
Programming Versus Natural Language: On the Effect of
Context on Typing in CS1

John Edwards
john.edwards@usu.edu
Utah State University

Logan, Utah

Juho Leinonen
juho.leinonen@helsinki.fi
University of Helsinki

Helsinki, Finland

Chetan Birthare
chetan16994@gmail.com
Utah State University

Logan, Utah

Albina Zavgorodniaia
albina.zavgorodniaia@aalto.fi

Aalto University
Espoo, Finland

Arto Hellas
arto.hellas@aalto.fi
Aalto University
Espoo, Finland

ABSTRACT
Analyzing keystroke data from students working on essay and pro-
gramming tasks, we study to what extent the difference in task
context influences performance in typing. Using data from two
introductory programming courses offered at two separate institu-
tions, we compare and contrast typing speed between programming
and natural language tasks. We observe that students tend to be
faster at typing (the same) character pairs when writing natural lan-
guage text than when learning to write code. We show that students
improve on typing character pairs that appear in frequently used
words in programming languages, and that typing programming
constructs also improves. We find that students are faster at detect-
ing and erasing their mistakes when typing natural language text
than when programming. Our results support theories regarding
contextual memory, procedural memory, and practice, and have
implications for course curriculum and pedagogy design.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
keystroke data, context, digraphs, programming process data

ACM Reference Format:
John Edwards, Juho Leinonen, Chetan Birthare, Albina Zavgorodniaia,
and Arto Hellas. 2020. Programming Versus Natural Language: On the
Effect of Context on Typing in CS1. In Proceedings of the 2020 Interna-
tional Computing Education Research Conference (ICER ’20), August 10–12,
2020, Virtual Event, New Zealand. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3372782.3406272

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER ’20, August 10–12, 2020, Virtual Event, New Zealand
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7092-9/20/08. . . $15.00
https://doi.org/10.1145/3372782.3406272

1 INTRODUCTION
The contexts in which we work, study, and live shape our reac-
tions and memory [4, 29, 47]. In the classroom, we know our stu-
dents, and we often easily remember their names. At the same
time, if we happen to meet them in a context outside of the class-
room, recalling their names can be difficult. This effect is a result
of context-dependent memory [47], which causes us to better re-
call information in the same context in which it was learned. For
example, recalling information is easier underwater than on land
if the information was learned underwater [20]; the same effect
holds for many situations [47]. In addition to recall, the context
influences our actions and behavior. For example, students within
a mathematics classroom are more likely to solve a problem us-
ing a mathematical approach than students working on the same
problem in a social sciences classroom, i.e., “interpretations of how
to solve a problem seem to relate closely to [students’] implicit and
explicit assumptions about what is a natural mode of proceeding in a
certain situation and given a certain type of task” [50].

Most of the research on context-dependent memory has focused
on recall, where participants are first presented a set of stimuli,
which they are later prompted for. There exists many types of
memories, however, one of which – procedural memory – is of par-
ticular interest to computer science educators. Procedural memory
is a type of unconscious and long-term memory responsible for
motor skills such as talking or writing [24, 48]. Such memory is
constructed through practice where the activity is repeated over
and over until the learned activity becomes automatic [17].

When students learn to program, they work in several over-
lapping domains, one of which is related to writing syntactically
correct code – a key part of being able to program [10, 28]. As
mistakes with syntax can lead to significant struggles [1, 6], and as
student success is linked with syntax error rates [22] and typing pat-
terns [13, 33, 52], insight into how students type could help when
designing new interventions. Understanding student behaviors at
the level of procedural memory, or muscle memory, is where our
work is situated. We look at this from two different types of tasks,
typing computer code and typing natural language, which – we
hypothesize – could partially rely on context-dependent memory.

In this work, we study student typing in two contexts: program-
ming in a CS1 course and typing a natural language essay. Further,
we analyze the development of student typing as they progress

https://doi.org/10.1145/3372782.3406272
https://doi.org/10.1145/3372782.3406272

through a CS1 course. We report and discuss quantitative measures
such as typing speed, frequency of typing errors, and error recov-
ery between the contexts as well as how typing speed and typing
errors evolve over the course. To improve the generalizability of our
results, we use timestamped keystroke data collected from two sep-
arate universities that use different programming languages (Java
and Python) and different spoken languages (Finnish and English).
Our overarching research themes in this article are how do student
typing patterns differ between writing natural language and writing
computer code and how do those patterns evolve as proficiency in
programming increases. Specific questions include whether students
type faster in natural language than in programming, how typing
patterns evolve in programming as proficiency increases, and how
error detection and recovery differs with context and evolves with
time. Answering these questions can contribute to our understand-
ing of context and procedural memory in CS education, as well as
lead to development of interventions, pedagogies, and curricula to
improve student outcomes and attitudes in programming courses.

Much of the previous research on keystroke data collected from
programming courses has focused on specific uses of the keystroke
data such as predicting programmer proficiency [13, 33, 52], eval-
uating curricular innovations [14, 30] and identifying program-
mers [35]. To our knowledge, however, there exists very little work
that uses multiple sources of keystroke data. One of the few is [39],
in which the authors sought to determine how the accuracy of
identifying programmers based on typing changes across tasks.

This article is organized as follows. In Section 2, we outline the
background on which this work builds upon, discussing streams of
research on memory, schemas, and typing patterns. In Section 3, we
outline the study contexts, data, research questions, and the analysis
methodology. Results of our study are presented in Section 4 and
further discussed in Section 5. Conclusions and possible directions
for future work are presented in Section 6.

2 RELATEDWORK
In this section we outline related work on context-dependent mem-
ory, schemas and problem solving, studies on cognition and pro-
gramming with a focus on typing patterns, and studies on typing
patterns and flow of typing.

2.1 Memory and context
Long-term memory can be broadly categorized into two main cate-
gories: explicit (declarative) memory and implicit (non-declarative)
memory. Explicit memory [53] is responsible for the conscious
recollection of information, facts, and experiences, while implicit
memory [44] is related to unconsciously used skills such as walking,
writing, and the ability to distinguish between categories of items.
One of the most important types of implicit memory is procedural
memory [24]. It helps one to perform particular tasks without con-
sciously thinking about these activities. Skilled typing is a part of
motor procedural memory.

Learning happens in various contexts, and research has shown
that it plays a notable role in recall [47]. If information is asked for
in the same context it was learned, recall accuracy would be higher
than it would be in other contexts [20]. This effect on improving
remembering and consequently learning is called context-dependent

memory [54]. It is also observable in behavior – context influences
actions as it may prime us to behave in particular context-specific
ways [50]. At the same time, trying to visualize the desired con-
text may already help recall [47], e.g., by mentally tracing steps to
identify missing items.

A number of studies demonstrated dependency of verbal memory
performance on such contexts as environment [47], physiological
state [15], background music [46], and even chewing a piece of gum
[62]. Some of the studies also have shown that perceptual-motor
skills depend on such learning contexts as temperature [21], colour
[42, 43] and location [42]. The influence of presence or absence of
learning contextual stimuli on retrieval of learnt skill/information
during the test is called context-dependent retrieval [42]. Such con-
textual dependencies tend to wane with time as the skill becomes
more practised [38, 63].

2.2 Schemas and problem solving
Schemas are memory structures that an individual uses to represent
categories of information. Schemas and their connections are an
integral part of how an individual retrieves and stores information
from long-term memory, also guiding patterns of behavior [19].
When learning, new information can be interpreted through exist-
ing schemas retrieved to the working memory, or if no appropriate
schemas are identified, existing schemas may be adjusted or new
schemas may be created [40, 51].

Schemas are an integral part of problem solving, and they guide
behavior when faced with a problem [49]. This applies to the do-
main of programming [5, 7, 41]. Similarly to the general theory [49],
it has been suggested that a programmer who writes a solution to a
programming problem in a linear manner may have identified and
applied an existing schema, while solution to a programming prob-
lem for which no existing schema is found is constructed based on
schemas on related problems and means-end analysis [5, 41]. Over
time, the accumulation and evolution of schemas allows experts
to perform familiar tasks fluently, and also, to handle new tasks
with less effort [55]. An important part of this process is general-
ization, where the learner learns to ignore details and to focus on
the important areas of the problem [41].

Schema theory applies to computer programming in more than
just higher-order tasks like problem solving – it also has application
in tasks, like typing, that are largely driven by procedural mem-
ory. Schank and Abelson [45] developed the concept of a script
– an action-oriented schema for a sequence of actions or events.
Scripts imply specific routine actions for completing tasks and in-
volve well-learnt procedural motor and cognitive skills. Schemas
involved in skilled typing store procedural rather than declarative
information [24].

2.3 Cognitive Load
Cognitive load is the amount of work imposed on working memory
and it refers to the amount of resources used by working mem-
ory while dealing with a task. Three types of cognitive load have
emerged from the Sweller’s Cognitive Load Theory (CLT) [49] –
intrinsic, which is the effort associated with a specific topic, innate
difficulty; extraneous, which refers to the way information or tasks
are presented to a learner and represents processing information

effort; and germane which refers to the work put into creating a
permanent store of knowledge, or a schema. The role of germane
load, however, is arguable [25].

Theory by Van Merriënboer, Sweller and colleagues [56], in-
dicates that using schemas reduces cognitive load considerably,
moreover, people are inclined to do it unconsciously whenever is
possible. A study by Leyman et al. [34] showed a negative correla-
tion between the cognitive load and speed of typing as a secondary
task. This is an important finding as it implies that we may be able
to use easily measured skills, such as typing, to infer cognitive load
of students during different programming tasks.

2.4 Typing Patterns and Flow of Typing
Theway a person types has been studied for many purposes ranging
from identifying individuals [3, 35, 36] to detecting the emotional
states of the person typing [16, 27], and is increasingly used in com-
puting education [31]. Such analysis relies especially on the timing
of the keystrokes, which is unique to the person, allowing identifi-
cation of persons and their emotional state. The most commonly
used features are character pair – or digraph – latencies [26].

Dhakal et al. [8] examined 136 million keystrokes collected from
a website that provides online typing courses and typing tests.
They found that faster typists make fewer mistakes, use on average
more fingers when typing, and are more likely to “rollover” whilst
typing. In rollover, the next key to be typed is pressed already
before releasing the previous key that was pressed. This is in line
with a TYPIST model – a Theory of Performance in Skilled Typing
proposed by John [23]. It suggests parallel operation and sequential
dependencies of three processors involved in typing, including a
cognitive processor.

The context of typing has been found to have an effect on typ-
ing patterns. For example, Villani et al. [60] found that the type
of keyboard can have an effect on the accuracy of identifying the
person typing. Similarly, Peltola et al. [39] found that when trying
to identify students writing natural language based on typing pro-
files built from programming assignment keystroke data, accuracies
were lower compared to when the context was solely programming
assignments. Additionally, Leinonen et al. [32] found that even
when the context is the same – in their case, programming assign-
ments – but the tasks are different (exam vs regular assignments),
identification is not as accurate as when the context is more similar.

In programming, Thomas et al. [52], Leinonen et al. [33] and
Edwards et al. [13] have found that the way someone types while
programming can indicate students’ future programming perfor-
mance and/or whether they have prior programming experience.
In Thomas et al.’s [52] and Leinonen et al.’s [33] studies, digraphs
were divided into types based on the types of characters that com-
prise the digraph: numeric, alphabetic, other and “edge” (where the
characters are of different types). Both found that numeric digraphs
and edge digraphs are most indicative of future performance. In
Edwards et al.’s [13] study, the authors compared predicting pro-
gramming performance based on typing in two different contexts:
an introductory Java course and an introductory Python course.
They found that commonly typed digraphs differ based on the pro-
gramming language (Python versus Java) and spoken language
(English versus Finnish). Additionally, they found that students’

future performance in an exam was easier to predict in the Java
context compared to the Python context.

3 METHODOLOGY
3.1 Context and Data
3.1.1 University A. Utah State University is a mid-sized public uni-
versity in the Western United States. During the first five weeks of
the programming portion of a fall, 2019 CS1 course students used a
custom Python IDE for their programming projects. The IDE logged
keystrokes as students completed programming projects. After the
study period students transitioned to a mainstream Python IDE
without keystroke logging capabilities. Five programming projects,
one per week, were assigned to the students during the study period.
Each project consisted of three parts: The first part was a series of
60-150 syntax exercises, requiring about 25 minutes of effort on
average [12]. The second and third parts were more traditional pro-
gramming projects: one was a text-based mathematical or logical
problem, such as writing an interest calculator; the other project re-
quired students to draw a picture or animation, such as a snowman,
using turtle graphics. Near the end of the semester, in the 17th week,
students were assigned to write a short essay (1-2 paragraphs) on
their experience in the course. The essay was written in English.
We logged keystrokes for the essay. We label keystrokes logged in
the programming projects as “Python” keystrokes, and keystrokes
from the essay as “English” keystrokes. There were three sections
of the course all taught by the same instructor. Projects and instruc-
tion were the same for all three sections. At the beginning of the
semester students were given the opportunity to opt into the study
according to the university’s IRB protocol, and this paper uses data
only from students who opted in. The course was identical for stu-
dents who chose to participate in the study and those who chose
not to.

3.1.2 University B. University of Helsinki is a research-first uni-
versity in Helsinki, Finland. The data for this study was collected in
the Spring of 2017, during which a 14-week introductory program-
ming course was offered online. The introductory programming
course is given in Java and it covers the basics of programming,
including procedural programming, object-oriented programming
and functional programming.

Each week in the course, students work on tens of programming
assignments, which are interleaved in the course material. The
material is built so that the programming tasks are sequenced to
provide scaffolding to students. Whenever a new topic is learned,
students are first asked a few quiz-like questions about the topic,
after which the students work on a handful of smaller programming
assignments. The small programming assignments together build
into larger programs. After this, students practice constructing
larger programs that use the topics that they have just learned (for
additional details on the pedagogy, see [57, 58]).

Programming assignments in the course are completed using
Test My Code [59], which is a desktop IDE accompanied with an
automated assessment plugin that provides students feedback as
they are working on the course assignments. Combined with an
automatic assessment server, the plugin also provides functionality
for sending assignments for automatic assessment. In addition to the

Attribute University A University B

Instruction Lectures w/sections Online, end of course
essays on campus

Language (prog.) Python Java
Language (essay) English Finnish
Participants 254 113
Environment Web-based Desktop

Table 1: Summary of contexts

support and assessment, the plugin collects keystroke data from the
students’ working process, which allows fine-grained plagiarism
detection approaches for the online course and makes it possible to
provide more fine-grained feedback on students’ progress.

At the end of the 14-week course, students come to the university
campus for an exam, where they work on both essays as well as
on programming assignments. The exam covers content from the
course, but in addition, students also write about their motivations
and aspirations in the essays. Essays were written in an online
notepad, which similar to the programming assignments, records
keystroke data of students’ writing process.

For the purposes of this study, we use keystroke data from both
programming assignments and essays of those students who came
to the exam and gave research consent.

The contexts are summarized in Table 1.

3.1.3 Statistical tests. We report 𝑝 values of all statistical signifi-
cance tests, of which there are 42. We follow the American Statis-
tical Association’s recommendations to use 𝑝 values as one piece
of evidence of significance, to be used in context [61]. For distribu-
tion comparisons we use the Mann-Whitney U test as normality
did not hold in those cases. We also use linear regression and the
Cox-Stuart test in trend analysis.

3.2 Digraphs
All of our measures are based on keystroke-derived digraphs and
similar constructs. A digraph is a pair of consecutive keystrokes. For
example, typing Hello yields four digraphs: H→e, e→l, l→l,
and l→o. The latency of a digraph is the amount of time elapsed be-
tween the two keystrokes. In all of our measurements we consider
only digraphs with latencies greater than 50ms. Previous studies
on keystroke data use a lower boundary of 10ms (e.g. [9, 35]), but
our lower boundary is 50ms as we have observed that some auto-
complete events in IDEs take longer than 10ms. For most of our
analyses we use an upper threshold of 750ms to filter out disen-
gagement from procedural memory-driven typing [9, 35]. We raise
the threshold to 2000ms when measuring digraphs in the context
of a programming language construct as multiple digraphs consti-
tuting a construct indicates engagement. Analyses with the higher
threshold are evolution studies (Section 4.3). For the accuracy study
(Section 4.4.1) we do not use a threshold. We do not generally mea-
sure the time taken to initiate typing a construct. For example, while
we measure the four inter-character latencies of Hello, we don’t
consider the amount of time elapsed between typing H and the last
key struck before H.

3.3 Research Questions and Contributions
Our research questions for this study are as follows.

RQ1 How does context influence the typing speed of computer
source code and written language?

RQ2 How does the typing speed of programming language con-
structs evolve over time?

RQ3 How does the number of typing mistakes while program-
ming evolve and how does the speed at which students cor-
rect mistakes differ between programming and writing nat-
ural language?

For RQ1, our hypothesis is that all digraphs will show lower
latencies in natural language than in programming, as students are
in the unfamiliar environment of computer programming, whereas
typing natural language will be far more familiar and practiced.
For example, we predict that the p→r digraph will be typed more
slowly in Python as compared to English.

While RQ1 focuses on differences in typing code and natural lan-
guage, RQ2 focuses specifically on typing code and how it evolves.
We hypothesize that digraph latencies and whole construct laten-
cies decrease with practice. But, again, context comes into play, as
schemas learnt for a particular construct may not be immediately
transferred into a different context.

RQ3 deals with typing errors. Our work deals strictly with errors
in typing that students catch and correct within a few keystrokes.
This is different than analysis of syntax errors at compile time
performed by a number of researchers (e.g. [2, 22]). We look at
two aspects of typing errors. The first is in the number of errors
committed. Our hypothesis is that with increasing familiarity of
programming the number of errors in typing familiar constructs
decreases. The second aspect is in error recovery time. As measured
by the time it takes students to press the delete key after typing
an incorrect character our hypothesis is that students are faster at
error detection and recovery when typing natural language, and
get faster at detection and recovery as their programming skills
improve.

We note that we are not directly comparing data between univer-
sities, i.e., we do not compare Finnish to English nor do we compare
Java to Python. Rather, we use the two university contexts primarily
to show generalizability of our results.

Our contributions are as follows: 1) results and analysis that
support the theory that procedural memory is affected by context
both at a language level (e.g. Java vs. Finnish) and at a word level
(e.g. print vs. int), supporting the theory of context-dependent
schemas; 2) experimental evidence that practice improves proce-
dural skills in the computer programming context and support for
the possibility of measuring cognitive load with keystroke measure-
ments; 3) evidence that practice improves typing error rates as well
as time required to detect and correct errors.

4 RESULTS
4.1 Descriptive Statistics
Table 2 shows overall keystroke statistics across the four contexts of
the study. In both cases, the number of digraphs in the programming
context exceeds that of the natural language context, though, as
we will see, the number of natural language digraphs still admits

context digraphs/student ×10−3 latencies (ms)

Python 19 (𝜎 = 11) 230 (𝜎 = 158)
English 1.7 (𝜎 = .95) 181 (𝜎 = 122)
Java 157 (𝜎 = 63) 216 (𝜎 = 148)
Finnish 3.6 (𝜎 = 1.4) 179 (𝜎 = 121)

Table 2: Average number of digraphs per student and di-
graph latency for the four languages with standard devia-
tions. The number of digraphs is given in thousands and la-
tencies are in milliseconds. Digraphs are restricted to those
with latencies between 50ms and 750ms.

statistical testing. The Java context has significantly more digraphs
(157000) per student compared to the Python context (19000) due to
the larger number of weekly assignments. We also see from Table 2
that, in general, students are faster at typing natural language than
computer code, an observation that we will explore.

4.2 Context and Typing Speed
Our first research question (RQ1) is how does context influence the
typing speed of computer source code and written language? Our
hypothesis that digraphs would have lower latencies (faster) in
natural language than in programming is supported by the data
shown in Table 2 and Figure 1. As reported in Table 2, on average,
English character pairs are typed approximately 49 ms faster than
in Python (Mann-Whitney𝑈 = 2.08 × 1012, 𝑝 < 0.0001). Similarly,
Finnish character pairs are typed approximately 37 ms faster than
Java character pairs (Mann-Whitney𝑈 = 3.10 × 1012, 𝑝 < 0.0001).
Digraphs shown in Figure 1a are frequent in both Python and Eng-
lish, and digraphs in Figure 1b are frequent in both Java and Finnish.
In the Python/English case, all character pairs are typed faster in
English than in the first week of programming, and for eight of
the nine, English remains faster in the last week. We also see that
speed generally increases from the first to last week, an effect that
we will explore in more detail in Section 4.3. Figure 1b shows that
the Java/Finnish case is similar: eight of the ten top digraphs are
faster in Finnish than Java, with a somewhat general trend of im-
provement from first to last week, although some digraphs saw the
opposite effect (again, see Section 4.3). We controlled for the lack
of similarity between programming language and natural language
by taking the intersection of the top 40 digraphs in Python/English,
and the top 30 digraphs in Java/Finnish. We chose 40 and 30, re-
spectively, to yield about 10 top digraphs in each intersection.

It turns out that language is not the only context to affect typing
speed, but that the word being typed also has a strong influence
on a student’s proficiency at typing a character pair. In Figure 2
we study digraphs in two common constructs in Python, print()
and range() and compare them in two other contexts: when the
digraph is used in another word when programming, and when
it is used in any word in English. For each digraph we performed
two t-tests: “in word” against “not in word” and “in word” against
“English”. Cases in which 𝑝 is small for both tests indicate, with
some confidence, a digraph for which typing speed is influenced
by word context. We see from the chart that students type r→i,
i→n, and n→t faster in print() than not, but students type n→g

0 50 100 150 200 250 300 350 400 450
latency (ms)

e→SP

SP→t

t→h

h→e

SP→a

i→n

t→o

o→r

n→d

di
gr

ap
h

Top digraphs common to Python and English
First Week
Last Week
English

(a)

0 50 100 150 200 250 300 350 400 450
latency (ms)

s→e

e→n

t→a

e→t

i→s

a→n

s→t

t→e

i→n

l→e

di
gr

ap
h

Top digraphs common to Java and Finnish
First Week
Last Week
Finnish

(b)

Figure 1: (a) Box plot of latencies of the top digraphs in both
Python and English. The selected digraphs are the intersec-
tion of the 40 most common digraphs in Python and the 40
most common digraphs in English. SP is the space charac-
ter. (b) Average typing speeds of the intersection of top 30
digraphs in Java and Finnish.

more slowly in range() than not. For possible explanations see the
discussion section.

4.3 Evolution of Typing Speed
Our second research question (RQ2) is how does the typing speed
of programming language constructs evolve over time? We study
the evolution of typing speed from two perspectives. First, we
analyze the evolution of individual digraphs over time and their
correspondence to specific programming constructs. Then, we study
how the typing speed of complete programming constructs evolves
over time.

p→r r→i* i→n* n→t* r→a* a→n n→g* g→e
digraph

0

50

100

150

m
ea

n
la

te
nc

y
(m

s)

in word
not in word
English

Figure 2: Mean latencies of digraphs in context. “in word” is
the digraph used in the respective Python word (print() or
range()). “not in word” is all other Python usages. “English”
is all uses in English. Digraphs marked with * have t-test
results of 𝑝 < 0.001 for both “not in word” and “English”
distributions against the “in word” distribution.

digraph word lang 𝑛 coef std err 𝑝

p→r all Python 80 −0.262 0.0304 < 0.001
p→r print(Python 80 −0.249 0.0298 < 0.001
n→t all Python 80 0.101 0.0348 0.005
n→t print(Python 80 −0.244 0.0215 < 0.001
n→t int(Python 80 −0.225 0.147 0.137
i→n all Python 80 0.0542 0.02 0.008
i→n print(Python 80 −0.119 0.0146 < 0.001
i→n int(Python 80 −0.0594 0.156 0.706
i→n all Java 400 −0.00817 0.0053 0.124
i→n int Java 400 0.00386 0.00425 0.364
i→n String Java 400 0.00431 0.00451 0.339

Table 3: Coefficients and statistics of linear regression fits of
latency evolution of digraphs shown in Figure 3 and other
digraphs. The word is the construct the digraph is used in.
𝑛 is the number of times the construct was typed. Students
in the Java course typed the i→n digraph more times than
in Python, so we report with the additional data (400 uses).
We report 𝑝-values as a measure of confidence in the coeffi-
cients.

4.3.1 Digraph evolution. Our hypothesis is that the speed of typing
individual pairs of characters improves over time. Our data support
the hypothesis, although context of what word is being typed must
also be considered. We illustrate this with data from the Python
course. Consider the digraph p→r (Figure 3a). The latency of p→r
has a downward trend (see Table 3) as students type it the first 80
times through the course of the semester. Notably, the downward
trend is observed when p→r is typed in the context of print()
and also when it is typed regardless of context, since, for each use,
at least 75% of the students were typing print(), so both curves
are largely measuring use in the context of print().

We contrast the progression of p→rwith the digraph n→t (Fig-
ure 3b). When typed in the context of print(), n→t has a down-
ward trend, indicating improvement in speed of typing. However,
when measured in all contexts, a spike in latency occurs around the

0 10 20 30 40 50 60 70 80
use

155

160

165

170

175

180

185

190

m
ea

n
la

te
nc

y
(m

s)

p→r in all
p→r in "print("

(a)

0 10 20 30 40 50 60 70 80
use

110

120

130

140

150

160

170

m
ea

n
la

te
nc

y
(m

s)

n→t in all
n→t in "print("
n→t in "int("

(b)

Figure 3: Progression of digraphs by context. Each data point
represents the mean latency across all users for a digraph 𝑑

at use 𝑖. The x-axis is the 𝑛th time the digraph was typed.
(a) Progression of digraph p→r. (b) Progression of digraph
n→t. Since conversion of strings to integers using the int()
function was introduced later in the semester there were
fewer uses of n→t in the int() context to analyze.

20th use. It was at about this time that students started practicing
conversion of strings to integers using the int() function – at the
first use of n→t, 90% of uses were in print(), while by use 20,
print() had dropped to 48%, with the next most common context
being int(), accounting for 11% of users. As seen in Figure 3b, this
shift causes the mean n→t latency, in the context of any word,
to actually increase, meaning students were getting worse at typing
n→t. So students appear to be improving as long as the character
pair is restricted to a word context. Some readers may note that the
latency of the n→t digraph in all contexts does not improve after
use 20. This is because, after int() is introduced, other constructs
with n→t are introduced shortly thereafter further complicating
the latency signal of n→t usages.

We point out two results that we will treat in detail in the dis-
cussion section. Firstly, the i→n digraph is improved much more
by Python students than Java students (see the linear regression
coefficients in Table 3). The second result is that, in the Python
context, n→t is typed roughly 20 ms more slowly in the int()
context than print() and improves more slowly.

4.3.2 Construct evolution. Next, we focus on writing keywords.
We study the average typing speed of the student population when
writing keywords, and analyze how the typing speed evolves over
the course. For this analysis we allow digraph latencies up to 2000ms
to account for initial learning. The lower boundary remains the
previously used 50ms.

• When studying the first and last attempts at writing a con-
struct, we study the transition speed between each letter
pair, e.g. w→h.

• When studying the evolution of typing over time, we study
the overall typing speed of a construct, e.g. while, using the
average typing speed of the construct over the population.

We analyze student performance in writing commonly used
constructs listed in Table 4. The sout→TAB is a Java IDE-specific
shortcut that creates the System.out.println(“”); command
that is used for printing.

The time that students took on average to write each construct
for the first and for the last time is reported in Table 4, which also
includes results from a pairedWilcoxon Signed-Rank test testing for
the difference between the first and the last time that each student
wrote the construct. We observe that the difference is significant
in words not commonly used in Finnish (or English); there is a
24% reduction in time that students took to write ArrayList, and
a 19% reduction in time that students took to write sout→TAB.
At the same time, no improvement in typing while is observed.
Similarly, in the Python context, print(saw a 15% reduction and
range(a 16% reduction, while import didn’t have a reduction.
This is presumably because of the parenthesis following print and
range. The reduction in time for Python constructs is impressive
considering the study period was much shorter so students had far
fewer attempts at typing the constructs than in the Java course. We
consider this effect in the discussion section.

Evolution of the typing speed of ArrayList and sout→TAB
is depicted in Figure 4. A downward trend is clearly observable
from the figure when writing ArrayList, while the trend with
sout→TAB is more subtle. A Cox-Stuart trend test indicates a down-
ward trend for both ArrayList and sout→TAB (𝑝 < 0.0001 and
𝑝 = 0.001 respectively).

Further, we looked into the evolution of the constructs by decom-
posing them into the digraphs they are built from. Figure 5 shows
the average latencies of typing sout→TAB for students. We observe
that the first keystrokes for a keyword do not evolve significantly,
but that the evolution is noticeable in the latter keystrokes for a
keyword. Moreover, pressing special keys (e.g. shift for uppercase
character) improves noticeably over time. For example, between
the first and last use of sout→TAB, the time that students take to
move from pressing t to pressing TAB decreases on average by 26%.

first last
construct n ms (𝜎) ms (𝜎) (𝑊,𝑝, 𝑟)

ArrayList 116 2405 (1141) 1832 (877) (1140,< 0.0001, 0.698)
int 531 358 (330) 283 (183) (2070, 0.001, 0.584)
String 358 1050 (610) 916 (441) (2315, 0.009, 0.551)
sout→TAB 369 958 (671) 776 (418) (2172, 0.003, 0.570)
while 77 790 (570) 767 (553) (2836, 0.424, 0.473)
print(108 1784 (796) 1281 (580) (6368,< 0.0001, 0.698)
import 10 1202 (782) 1149 (773) (13458, 0.121, 0.504)
range(17 2118 (1072) 1640 (777) (8160,< 0.0001, 0.634)

Table 4: Differences between the time (in milliseconds) that
students spent when typing a construct for the first and last
time, reported using average and standard deviation (𝜎). The
table includes the average number of times students typed
the construct and student’s pairwise test comparing first and
last attempts using Wilcoxon Signed-Rank test (statistic𝑊 ,
𝑝-value, and effect size 𝑟 measured as 𝑍/

√
𝑁). The top 5 rows

are from the Java course and bottom3 rows are fromPython.

Figure 4: Evolution of the typing speed of ArrayList and
sout→TAB, averaged over students’ 60 first uses. Plottedwith
mean, filled with mean±stdev.

Figure 5: Students’ average typing speed of typing sout fol-
lowed by TAB, shown as transitions. Numbers above the line
show the first observed time of typing the command, and
numbers below the line show the last observed time of typ-
ing the command.

4.4 Typing Mistakes
Our third research question (RQ3) is how does the number of typing
mistakes while programming evolve and how does the speed at which
students correct mistakes differ between programming and writing
natural language? We measure accuracy of typing a string using a

sout→TAB String while import print(
0

20

40

60

80

100

ac
cu

ra
cy

 %

Accuracy for first and last weeks

First week
Last week

Figure 6: Accuracy measures. Accuracy is measured using
Equation 1. The first three constructs are from the Java
course and the last two from the Python course.

lookahead approach. For example, to compute the error of typing
the string “print” we do the following: when “p” is pressed we
begin looking for “r”. If within five keystrokes the student types “r”
with no accumulation of characters (i.e. all non-“r” characters were
deleted using the delete key) then we proceed and look for “i”. We
follow this approach until “print” is typed or until more than five
keystrokes are used while looking for a particular character. If we
successfully find the string 𝑠 (𝑠 =“print” in our example) then we
define the accuracy 𝑎 to be

𝑎 =
|𝑠 |

𝑛 − 𝑑
(1)

where |𝑠 | is the number of characters in token 𝑡 ,𝑛 is the total number
of keystrokes, and𝑑 is the total number of times the delete key was
pressed. Note that this method is not effective if a user highlights a
portion of the string and deletes or replaces it.

4.4.1 Accuracy in typing code. Our hypothesis is that students
would type increasingly error-free code with practice, at least in
the context of common constructs. Figure 6 shows that with practice,
students type most constructs more accurately. However, it is not
consistent across all constructs. Most notable is Python’s import,
which showed an increase of errors in typing.

4.4.2 Error recovery. Our hypothesis that students are faster at
fixing mistakes in natural language than when programming is sup-
ported by our results in both the Python/English and Java/Finnish
courses as can be seen in Figure 7, which shows the distribution of
digraph latencies of the form !delete→delete, i.e., a non-delete
key followed by the delete key. We omit delete→delete digraphs
as we observe that students frequently press deletemany times in
succession to remove large sections of code. During the last week
of programming, when students are ostensibly at their peak of
typing skill, error recovery time is still slower than when typing
in natural language. The Python/English mean drops from 447 to
406 (𝑈 = 3.23𝑒8, 𝑝 < 0.0001, 𝑟 = 0.10) and the Java/Finnish mean
drops from 427 to 390 (𝑈 = 1.13𝑒8, 𝑝 < 0.0001, 𝑟 = 0.12). Only
digraphs with latencies between 50 and 750ms are considered, so
fixing mistakes after a compilation does not play into these results.

Regarding our second hypothesis, that mean latencies would
drop with practice, Figure 7 shows that, at least in the Python
context, this appears to be the case, although little drop is observed.

0 200 400 600 800

latency (ms)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

de
ns

ity

Latency for !delete→delete
First Week
Last Week
English

(a)

0 200 400 600 800

latency (ms)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
de

ns
ity

Latency for !delete→delete
First Week
Last Week
Finnish

(b)

Figure 7: Distribution of digraph latencies for all digraphs
ending with the delete character and starting with some-
thing other than the delete character. Digraphs with laten-
cies lower than 50ms and greater than 750ms are omitted.

In the Python context, the mean latency drops from 465 to 447
(𝑈 = 1.24𝑒9, 𝑝 < 0.0001, 𝑟 = 0.06) from the first week to the last
week. There is only weak evidence of such a drop in the Java context,
dropping from 430 to 427 (𝑈 = 3.59𝑒8, 𝑝 = 0.027, 𝑟 = 0.01).

5 DISCUSSION
5.1 Context and Typing Speed
While students, in general, tend to type faster in natural language
than when programming, this does not hold true for all digraphs,
and the word or programming construct in which the digraph is
found also plays a role in a student’s ability to type it fluently. A
possibility, beyond just whether the word is familiar, is that a di-
graph’s position in a word or construct has an effect. For example,
in Figure 2 we see that in Python’s print function, all digraphs
but the first one are between 10 and 30ms faster when used in the

context of print, while p→r shows little difference. Whether this
is due to cognitive load when starting to type print or to com-
plexities of other constructs containing pr is unclear, though the
latter explanation is assumed to play at least some role since other
constructs, notably range (Figure 2), do not reflect this behavior.

Context has previously been shown to have an effect on key-
stroke based identification accuracies [39] and predicting students’
success based on keystrokes [13]. Comparing our results to those
studies, we too found that context plays a part in our analysis. For
example, students improve in their typing of constructs more in
the Python course even though the period they practice is shorter
time-wise. Similar to Peltola et al. [39], our analysis also suffers
from having less data from one context (essay writing) than from
the other context (programming assignments).

5.2 Evolution of Typing Speed
Our results indicate that speed of typing digraphs depends very
much on context, both at the language and at the word levels. In
Section 4.3.1 we pointed out that the i→n digraph, when restricted
to a single word context, is improved on much more in Python
than Java. That is, i→n in Python’s print() improves 10 ms over
80 uses (using the regression coefficient from Table 3, −0.119 · 80)
while the same digraph in Java’s String shows no improvement
(calculated similarly). One possible explanation is that, since Java
has a richer syntax, improvement for Java students is slowed by the
larger number of syntactical constructs to learn. Another possible
explanation is that, since Python is similar to English (the native
spoken language of most students in that course), students are able
to borrow schemas from natural language and thus improve more
quickly. A third possibility is that the Java students enter the course
with more programming literacy than the Python students, thus
improving less.

Within the same language, a digraph may show differing im-
provement and large differences in initial latencies across two con-
structs. The digraph n→t shows this behavior between the print()
and the int() contexts in Python: as can be seen in Figure 3b and
Table 3, n→t is typed roughly 20 ms slower in the int() context
than in print(), and over the course of 30 uses it improves at dif-
ferent rates between the two contexts. One possible explanation
for the differences in latency is the cognitive load (see Section 2.3)
associated with converting strings to integers. The intuition is that
printing something to the console may be easily understood by a
beginning student, while using int() requires students to reason
about string types, integer types, conversion between the two, and
assigning the result to a variable. Furthermore, it may be possible
that the location of n→t, early in int() and late in print(), may
play a role, as procedural memory may become more prominent
after students gain momentum in typing a construct similar to
rollover behavior observed in previous studies [8]. As a result, im-
provement in procedural memory may be reliant on cognition of
the larger-scale task at hand.

As we conjectured earlier, it is not enough to compare digraph
latencies across languages, as we have shown that word contexts in
the Python language affect performance improvements of a single
digraph. This insight helps explain Figure 1, how the improvement
in the programming language context from first to last week is

mixed – certain difficult constructs may have been taught later
in the semester, lowering the performance for digraphs in that
construct.

5.3 Mistakes and Correcting Them
Wehave shown that error recovery in natural language is faster than
when programming. For students who are novices to programming,
writing an assignment may impose a higher cognitive load than
writing an essay. In this case, less cognitive resources are left to
process sensory information and spot errors. Leyman et al. [34]
report the lowering of typing accuracy when cognitive load rises.

We also hypothesized that error recovery would improve with
practice, and we presented strong evidence that this is the case, at
least in the Python context. The Java context, however, showed only
weak evidence of a very small improvement (see Section 4.4.2 and
Figure 7). Why the Python context showed improvement while the
Java context did not is unclear. It is possible that the fact that Python
is similar to English, while Java is not similar to Finnish, plays a role,
but further study would be needed to explore this effect. The fact
that the effect is very small for both Python and Java is somewhat
easier to explain: throughout the semester students are continually
introduced to new constructs, and so their typing encounters new
challenges. Had the students spent the entire semester practicing
just a moderate amount of new syntax then we would expect to
see larger gains.

5.4 Implications for Practitioners
At a practical level, we have presented evidence that students be-
come more adept at typing code by motor skills practice. Neverthe-
less, even after the gains shown in this study, students still do not
achieve the level of fluency they have in typing natural language.
One candidate approach to achieving fluency would be increasing
the amount of practice by using exercises directly targeted at syn-
tax, although empirical results are mixed [12, 14, 18, 30]. Another
approach would be to include revising the difficulty of the tasks
and instructional design since both impose cognitive load which
might have affected the typing speed [34, 56].

Our data shows that the speed of writing syntactic constructs
varies, and suggests that the speed of writing the constructs is re-
lated to the complexity of those constructs – not only in terms of
the characters used as suggested by Thomas et al. [52] – but more
specifically in the operations that those constructs are related to.
This is visible, for example, in the relative typing speed of n→t in
the print statement and casting a string to an integer using the
int command. In other terms, our results support earlier results
that suggest measuring the writing process using keystroke data
can be used as a proxy for cognitive load [34]. This could bring addi-
tional support to existing approaches for measuring cognitive load
(e.g. [37]) and approaches for measuring complexity of computer
programs (e.g. [11]).

5.5 Implications for Researchers
Our work is beneficial to both theoretical and empirical researchers.
We have presented results consistent with context-dependent proce-
dural memory theory, the existence of schemas and schema transfer,
and cognitive load theory. Additionally, our results suggest that

context matters when analyzing keystroke data. For example, based
on our finding that the digraph latencies of students improved more
in the Python context, it is possible that identifying students based
on typing [26, 35] works better in some contexts (where less change
happens) than others.

There remain many open questions: why exactly do digraph
latencies behave differently in different constructs, what caused
students in the Java course to improve in their typing more slowly
than in the Python course, and similarly, why did Python students
improve in error detection and recovery more quickly than Java
students? We suggest that a good starting place would be a qualita-
tively driven enumeration of factors contributing to digraph latency
(e.g. position in word, word frequency, digraph prominence in other
words, language, etc).

5.6 Threats to Validity
Cognitive load, which depends on familiarity with the material and
task difficulty [49], affects typing performance [34]. In this study,
we did not control this factor which could potentially explain the
difference between typing improvements in the context of Python
and Java programming languages. We believe that in future studies
controlling for prior experience and knowledge could reveal new
correlations and allow tracking the progress more precisely.

We did not consider the location of the keys on the keyboard
in the analysis, which could affect the speed of typing different
digraphs. Additionally, there are many other factors such as the
keyboard layout, whether the person typing is using all fingers in
the process or e.g. only their index fingers, whether the person is
touch typing, and even the handedness of the person typing, all of
which might affect the results, and might have different effects in
the different contexts studied here.

Another threat to validity is that we only consider students
who continued to the end of the course. This introduces possible
selection bias as stronger students are more likely to persevere
through to the end. Additionally, the amount of data we have from
the natural language contexts (Finnish and English) is less than
from the programming contexts (Java and Python), which could
affect comparisons between those contexts.

6 CONCLUSIONS
In this article, we presented an analysis of students’ typing in pro-
gramming language and essay writing tasks. The analysis used
data from two separate contexts, one of which uses English as the
teaching language and Python as the programming language, while
the other uses Finnish as the teaching language and Java as the
programming language. Building on theoretical frameworks re-
lated to memory from cognitive science and empirical results from
computer science education, we empirically showed that context-
dependent memory and procedural memory (esp. muscle memory)
may contribute to learning programming. As a summary, our re-
search questions and their answers are as follows.

RQ1 How does context influence the typing speed of computer
source code and written language? Answer: On average, students
are faster at typing when writing essays (in English or in Finnish)
than when writing source code (in Python or in Java), even though
the keywords of the programming language are in English. Within

the programming language, we observed differences in the typing
speed of the same character pairs in different programming lan-
guage constructs. For example, moving from the character ‘n’ to
‘t’ was faster when typing a simple ‘print’ command than when
using the ‘int’ command to cast a variable to an integer. We hypoth-
esize that the typing speed of digraphs in different programming
language constructs may be related to the relative cognitive load
imposed by the semantic meaning of that construct.

RQ2 How does the typing speed of programming language con-
structs evolve over time? Answer: Students tend to become faster
at typing programming constructs over time, although there ex-
ists constructs where no difference is observed after tens of uses.
Moreover, noticeable improvements can be identified in the use of
special keys such as the TAB. This finding is in line with previous
research that has suggested that typing data can be used to measure
students’ previous programming experience [33]. At the same time,
we also observed that the evolution of typing speed should not be
studied from digraphs alone, but that the syntactic constructs in
which those digraphs take place should be taken into account.

RQ3 How does the number of typing mistakes while programming
evolve and how does the speed at which students correct mistakes dif-
fer between programming and writing natural language? Answer:
Our results show that mistakes with syntax reduce over time, in-
dicating that students become more fluent at writing syntactically
correct code over time. When considering the speed with which
students correct their mistakes in natural language and program-
ming language, we observe that students are on average faster at
fixing their mistakes when writing natural language than when
programming. While we observe an improvement in the speed with
which students erase mistakes in Python, the speed with which
students erase mistakes in Java does not seem to evolve over time.

Our work has implications for practitioners and researchers. For
practitioners, our results suggest ways to non-intrusively measure
students’ cognitive load and syntactic fluency from keystroke data,
giving instructors additional resources to design and evaluate cur-
ricula. For researchers, this work opens up new research directions
in the use of keystroke data in computing education research and
practice, such as modeling the amount of practice that individual
students or groups of students need to become proficient with syn-
tactic constructs, which could be then used as input to systems that
control and offer additional practice opportunities for students. In
addition, studying how students improve in fixing their mistakes
in different contexts could shed light to our findings, where we
observed little to no improvement with which the students learn-
ing Java fixed their mistakes. Such results could lead to further
evidence on the applicability of particular languages for novice
programmers as well as lead to context-specific interventions that
focus on identifying mistakes.

REFERENCES
[1] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating

novice programming mistakes in large-scale student data. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education. ACM, 522–527.

[2] Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations: Inves-
tigating Novice Programming Mistakes in Large-Scale Student Data. In Pro-
ceedings of the 46th ACM Technical Symposium on Computer Science Education
(SIGCSE ’15). Association for ComputingMachinery, New York, NY, USA, 522–527.
https://doi.org/10.1145/2676723.2677258

https://doi.org/10.1145/2676723.2677258

[3] Francesco Bergadano, Daniele Gunetti, and Claudia Picardi. 2002. User authen-
tication through keystroke dynamics. ACM Transactions on Information and
System Security (TISSEC) 5, 4 (2002), 367–397.

[4] John Seely Brown, Allan Collins, and Paul Duguid. 1989. Situated cognition and
the culture of learning. Educational researcher 18, 1 (1989), 32–42.

[5] Simon P Davies. 1991. The role of notation and knowledge representation in the
determination of programming strategy: a framework for integrating models of
programming behavior. Cognitive Science 15, 4 (1991), 547–572.

[6] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All Syntax Errors
Are Not Equal. In Proceedings of the 17th ACM Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’12). ACM, New York, NY,
USA, 75–80. https://doi.org/10.1145/2325296.2325318

[7] Françoise Détienne. 1995. Design Strategies and Knowledge in Object-oriented
Programming: Effects of Experience. Hum.-Comp. Interact. 10, 2 (1995), 129–169.

[8] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and Antti Oulasvirta. 2018.
Observations on typing from 136 million keystrokes. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. 1–12.

[9] Paul S Dowland and Steven M Furnell. 2004. A long-term trial of keystroke
profiling using digraph, trigraph and keyword latencies. In IFIP International
Information Security Conference. Springer, 275–289.

[10] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[11] Rodrigo Duran, Juha Sorva, and Sofia Leite. 2018. Towards an Analysis of
Program Complexity From a Cognitive Perspective. In Proceedings of the 2018
ACM Conference on International Computing Education Research (ICER ’18).
Association for Computing Machinery, New York, NY, USA, 21–30. https:
//doi.org/10.1145/3230977.3230986

[12] John Edwards, Joseph Ditton, Dragan Trninic, Hillary Swanson, Shelsey Sullivan,
and Chad Mano. 2020. Syntax exercises in CS1. In Proceedings of the 16th Annual
Conference on International Computing Education Research (ICER ’20).

[13] John Edwards, Juho Leinonen, and Arto Hellas. 2020. A Study of Keystroke
Data in Two Contexts: Written Language and Programming Language Influence
Predictability of Learning Outcomes. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. 413–419.

[14] John M Edwards, Erika K Fulton, Jonathan D Holmes, Joseph L Valentin, David V
Beard, and Kevin R Parker. 2018. Separation of syntax and problem solving
in Introductory Computer Programming. In 2018 IEEE Frontiers in Education
Conference (FIE). IEEE, 1–5.

[15] J.E. Eich. 1980. The cue-dependent nature of state-dependent retrieval. Memory
Cognition 8 (1980), 157–173. https://doi.org/10.3758/BF03213419

[16] Clayton Epp, Michael Lippold, and Regan LMandryk. 2011. Identifying emotional
states using keystroke dynamics. In Proceedings of the sigchi conference on human
factors in computing systems. 715–724.

[17] Paul M Fitts and Michael I Posner. 1967. Human performance. (1967).
[18] Adam M Gaweda, Collin F Lynch, Nathan Seamon, Gabriel Silva de Oliveira, and

Alay Deliwa. 2020. Typing Exercises as Interactive Worked Examples for Delib-
erate Practice in CS Courses. In Proceedings of the Twenty-Second Australasian
Computing Education Conference. 105–113.

[19] Vanessa E Ghosh and Asaf Gilboa. 2014. What is a memory schema? A historical
perspective on current neuroscience literature. Neuropsych. 53 (2014), 104–114.

[20] Duncan R Godden and Alan D Baddeley. 1975. Context-dependent memory in
two natural environments: On land and underwater. British Journal of psychology
66, 3 (1975), 325–331.

[21] Maarten A. Immink, David L. Wright, and William S. Barnes. 2012. Temperature
Dependency in Motor Skill Learning. Journal of Motor Behavior 44, 2 (2012),
105–113. https://doi.org/10.1080/00222895.2012.654522 PMID: 22424202.

[22] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the second international workshop on Computing
education research. ACM, 73–84.

[23] Bonnie John. 1996. TYPIST: A Theory of Performance in Skilled Typing.
Human-Computer Interaction 11, 4 (Dec. 1996), 321–355. https://doi.org/10.
1207/s15327051hci1104_2

[24] Addie Johnson. 2012. Procedural memory and skill acquisition. Handbook of
Psychology, Second Edition 4 (2012).

[25] Slava Kalyuga. 2011. Cognitive Load Theory: How Many Types of Load Does It
Really Need? Educational Psychology Review 23 (03 2011), 1–19. https://doi.org/
10.1007/s10648-010-9150-7

[26] Marcus Karnan, Muthuramalingam Akila, and Nishara Krishnaraj. 2011. Biomet-
ric personal authentication using keystroke dynamics: A review. Applied soft
computing 11, 2 (2011), 1565–1573.

[27] Agata Kołakowska. 2013. A review of emotion recognition methods based on
keystroke dynamics and mouse movements. In 2013 6th International Conference
on Human System Interactions (HSI). IEEE, 548–555.

[28] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A Study of
the Difficulties of Novice Programmers. In Proceedings of the 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’05). ACM, New York, NY, USA, 14–18. https://doi.org/10.1145/1067445.1067453

[29] Jean Lave, Etienne Wenger, et al. 1991. Situated learning: Legitimate peripheral
participation. Cambridge university press.

[30] Antti Leinonen, Henrik Nygren, Nea Pirttinen, Arto Hellas, and Juho Leinonen.
2019. Exploring the Applicability of Simple Syntax Writing Practice for Learning
Programming. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education. 84–90.

[31] Juho Leinonen. 2019. Keystroke Data in Programming Courses. Ph.D. Dissertation.
University of Helsinki.

[32] Juho Leinonen, Krista Longi, Arto Klami, Alireza Ahadi, and Arto Vihavainen.
2016. Typing patterns and authentication in practical programming exams. In
Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education. 160–165.

[33] Juho Leinonen, Krista Longi, Arto Klami, and Arto Vihavainen. 2016. Automatic
inference of programming performance and experience from typing patterns. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
132–137.

[34] Elke LC Leyman, Gary A Mirka, David B Kaber, and Carolyn M Sommerich.
2004. Cervicobrachial muscle response to cognitive load in a dual-task scenario.
Ergonomics 47, 6 (2004), 625–645. https://doi.org/10.1080/00140130310001629766
PMID: 15204291.

[35] Krista Longi, Juho Leinonen, Henrik Nygren, Joni Salmi, Arto Klami, and Arto
Vihavainen. 2015. Identification of programmers from typing patterns. In Proceed-
ings of the 15th Koli Calling conference on computing education research. 60–67.

[36] FabianMonrose and Aviel Rubin. 1997. Authentication via keystroke dynamics. In
Proceedings of the 4th ACM conference on Computer and communications security.
48–56.

[37] Briana B. Morrison, Brian Dorn, and Mark Guzdial. 2014. Measuring Cognitive
Load in Introductory CS: Adaptation of an Instrument. In Proceedings of the Tenth
Annual Conference on International Computing Education Research (ICER ’14).
Association for Computing Machinery, New York, NY, USA, 131–138. https:
//doi.org/10.1145/2632320.2632348

[38] Mark G. Packard and James L. McGaugh. 1996. Inactivation of Hippocampus or
Caudate Nucleus with Lidocaine Differentially Affects Expression of Place and
Response Learning. Neurobiology of Learning and Memory 65, 1 (1996), 65 – 72.
https://doi.org/10.1006/nlme.1996.0007

[39] Petrus Peltola, Vilma Kangas, Nea Pirttinen, Henrik Nygren, and Juho Leinonen.
2017. Identification based on typing patterns between programming and free
text. In Proceedings of the 17th Koli Calling International Conference on Computing
Education Research. 163–167.

[40] Jean Piaget. 1971. Biology and knowledge: An essay on the relations between
organic regulations and cognitive processes. (1971).

[41] Robert S Rist. 1989. Schema creation in programming. Cognitive Science 13, 3
(1989), 389–414.

[42] De Kleine E. Van der Lubbe R. H. Verwey W. B. Abrahamse E. L. Ruitenberg,
M. F. 2012. Context-dependent motor skill and the role of practice. Psychological
Research 76, 6 (2012), 812–820. https://doi.org/10.1007/s00426-011-0388-6

[43] Marit F L Ruitenberg, Elger L Abrahamse, Elian De Kleine, and Willem B Verwey.
2012. Context-dependent motor skill: perceptual processing in memory-based
sequence production. Experimental brain research 222, 1-2 (October 2012), 31—40.
https://doi.org/10.1007/s00221-012-3193-6

[44] Daniel L Schacter. 1987. Implicit memory: History and current status. Journal of
experimental psychology: learning, memory, and cognition 13, 3 (1987), 501.

[45] Roger Schank and Robert Abelson. 1977. Scripts, Plans, Goals, and Understanding.
Psychology Press.

[46] Steven M. Smith. 1985. Background Music and Context-Dependent Memory. The
American Journal of Psychology 98, 4 (1985), 591–603.

[47] Steven M Smith and Edward Vela. 2001. Environmental context-dependent
memory: A review and meta-analysis. Psychonomic bulletin & review 8, 2 (2001),
203–220.

[48] Larry R Squire. 1984. Human memory and amnesia. The neurobiology of learning
and memory (1984).

[49] John Sweller. 1988. Cognitive Load During Problem Solving: Effects on
Learning. Cognitive Science 12, 2 (1988), 257–285. https://doi.org/10.1207/
s15516709cog1202_4

[50] Roger Säljö and Jan Wyndhamn. 1993. Solving everyday problems in the formal
setting: An empirical study of the school as context for thought. Understanding
practice: Perspectives on activity and context (1993), 327–342.

[51] Shelley E Taylor. 1981. Schematic bases of social information processing. Social
cognition (1981), 89–134.

[52] Richard C Thomas, Amela Karahasanovic, and Gregor E Kennedy. 2005. An
investigation into keystroke latency metrics as an indicator of programming
performance. In Proceedings of the 7th Australasian conference on Computing
education-Volume 42. 127–134.

[53] Endel Tulving et al. 1972. Episodic and semantic memory. Organization of
memory 1 (1972), 381–403.

[54] Endel Tulving and Donald M Thomson. 1973. Encoding specificity and retrieval
processes in episodic memory. Psychological review 80, 5 (1973), 352.

[55] Jeroen JG Van Merrienboer and Fred GWC Paas. 1990. Automation and schema
acquisition in learning elementary computer programming: Implications for the

https://doi.org/10.1145/2325296.2325318
https://doi.org/10.1145/3230977.3230986
https://doi.org/10.1145/3230977.3230986
https://doi.org/10.3758/BF03213419
https://doi.org/10.1080/00222895.2012.654522
https://doi.org/10.1207/s15327051hci1104_2
https://doi.org/10.1207/s15327051hci1104_2
https://doi.org/10.1007/s10648-010-9150-7
https://doi.org/10.1007/s10648-010-9150-7
https://doi.org/10.1145/1067445.1067453
https://doi.org/10.1080/00140130310001629766
https://doi.org/10.1145/2632320.2632348
https://doi.org/10.1145/2632320.2632348
https://doi.org/10.1006/nlme.1996.0007
https://doi.org/10.1007/s00426-011-0388-6
https://doi.org/10.1007/s00221-012-3193-6
https://doi.org/10.1207/s15516709cog1202_4
https://doi.org/10.1207/s15516709cog1202_4

design of practice. Computers in Human Behavior 6, 3 (1990), 273–289.
[56] Jeroen J. G. Van Merrienboer and John Sweller. 2005. Cognitive Load Theory and

Complex Learning: Recent Developments and Future Directions. Educational
Psychology Review 17 (06 2005), 147–177. https://doi.org/10.1007/s10648-005-
3951-0

[57] Arto Vihavainen, Matti Luukkainen, and Jaakko Kurhila. 2012. Multi-faceted
support for MOOC in programming. In Proceedings of the 13th annual conference
on Information technology education. 171–176.

[58] Arto Vihavainen, Matti Paksula, and Matti Luukkainen. 2011. Extreme appren-
ticeship method in teaching programming for beginners. In Proceedings of the
42nd ACM technical symposium on Computer science education. 93–98.

[59] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013.
Scaffolding students’ learning using test my code. In Proceedings of the 18th ACM

conference on Innovation and technology in computer science education. 117–122.
[60] Mary Villani, Charles Tappert, Giang Ngo, Justin Simone, H St Fort, and Sung-

Hyuk Cha. 2006. Keystroke biometric recognition studies on long-text input
under ideal and application-oriented conditions. In 2006 Conference on Computer
Vision and Pattern Recognition Workshop (CVPRW’06). IEEE, 39–39.

[61] Ronald L Wasserstein and Nicole A Lazar. 2016. The ASA statement on p-values:
context, process, and purpose.

[62] Lucy Wilkinson, Andrew Scholey, and Keith Wesnes. 2002. Chewing gum selec-
tively improves aspects of memory in healthy volunteers. Appetite 38, 3 (2002),
235–236.

[63] C. Wright, D. Shea. 1991. Contextual dependencies in motor skills. Memory
Cognition 19, 4 (1991), 361–370. https://doi.org/10.3758/BF03197140

https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.3758/BF03197140

	Abstract
	1 Introduction
	2 Related Work
	2.1 Memory and context
	2.2 Schemas and problem solving
	2.3 Cognitive Load
	2.4 Typing Patterns and Flow of Typing

	3 Methodology
	3.1 Context and Data
	3.2 Digraphs
	3.3 Research Questions and Contributions

	4 Results
	4.1 Descriptive Statistics
	4.2 Context and Typing Speed
	4.3 Evolution of Typing Speed
	4.4 Typing Mistakes

	5 Discussion
	5.1 Context and Typing Speed
	5.2 Evolution of Typing Speed
	5.3 Mistakes and Correcting Them
	5.4 Implications for Practitioners
	5.5 Implications for Researchers
	5.6 Threats to Validity

	6 Conclusions
	References

