with the Prompt Problems. For each problem, a brief description and example

is shown (the description is for the benefit of the reader and was not presented to students). The total number of students

(Students) who successfully solved each problem is given (the % shown in parentheses is the percentage of students attempting

the problem who successfully solved it). Also shown is the average number of submissions (Sub) these students required, as

well as the mean, minimum and maximum number of words used in successful prompts.

Problem Description Example Students Sub Mean Min Max

CS1-1 Display a greeting and the user’s name (e.g. see Fig. 2) Input: Serena→ Hello Serena 44 (76%) 2.3 18.0 7 33
CS1-2 Classify an age using a set of four labels Input: 14→ Teenager 31 (86%) 1.8 47.9 26 85
CS1-3 Average the 3 middle values in a set of 5 values Input: 8.0 9.5 7.5 6.0 9.0→ 8.17 20 (65%) 7.5 40.7 25 66
CS2-1 Count the number of occurrences of 0 in a list counter([0, 2, 3, 4, 0])→ 2 136 (75%) 2.4 23.0 10 84
CS2-2 Extract the first letter of each word in input string initials(‘abc def ghi’)→ ‘ADG’ 121 (96%) 1.3 28.3 12 88
CS2-3 Create a list with element occurrences equaling values repeat([2, 0, 1, 3])→ [2, 2, 1, 3, 3, 3] 114 (99%) 1.5 34.2 16 92

For the three Prompt Problems in each course we investigate the
number of prompt submissions required to solve each one and the
number of words used in the submitted prompts. To gauge student
perceptions of solving Prompt Problems, students in both courses
were invited to provide feedback on their experience. This feedback
was not graded, and was given in response to the following prompt:
“We would appreciate hearing about your experiences completing the
exercises and in particular, how you think the experience of writing
prompts may help you to learn programming”.

5 EXPERIENCES

The courses in which Prompt Problems were used were taught in
July 2023, and participation by students was optional. A total of 58
(out of 414 enrolled) students in the CS1 course and 182 (out of 444
enrolled) students in the CS2 course chose to attempt at least one
problem on Promptly.

5.1 Student Interactions with Prompt Problems

As summarized in Table 1, in the CS1 course participants submitted
2.3 attempts (on average) for Problem 1, 1.8 for Problem 2, and
7.5 for Problem 3. Given that only students who were successful
on Problems 1 and 2 progressed to Problem 3, this last problem
appeared to be the most difficult. The visual representation of this
problem showed a row of five people (stylized as judges of a com-
petition) holding up score cards with the maximum and minimum
scores crossed out. Listing 1 shows three prompts that were submit-
ted by different students attempting Problem 3 in the CS1 course
(CS1-3). Some students found it difficult to infer the goal from the
problem representation. For example, in the first prompt shown in
Listing 1 the student has incorrectly inferred that values included
in the average calculation should be sufficiently close to their pre-
decessors. The length of this incorrect prompt is 101 words – in
comparison the lengths of the correct prompts for this problem
ranged from 25 to 66 words.

In the second example in Listing 1, the student has not attempted
to provide a prompt that demonstrates they have understood what
the problem is asking, but instead they have created a prompt
that simply parrots back to the tool the three example tests cases
shown in the problem description. The student then asks the model:
“Can you please replicate this program?”. The student submitted this
prompt four times in a row, but all attempts were unsuccessful.

Finally, the third example in Listing 1 is the shortest successful
prompt that was submitted for this problem (25 words).

Overall, the average number of words in successful prompts for
the three CS1 problems was 18.0, 47.9, and 40.7. In comparison,
average successful prompt lengths for the CS2 problems were 23.0,
28.3 and 34.2. We observed a consistent reduction in the number of
students solving subsequent problems in each course – this was not
unexpected given the optional nature of the activity. Success rates
were particularly high in the CS2 course, with almost all students
who progressed to Problems 2 and 3 solving them (with, on average,
fewer than two submissions).

Figures 3 and 4 show fine-grained submission patterns for the
first problem in each course (CS1-1 and CS2-1, respectively). Similar
figures for all other problems are available as an online appendix2.
Each line on these figures represents the submissions made by
one student, illustrating how the word lengths of the prompts
changed over time. All successful submissions are highlighted with
a blue dot; for students who did not solve the problem, the final
unsuccessful submission is shown with an orange X. Most students
stopped working on a problem as soon as they solved it, although
some continued working and experimenting with different prompts.

In both figures, it is clear that many students solved the problem
on their very first attempt (a single blue dot at submission 1). An
interesting observation here is the considerable variation in prompt
length across these successful submissions. It is likely that some
of the longer prompts are not as succinct as they could be, which
suggests some students may not be leveraging the power of the
LLMs to their full extent. As an example, the shortest successful
prompts to CS2-2 and CS2-3were the 12-word and 16-word prompts:
“I want a function called initials which returns initials of the sentence”
and “Write me a Python3 function called repeat(list) which repeats the
value according to its value”. In comparison, the longest successful
prompts for these problems were 88 and 92 words, respectively.
Future variations of this activity could require that students submit
working prompts that are less than some target length, to encourage
them to be efficient with their word use. Future work may also wish
to reward students for the robustness of their prompts, by calculating
how frequently correct code is generated if the prompt is submitted
multiple times.

2https://osf.io/cw5gb/?view_only=343aeadc743047beb85764984ca1258b

https://osf.io/cw5gb/?view_only=343aeadc743047beb85764984ca1258b


Prompt Problems: A New Programming Exercise for the Generative AI Era SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Submission

0

10

20

30

40

50

60

W
or

d 
co

un
t i

n 
Pr

om
pt

All Successful Submissions
Final Unsuccessful Submission

Figure 3: Each line represents all submissions made by a

student for the CS1-1 problem. Blue dots denote every suc-

cessful submission; an orange X denotes final unsuccessful

submission. Several students submit more than one success-

ful prompt, indicating experimentation with the problem.

Listing 1 Three student-submitted prompts for CS1-3
Misinterpreting the problem:

Write me a Python program that does the following:
1. Prompts the user to enter five decimal numbers (1dp) between 1.0 and
10.0 separated by spaces.
2. Chooses three of these numbers using the following rules: a number
chosen be different from the previously chosen numbers and each
subsequently chosen value must be within 0.5 of its predecessor. If the user
has not provided numbers that sufficiently meet this criteria, call them an
idiot and prompt them for another five values.
3. Find the average of these numbers and round the result to 2dp. Precede
this result with the numbers chosen.

Parroting the tests:

A Python program requests the user "enter five decimal numbers
(separated by spaces)". In the first example the user inputs the five numbers
2.0 3.0 3.0 3.0 4.0 to which the program outputs 3.0. In the second example
the user inputs the five numbers 8.0 9.5 7.5 6.0 9.0 to which the program
outputs 8.17 . In the third example the user inputs the five numbers 4.0 6.5
8.0 7.0 6.0 to which the program outputs 6.5. Can you please replicate this
program?

Successful:

Write me a Python program that takes five decimal number separated by
spaces, and outputs the average of the 3 median numbers rounded to 2dp.

5.2 Student Reflections on Prompt Problems

Of all the students who attempted at least one Prompt Problem
in either course, a total of 153 chose to provide a response to the
open-ended reflection question. As this activity was new to students
in both courses, we analyzed their feedback in combination. We
report the main themes that emerged from our analysis below.

5.2.1 Exposure to new coding constructs. As our evaluation was
conducted early in both courses, the generated code would some-
times contain features that were unfamiliar to students. For themost
part, students commented positively on this aspect, and a theme
emerged around how these problems would introduce students to
new programming constructs and techniques. As one CS1 student

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Submission

0

20

40

60

80

100

W
or

d 
co

un
t i

n 
Pr

om
pt

All Successful Submissions
Final Unsuccessful Submission

Figure 4: Each line represents all submissions made by a

student for the CS2-1 problem.

commented: “These exercises introduced me to new functions... so this
method of writing code could help increase my programming vocabu-
lary”. Similar feedback was provided by students in the CS2 course,
even though they had prior programming experience: “[Promptly]
could find condensed ways to solve them using Python3’s inbuilt
functions, some even we have not been taught yet.”

One student commented on the value of seeing both the structure
and syntax of the code generated by the LLM: “The main benefit
I gained ... was observing the logical structure of the programs that
it created. In all three cases it used functions that I was previously
unaware of, allowing me to gain an understanding of how they could
be used and the correct syntax for implementing them.”

5.2.2 Enhancing computational thinking. Constructing prompts
that clearly describe the steps needed to solve a problem draws
on computational thinking skills. This was noted in the student
reflections, as illustrated by the following quote from a CS2 student:
“I do think that writing prompts for code is a good way of developing
analytical and problem-solving thinking and skills as it forces you
to think through the steps needed to take the input through to the
output”.

Several participants found that writing prompts helped them
improve their problem-solving skills, as they could focus on the
logic required rather than low-level syntax: “I think while writing
prompts for AI, we actually have to have a clear logic to break down the
question and explain in plain words” and “Gaining experience from
writing prompts can help me become a more effective programmer by
allowing me to generate the necessary code while focusing solely on
the logic of the code I want to create”.

5.2.3 Resistance and negative feedback. Although generally posi-
tive statements about the activity were more common (e.g. “That
was really fun! I loved the exercise and I feel like it would help me
significantly in future labs” ), some students appeared resistant to
taking part, citing fears about potential impacts on their creativity.
One student expressed: “I don’t have much intention of using Chat-
GPT at the moment as I major in design and I have a strong belief
in personal creativity”. Another was more blunt: “I refuse to use
chatGPT for programming”. Over-reliance on AI generated outputs
is a commonly cited concern within the education community, and



SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Paul Denny et al.

several students commented on this aspect, including: “it is critical
for students to learn the ability to write code independently rather
than relying only on AI-generated answers” and “I feel like it is too
tempting of a tool to use through the labs and not learn and develop
these skills yourself”. These concerns align with previous work that
has looked into students’ opinions on AI code generation [26].

Further exploring these concerns is an essential avenue for ongo-
ing work, given that some students appeared quite anxious about
their future as computing professionals. Upon reflecting on the
Prompt Problems task, one student felt that there would no longer
be a need for expertise in programming: “I don’t think its a stretch to
imagine that in the future ‘programmers’ won’t even be needed and
will be replaced by someone who is able to write instructions for the
program they want to make. I would be lying if I said I wasn’t worried
about the future of the majority of programming jobs.” Another stu-
dent, in the CS2 course, commented on the emotional impact of the
task and expressed rather bleak views of the future: “You have just
ruined every piece of self esteem I had regarding coding. I know full
well that it would have taken me around 35 minutes to figure out how
to create those functions and that damn computer did it in seconds.
Robots are going to own us within years.” Overall, while most stu-
dents reported finding Prompt Problems beneficial, particularly for
exposure to new programming constructs and for strengthening
computational thinking skills when explaining problems, a minor-
ity of students were both hesitant and concerned about the use of
generative AI tools for learning programming.

6 DISCUSSION

In contrast to other tools students use, such as compilers, learning to
use LLMs presents unique challenges. For example, we do not need
to worry about teaching students that compilers might sometimes
make a mistake, and yet the literature documents the difficulty
students have with compiler error messages [4, 19]. In contrast,
identical input prompts to an LLM can produce different outputs,
and these can sometimes be both syntactically and semantically
incorrect. Deliberate exposure to the inconsistencies of LLMs, such
as through practice with Prompt Problems, can serve to highlight
the importance of a “critical eye” in evaluating generated code and
may help to moderate potential over-reliance on these tools.

Although Promptly evaluates prompt effectiveness in producing
correct programs, it does not evaluate the efficiency of the prompts.
Our unit tests consider only whether the given inputs are trans-
lated to the expected outputs. A prompt could include irrelevant
words and generate irrelevant code constructs, and as long as it still
translates the inputs to the expected outputs, our tool will treat the
task as completed successfully. Future work should address how to
go beyond effective prompts to efficient (and effective) prompts.

As this was our first experience deploying Prompt Problems
to students, participation was optional. Students could also only
attempt a problem if they had successfully solved the previous one.
Thus, there is likely considerable self-selection bias in our data.
Nevertheless, early feedback from students was mostly positive.
Future work should aim to expose Prompt Problems to a broader
range of students, and provide incentives for their completion.

6.1 Variations and Problem Design

There are various ways that Prompt Problems can be implemented,
and our Promptly tool currently makes a number of trade-offs:
the problem must be solved by a single prompt and dialogue with
the model is not allowed, it does not allow students to edit the
code that is generated by the LLM, and it evaluates only a single
response from the LLM at a time rather than generate and evaluate
multiple responses. We believe this provides a suitable experience
for introductory level students, but many different variations are
possible and should be explored – including letting students engage
in dialogue with the LLM and providing the ability to edit the
code that is generated. Another particularly interesting variation of
Prompt Problems is that instead of representing problems as inputs
and outputs, as we have done, students could be presented with a
code fragment and tasked with crafting a prompt that generates
functionally equivalent code. Such a variation combines aspects of
code comprehension with prompt design.

Finally, since prompt creation is a relatively new kind of task, it
may be difficult for instructors to have an intuition for how difficult
a particular Prompt Problem will be or when to utilize these types
of problems. By emphasizing problem solving over syntax, it may
make it possible to introduce more complex problems sooner in a
course. Future work should explore more rigorously how best to
integrate Prompt Problems alongside current teaching practices.

7 CONCLUSION

We present a novel pedagogical approach, known as ‘Prompt Prob-
lems’, designed to help students learn how to craft effective prompts
for generating code using large language models (LLMs). We report
our initial experiences deploying Prompt Problems to students for
the first time using a novel tool we have developed, Promptly.

We found that most students were able to solve Prompt Prob-
lems in just a few attempts, although some required 20 attempts or
more, and that a very wide variety of prompts were constructed. For
the most part, students reported very positive experiences solving
Prompt Problems, and valued the exposure to new programming
constructs and the enhancement of problem-solving skills. How-
ever, a small number of students reported some hesitation about
automated code generation, and a few even expressed anxiety about
the future when seeing how powerful AI code-generating models
can be. Future work should investigate different variations of the
approach we have described, and explore the right time to introduce
students to the concept of prompt-based code generation.

ACKNOWLEDGMENTS

We are grateful for the grant from the Ulla Tuominen Foundation
to Juho Leinonen.

REFERENCES

[1] Joe Michael Allen, Kelly Downey, Kris Miller, Alex Daniel Edgcomb, and Frank
Vahid. 2019. Many Small Programs in CS1: Usage Analysis from Multiple Univer-
sities. In 2019 ASEE Annual Conference & Exposition. ASEE Conferences, Tampa,
Florida, 1–13. https://peer.asee.org/33084.

[2] Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, Arjun Guha, Molly Q Feld-
man, and Carolyn Jane Anderson. 2023. StudentEval: A Benchmark of Student-
Written Prompts for Large Language Models of Code. arXiv:2306.04556 [cs.LG]

[3] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It

https://arxiv.org/abs/2306.04556


Prompt Problems: A New Programming Exercise for the Generative AI Era SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery,
NY, USA, 500–506. https://doi.org/10.1145/3545945.3569759

[4] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages Con-
sidered Unhelpful: The Landscape of Text-Based Programming Error Message
Research. In Proceedings of the Working Group Reports on Innovation and Technol-
ogy in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-WGR ’19).
ACM, NY, NY, USA, 177–210. https://doi.org/10.1145/3344429.3372508

[5] Bruno Pereira Cipriano and Pedro Alves. 2023. GPT-3 vs Object Oriented Pro-
gramming Assignments: An Experience Report. In Proceedings of the 2023 Con-
ference on Innovation and Technology in Computer Science Education V. 1 (Turku,
Finland) (ITiCSE 2023). Association for Computing Machinery, NY, USA, 61–67.
https://doi.org/10.1145/3587102.3588814

[6] Paul Denny, Brett A. Becker, Juho Leinonen, and James Prather. 2023. Chat Over-
flow: Artificially Intelligent Models for Computing Education - RenAIssance or
ApocAIypse?. In Proceedings of the 2023 Conference on Innovation and Technology
in Computer Science Education V. 1 (Turku, Finland) (ITiCSE 2023). Association for
Computing Machinery, NY, USA, 3–4. https://doi.org/10.1145/3587102.3588773

[7] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring Prompt Engineering for Solving CS1 Problems Using Natural Lan-
guage. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing
Machinery, NY, USA, 1136–1142. https://doi.org/10.1145/3545945.3569823

[8] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
CodeWrite: Supporting Student-Driven Practice of Java. In Proceedings of the
42nd ACM Technical Symposium on Computer Science Education (Dallas, TX,
USA) (SIGCSE ’11). Association for Computing Machinery, NY, USA, 471–476.
https://doi.org/10.1145/1953163.1953299

[9] Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio San-
tos, and Sami Sarsa. 2023. Computing Education in the Era of Generative AI.
arXiv:2306.02608 [cs.CY]

[10] Yuemeng Du, Andrew Luxton-Reilly, and Paul Denny. 2020. A Review of Research
on Parsons Problems. In Proceedings of the Twenty-Second Australasian Computing
Education Conference (Melbourne, VIC, Australia) (ACE’20). Association for Com-
puting Machinery, NY, USA, 195–202. https://doi.org/10.1145/3373165.3373187

[11] Barbara J. Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas, Juho
Leinonen, Craig S. Miller, Briana B. Morrison, Janice L. Pearce, and Susan H.
Rodger. 2022. Parsons Problems and Beyond: Systematic Literature Review
and Empirical Study Designs. In Proceedings of the 2022 Working Group Reports
on Innovation and Technology in Computer Science Education (Dublin, Ireland)
(ITiCSE-WGR ’22). Association for Computing Machinery, NY, USA, 191–234.
https://doi.org/10.1145/3571785.3574127

[12] Tony Haoran Feng, Paul Denny, Burkhard C. Wünsche, Andrew Luxton-Reilly,
and Steffan Hooper. 2024. More Than Meets the AI: Evaluating the Performance
of GPT-4 on Computer Graphics Assessment Questions. In Proceedings of the
26th Australasian Computing Education Conference (Sydney, NSW, Australia)
(ACE ’24). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3636243.3636263

[13] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Proceedings of the 24th Australasian
Computing Education Conference (Virtual Event, Australia) (ACE ’22). ACM, NY,
USA, 10–19. https://doi.org/10.1145/3511861.3511863

[14] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A. Becker. 2023. My AI Wants to Know If This Will
Be on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In
Proceedings of the 25th Australasian Computing Education Conference (Melbourne,
VIC, Australia) (ACE ’23). Association for ComputingMachinery, NY, USA, 97–104.
https://doi.org/10.1145/3576123.3576134

[15] Breanna Jury, Angela Lorusso, Juho Leinonen, Paul Denny, and Andrew Luxton-
Reilly. 2024. Evaluating LLM-generated Worked Examples in an Introductory
Programming Course. In Proceedings of the 26th Australasian Computing Educa-
tion Conference (Sydney, NSW, Australia) (ACE ’24). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3636243.3636252

[16] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI ’23). Association for Computing Machinery, NY, USA, Article
455, 23 pages. https://doi.org/10.1145/3544548.3580919

[17] Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Re-
sistance is Futile": How University Programming Instructors Plan to Adapt as

More Students Use AI Code Generation and Explanation Tools Such as Chat-
GPT and GitHub Copilot. In Proceedings of the 2023 ACM Conference on Inter-
national Computing Education Research - Volume 1 (Chicago, IL, USA) (ICER
’23). Association for Computing Machinery, New York, NY, USA, 106–121.
https://doi.org/10.1145/3568813.3600138

[18] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (Turku, Fin-
land) (ITiCSE 2023). Association for Computing Machinery, New York, NY, USA,
124–130. https://doi.org/10.1145/3587102.3588785

[19] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A. Becker. 2023. Using Large Language Models to Enhance Program-
ming Error Messages. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). ACM, NY,
USA, 563–569. https://doi.org/10.1145/3545945.3569770

[20] Mark Liffiton, Brad Sheese, Jaromir Savelka, and Paul Denny. 2023. CodeHelp: Us-
ing Large Language Models with Guardrails for Scalable Support in Programming
Classes. arXiv:2308.06921 [cs.CY]

[21] Stephen MacNeil, Joanne Kim, Juho Leinonen, Paul Denny, Seth Bernstein,
Brett A. Becker, Michel Wermelinger, Arto Hellas, Andrew Tran, Sami Sarsa,
James Prather, and Viraj Kumar. 2023. The Implications of Large Language
Models for CS Teachers and Students. In Proceedings of the 54th ACM Tech-
nical Symposium on Computer Science Education V. 2 (Toronto ON, Canada)
(SIGCSE 2023). Association for Computing Machinery, NY, USA, 1255. https:
//doi.org/10.1145/3545947.3573358

[22] StephenMacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul Denny,
Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using Code Expla-
nations Generated by Large Language Models in a Web Software Development
E-Book. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing
Machinery, NY, USA, 931–937. https://doi.org/10.1145/3545945.3569785

[23] Kamil Malinka, Martin Peresíni, Anton Firc, Ondrej Hujnák, and Filip Janus. 2023.
On the Educational Impact of ChatGPT: Is Artificial Intelligence Ready to Obtain
a University Degree?. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE 2023).
ACM, NY, USA, 47–53. https://doi.org/10.1145/3587102.3588827

[24] Leo Porter and Daniel Zingaro. 2023. Learn AI-Assisted Python Programming:
With Github Copilot and ChatGPT. Manning, Shelter Island, NY.

[25] James Prather, Paul Denny, Juho Leinonen, Brett Becker, et al. 2023. The Robots
are Here: Navigating the Generative AI Revolution in Computing Education. In
Proceedings of the 2023 Working Group Reports on Innovation and Technology in
Computer Science Education (Turku, Finland) (ITiCSE-WGR ’23). ACM, NY, USA.

[26] James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. “It’s Weird That It Knows What I Want”: Usability and Interactions
with Copilot for Novice Programmers. ACM Trans. Comput.-Hum. Interact. 31, 1,
Article 4 (Nov 2023), 31 pages. https://doi.org/10.1145/3617367

[27] Brent Reeves, Sami Sarsa, James Prather, Paul Denny, Brett A. Becker, Arto
Hellas, Bailey Kimmel, Garrett Powell, and Juho Leinonen. 2023. Evaluating the
Performance of Code Generation Models for Solving Parsons Problems With
Small Prompt Variations. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE 2023).
ACM, NY, USA, 299–305. https://doi.org/10.1145/3587102.3588805

[28] Advait Sarkar. 2023. Will Code Remain a Relevant User Interface for End-
User Programming with Generative AI Models?. In Proceedings of the 2023
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Cascais, Portugal) (Onward! 2023).
Association for Computing Machinery, New York, NY, USA, 153–167. https:
//doi.org/10.1145/3622758.3622882

[29] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models. In Proceedings of the 2022 ACM Conference on International Comput-
ing Education Research - Volume 1 (Lugano and Virtual Event, Switzerland)
(ICER ’22). Association for Computing Machinery, NY, USA, 27–43. https:
//doi.org/10.1145/3501385.3543957

[30] Leonard Tang, Elizabeth Ke, Nikhil Singh, Bo Feng, Derek Austin, Nakul Verma,
and Iddo Drori. 2022. Solving Probability And Statistics Problems By Probabilistic
Program Synthesis At Human Level And Predicting Solvability. In Artificial
Intelligence in Education: 23rd International Conference, AIED 2022, Durham, UK,
July 27–31, 2022, Proceedings, Part II (Durham, United Kingdom). Springer-Verlag,
Berlin, Heidelberg, 612–615. https://doi.org/10.1007/978-3-031-11647-6_127

[31] Matti Tedre and Henriikka Vartiainen. 2023. K-12 Computing Education for the
AI Era: From Data Literacy to Data Agency. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (Turku, Finland)
(ITiCSE 2023). Association for Computing Machinery, NY, USA, 1–2. https:
//doi.org/10.1145/3587102.3593796

https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3587102.3588814
https://doi.org/10.1145/3587102.3588773
https://doi.org/10.1145/3545945.3569823
https://doi.org/10.1145/1953163.1953299
https://arxiv.org/abs/2306.02608
https://doi.org/10.1145/3373165.3373187
https://doi.org/10.1145/3571785.3574127
https://doi.org/10.1145/3636243.3636263
https://doi.org/10.1145/3636243.3636263
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3636243.3636252
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3545945.3569770
https://arxiv.org/abs/2308.06921
https://doi.org/10.1145/3545947.3573358
https://doi.org/10.1145/3545947.3573358
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3587102.3588827
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3587102.3588805
https://doi.org/10.1145/3622758.3622882
https://doi.org/10.1145/3622758.3622882
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1007/978-3-031-11647-6_127
https://doi.org/10.1145/3587102.3593796
https://doi.org/10.1145/3587102.3593796

	Abstract
	1 Introduction
	2 Related work
	3 Pilot Study
	4 Practicing Prompt Problems
	4.1 Tool Design
	4.2 Classroom Evaluation

	5 Experiences
	5.1 Student Interactions with Prompt Problems
	5.2 Student Reflections on Prompt Problems

	6 Discussion
	6.1 Variations and Problem Design

	7 Conclusion
	Acknowledgments
	References

