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Abstract

Accurate modeling of student knowledge is essential for deliv-
ering timely, targeted feedback in Intelligent Tutoring Systems
(ITS). Knowledge Components (KCs)—discrete units of domain
knowledge—have traditionally been handcrafted by experts, a pro-
cess that is both time-consuming and difficult to scale. In this work,
we replicate a recent Large Language Model (LLM)-based approach
to automate KC extraction called LLM-KC Identifier (LLM-KCI)
and extend on it by evaluating the extracted KCs using learning
curve analysis. By comparing LLM-generated KCs against expert-
annotated counterparts in an introductory programming course,
we demonstrate that LLMs not only match experts in capturing core
concepts but also bring unique advantages: consistent identification
across diverse assignments and scalability. Through static overlap
metrics (Jaccard similarity, overlap coefficient) and learning curve
analyses, we show that certain LLMs (e.g., GPT-40, DeepSeekR1)
produce error-rate trajectories as smooth or smoother than expert-
annotated KC models, effectively isolating student learning trends.
Our findings suggest that automated KC extraction can become
a mainstream tool for personalized learning analytics, enabling
educators to rapidly adapt curriculum and interventions at scale.
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1 Introduction

Knowledge Components (KCs)—the core cognitive skills or con-
cepts underpinning students’ problem solving—in the Knowledge-
Learning-Instruction (KLI) framework are viewed as learned cogni-
tive units inferred from related task performance, guiding course
design and robust student modeling [12, 13, 17, 19]. Although KCs
occupy a central role in Intelligent Tutoring Systems (ITS), their
exploration in Computing Education Research (CER) has been rel-
atively limited [6, 10, 16]. To address this, automated tools such
as KC-Finder, based on deep neural networks, map expert-defined
KCs to programming exercises by analyzing student submissions
[21, 24, 28, 30], while recent advances in Large Language Models
(LLMs) enable further detection and analysis of KCs in program-
ming exercises [18, 19, 23]. Despite the potential of LLMs to reduce
manpower and accelerate KC generation, systematic testing and
quality evaluation of automatically generated KCs—especially com-
prehensive cross-field and cross-model validation—remains under-
explored [5, 7, 15, 19, 26]. Meanwhile, learning curve models in
educational data mining link practice opportunities with perfor-
mance to reveal how mastery of KCs evolves over time [22, 25, 31].

Despite these advances, significant gaps remain: most LLM-based
KC frameworks lack systematic evaluation and rigorous tests of
generalizability across diverse programming languages and prompt
complexities. Moreover, few studies analyze the learning curves of
extracted KCs, limiting insights into student learning trajectories.

This paper presents an end-to-end pipeline that extends the
LLM-KCI framework [19] by integrating LLMs for automated KC
mapping and learning curve analysis. We address the following
research questions:

RQ1 What are the characteristics of KCs identified by LLMs, and
how do they differ from KCs annotated by experts?
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RQ2 What is the quality of extracted KCs in capturing units of
knowledge learned by students?

To address these questions, we extract KCs from Dart code com-
mits with low- and high-complexity prompts. We then examine the
quality of the KCs by demonstrating the students’ learning curves
obtained from a set of KCs.

2 Background

KCs are widely used for Knowledge Tracing (KT) [13], an important
component of most ITS frameworks [1]. A KC is an individual unit
of learning that students are supposed to learn. For example, in the
context of introductory programming, one KC could be “printing”
and another “for-loops”. KCs can be at different levels of granularity:
for example, a higher-level KC could be “loops” while a lower-level
KC could split this into “for-loops” and “while-loops” separately.
Most modern knowledge tracing algorithms utilize KCs to predict
the student’s knowledge of course concepts [1].

However, one downside of using KCs is that, traditionally, an
expert had to develop the knowledge model—a group of KCs—that
describes the content that students are supposed to learn [3]. Fur-
thermore, to be able to perform KT, each exercise must be tagged
with the KCs that are related to the exercise, which takes a lot of
manual effort [3]. Some prior work before LLMs utilized automated
methods to come up with knowledge models [8, 27]. Shi et al. [27]
used DNNs to automatically identify KCs and evaluated them us-
ing learning curves. Goutte et al. [8] used probabilistic keyword
extraction and found that they could accurately describe latent KCs.

LLMs provide new opportunities to automatically construct
knowledge models and tag exercises with relevant KCs. Niousha
et al. [19] built LLM-KCIL, an LLM-based pipeline to automatically
extract KCs from Python programming exercises based on the prob-
lem description, the program solution, or both. They found that
GPT-4 [2] was able to successfully identify relevant KCs.

In our work, we evaluate the generalizability of LLM-KCI by ap-
plying the existing pipeline in a new context, using Dart program-
ming exercises. We also extend the LLM-KCI work by evaluating
the representation power of extracted KCs using learning curves,
which is a commonly used method to evaluate the quality of KCs
in representing units of knowledge acquired by students [25]. For
good quality KCs, it is expected that students’ error rates for sub-
sequent attempts on that KC will be lower, representing a smooth
downward slope when the learning curve is depicted [4]. To the
best of our knowledge, no prior work has evaluated the quality of
LLM-extracted KCs using learning curves.

3 Methodology
3.1 Context and Data

Our study uses data from an open online introductory programming
course offered by Aalto University. Students in the course are both
degree students and lifelong learners. The course uses the Dart pro-
gramming language and has interactive online learning materials
with intertwined theory and practice. Programming assignments
are completed in an embedded online editor that supports syntax
highlighting and feedback, allows program execution, and enables
submission for automated assessment.
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In this study, we focus on the first 45 programming assignments
of the course. We created a dataset consisting of the problem state-
ment and a sample solution for each assignment. The assignments
were manually annotated by the course instructor, who annotated
each assignment with (1) high-level KCs that we call key learnables,
and (2) low-level KCs. These form the ground truth for the data.

We also extracted student submission data for analysis. The sub-
mission data contains students’ programs, the problem description,
submission time, and results from running the submission through
automated assessment. Only data from students who provided re-
search consent are used. Our dataset is described in Table 1.

Table 1: High-Level Descriptive Statistics.

Statistic Count
Number of exercises 45
Number of key learnables 23
Number of low-level KCs 96
Number of students 6,955

Total number of submissions 289,450

3.2 Research Process Design

Figure 1 shows our extended LLM-KCI-based learning curve analy-
sis method. The main extension to Niousha’s LLM-KCI process [19]
is the learning curve analysis. We benchmarked LLM-generated
KCs using our dataset, including problem descriptions, solutions,
and instructor-provided ground-truth KCs. For LLM extraction,
we used GPT-4 [2], GPT-40 [11], 03-mini [20], Llama-2-70b [29],
Llama4-Scout-17B-16E-Instruct [14] and DeepseekR1 [9]. Below,
we outline our research process in seven stages.

Stage 1: Dataset Preparation. Stage 1 involves dataset prepara-
tion, with an expert annotation of ground-truth KCs, and developing
two prompts with different levels of instruction details. Our dataset
includes Dart programming problems, including problem descrip-
tions and standard solutions. The two prompts that we try are: 1) a
simple version (S), which contains only a brief set of instructions,
and 2) a complex version (C), which contains a more detailed instruc-
tion with one-shot example. The set of ground-truth KCs is our
baseline for evaluating the KCs generated by LLMs. We evaluate
two prompts to explore whether the complexity of the instructions
affects the generated KCs.

Stage 2: Context Consideration. In stage 2, LLMs generate
KCs for three context scenarios: problem-only, program-only, and
all (problem and program) based on the context set up as proposed
by [19], with both simple (S) and complex (C) prompts. We aim to
identify a combination of context and prompting technique that
leads to the highest accuracy and precision in extracting KCs. Ex-
amples of simple and complex prompts as below:

Prompt(S): Extract the knowledge components from the follow-
ing (problems/programs/Programming tasks). Generate an English
version of them in numbered bullet format. Prompt (C): We are
building an intelligent tutoring system for novice programmers. For
the intelligent tutoring system, we need knowledge components.
Extract the course-level knowledge components from the following
Problems/Programs/Programming tasks. One example is shown
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Figure 1: LLM-KCI-based learning curve analysis pipeline

below... Generate an English version of them in numbered bullet
format.

Stage 3: KC List aggregation. In stage 3, we aggregate all the
generated KC lists based on all combinations of context and prompt-
ing techniques for various LLMs. Stage 4: Semantic Duplicate
Removal. We remove KCs that are semantic duplicates from the
lists generated in stage 3.

Stage 5: Final KC Extraction using a Reference KC List. We
feed the final aggregated KC lists that are generated in stage 4 to
different LLMs and have them generate the final KCs correspond-
ing to each description/program/both in three different scenarios
(problem-only, program-only, or both).

Stage 6: Final Determination of KC Set. We determine the
refined KC set based on the answers given by LLMs.

Stage 7: Learning curve Analysis. We compare quality of
ground-truth KCs and the refined set of KCs generated by LLMs in
stage 6 by using learning curves.

In summary, our pipeline examines how prompt complexity
(simple vs. complex) and context scenarios (problem-only, program-
only, or all) influence the quality of LLM-generated KCs compared
to ground-truth annotations. By analyzing the resulting learning
curves, we identify the most effective prompt-context combinations
for generating KCs that accurately capture student knowledge.

3.3 Comparison of LLM-Generated KCs and
Ground-Truth KCs
To evaluate the accuracy and coverage of LLM-generated KCs com-

pared to ground-truth KCs, we use the following metrics based on
Niousha’s study [19]:

TP True Positive (TP) is the number of LLM-generated KCs

present in the ground-truth KC set.

FN False Negative (FN) is the number of KCs not identified

through LLM generation but present in the ground-truth.

FP False Positive (FP) is the number of KCs identified by LLM

but not present in the ground-truth.

Let G be the set of ground-truth KCs and L be one of the KC sets
generated by LLM using each of the 6 context-prompt combina-
tion scenarios ([problem-only, program-only, or both] X [simple or
complex prompt]). We then define:

TP=|GNL|, FP=|L\G|, FN=I|G\L|
The Jaccard index (J) is given by:
TP
" TP+FP+FN
and the overlap coefficient (O) is:
TP
min(|G|,|L])

J
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3.4 Learning Curve Analysis

To ensure clean and meaningful learning curve analysis, we pre-
process the data to remove noise and preserve temporal integrity.
Specifically, we eliminate “pseudo attempts” (repeated submissions
of identical code) to avoid inflating effort counts, and we maintain
the original timestamps to reflect the true progression of student
activity across problems and KCs. The example below provides an
illustrative example of how pre-processing is performed.
Illustrative Example. Suppose student “Jane” works on Prob-
lem 1 and submits solutions at timestamps Tj, Tz, T3, T5. If submis-
sions at T; and T3 are identical, T3 is removed, leaving {1, T, T5 }.
Jane also submits a solution for Problem 2 at timestamp T4, which
involves the same KC (KC1) and is non-duplicate, so it is included.
Combining these across problems, the deduplicated submission

sequence for KC1 is:
{T, T2, Ty, T5},

corresponding to four meaningful attempts. These timestamps are
then chronologically reordered as:

{t1, ta, 13, ta},

representing Jane’s 1st through 4th attempts on KC1 and forming
the x-axis of her KC1 learning curve. The following subsections
formally outline our pre-processing steps.

Sequential Timestamp Sorting and Pairwise Deduplication
Removal. Submission records are grouped by problem ID, then by
student ID, and each student’s submissions are sorted in ascending
order of timestamp (T).

Ti<Ty<---<Tj.

We then remove duplicates:

(T1Ty), (T2eT3), ..., (Ti—1T)).

If two adjacent submissions are identical, we delete the latter one
(the one with the larger timestamp). We repeat the above pairwise
comparisons until no two consecutive submissions are duplicates.
Deletions remove only redundant records; original timestamps
remain unchanged to preserve the true chronological order.

Global KC-Level Attempt Sequencing. A given KC may ap-
pear in multiple problems for the same student. After removing
all duplicate submissions for each student-KC pair for all relevant
problems, we construct a timeline of unique attempts. In this con-

text, k denotes the total number of deduplicated attempts a student
(KC)
k

represent the timestamp of the kth attempt, i.e., final value in the

ordered sequence

has made on a given KC across all relevant problems, and let ¢

KO <t

(KO . 4fKO),

We use the attempt index (1%, ond kth) as the x-axis in the
student’s learning curve for that KC.

KC Correctness Assessment and Error Rate Calculation.
In this step, we analyze the correctness of code submissions. In the
dataset we collected, we see the final score for each submission to
be able to identify “correct” and “incorrect” submissions.
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kth

Here each PS(];.) is the result correct of code submission on

(KCj)
k
cator for the student s, at time stamp k, and on the jth KC:

KCj at time stamp ¢ . We introduce a binary correctness indi-

k) _ {1, If the kth attempt with KC; is correct,
s,J

0, otherwise.
For each KCj, we plot the global correctness-rate curve over the
attempt indices k. Recall that each student s has a binary indicator

(k) . .
stj . Define the aggregated counts in the ordinal attempt k as

Nikc; (k) = ZPS(,?c,-’ Dee; (K) = Y 1(ngxc; = k).
S

N

where n; kc; is the total number of attempts by student s on KC;.

nsKC; € N, 1(-) is the indicator function.

Here,

® Nk, (k) is the total number of correct kth attempts related
to KC; among all students;
e Dk, (k) is the total number of kth

all students.

attempts on KCj among

The correctness-rate at attempt k is then
Nkc; (k)

CRkc; (k) = Dre. ()

X 100.

The corresponding error rate is
Dk, (k) = Nkc; (k)
Dkc; (k)

In Jane’s example, the deduplication process results in {71, Tz, Ty, T5 }
showing 4 attempts at k € {1, 2,3,4}. Aggregating across all stu-
dents gives {N1(k)} and {D; (k)} for k € {1, ..., 4}, which produce
the four points on the global KC1 correctness rate curve.

Learning-Curve Construction. In each figure of the KC learn-
ing curve, the horizontal axis is the attempt index k (that is, the
student’s kth attempt for KCj), and the vertical axis is ERkc; (k)
- the percentage of students who had incorrect submission for
the implementation of KC; on their kP attempt. We plot points
(k, CRkc; (k)) for k € {1,.. -»Mkc; }. Mkc; is defined as:

Mkc; = max{ k | Dkc; (k) = 10}.

ERkc, (k) = X100 = 100 - CRk, (k).

We exclude data points that have fewer than 10 submissions.

4 Results
4.1 Replication Results

In our study, GPT-4 achieves 85% J on complex prompts in content
(Problem)—40 percentage points above the original experiment by
Niousha et al. [19]. Llama-2-70b reaches 100% on both complex
and simple prompts, 10 percentage points above the prior best,
GPT-3.5. GPT-40 leads on complex prompts (J = 75%, O = 96%),
while DeepSeekR tops simple prompts in content (All) (J = 67%, O =
100%) versus key-learnable GT KCs. GPT-4 posts 53% ] and 56% O in
content (All) in the previous study. Our study exceeds the original
experiment by 14-22 and 40-44 percentage points, respectively. Our
improvement over previous work lies in the use of more complex
prompts for a better LLM-generated context. Furthermore, when GT

Jing Fan et al.

Table 2: Jaccard index (J) and Overlap coefficient (O) of dif-
ferent LLMs using prompts (S/C) of different complexity for
identifying Low-level KCs and Key-learnables. Top perform-
ers in each column are bolded.

Low-level GT KCs (Low) Key-learnables GT KCs (Key) KC Count (] L|)

LLMs J(S/C) O (S/C) J(S/C) 0O (S/C) (S/C)
All
GPT-4 8%/25% 70%/92% 28%/38% 70%/59% 10/25
GPT-40 13%/23% 80%/84% 58%/75% 93%/96% 15/25
03-mini 14%/17%  100%/100%  48%/54% 92%/93% 12/15
DeepSeele 14%/11% 93%/100% 67%/56% 100%/90% 14/10
Llama-2-70b 11%/17% 83%/88% 61%/44% 92%/71% 12/17
Llama-4-Scout 8%/9% 100%/100% 30%/24% 86%/75% 7/8
Program (Prog)
GPT-4 11%/15% 100%/82% 63%/54% 100%/88% 10/17
GPT-40 10%/25% 75%/92% 42%/76% 92%/86% 12/25
03-mini 12%/20% 100%/100% 38%/52% 82%/78% 11/18
DeepSeekR1 17%/17% 73%/100% 50%/62% 59%/87% 22/15
Llama-2-70b 11%/21% 91%/95% 53%/57% 82%/80% 11/20
Llama-4-Scout  7%/18% 86%/100% 46%/57% 86%/75% 7/16
Problem (Prob)

GPT-4 15%/14% 70%/100% 54%/85% 75%/92% 20/12
GPT-40 8%/20% 88%/90% 35%/76% 88%/95% 8/20
03-mini 12%/16% 92%/100% 48%/60% 92%/86% 12/14
DeepSeekR1 15%/18% 78%/100% 50%/74% 75%/78% 18/16
Llama-2-70b 4%/10% 100%/100% 18%/33% 100%/100% 4/9

Llama-4-Scout  5%/14% 38%/100% 3%/67% 8%/100% 13/12

contains fewer KCs, LLM’s broader coverage increases Jaccard and
Overlap scores, as both metrics are more sensitive to intersection
under small cardinality, even with some redundancy.

4.2 Comparison Between GT and LLM KCs

Across all three contexts—All, Program, and Problem—as shown
in Table 2. GPT-40 with a complex prompt delivers the strongest
key-learnables performance (J = 75%, O = 96%, |L| = 25), 03-mini
under a simple prompt achieves perfect low-level overlap (J = 14%,
O = 100%), and DeepSeekR1 with a simple prompt leads on key-
learnables among simple-prompt runs (J = 67%, O = 100%) at All
Under a simple prompt, GPT-4 achieves a Jaccard index of J = 63%
and a perfect overlap coefficient of O = 100% on key-learnables at
Program. Llama-2-70b (simple & complex) attains perfect overlap
(O = 100%) on both low-level KCs and key-learnables at Problem,
indicating zero false positives. In contrast, GPT-4 under a simple
prompt recovers only J = 15% of low-level KCs and ] = 54% of key-
learnables, reflecting more limited coverage despite high precision.

As shown in Figure 2, DeepSeekR1 stands out under simple
prompts with the highest average Jaccard index at 35.5%, while
GPT-4o0 leads under complex prompts with 49.2% recall. In terms of
precision, 03-mini is unrivaled—93.0% overlap on simple prompts
and 92.8% on complex—whereas Llama-4-Scout trails in recall under
simple prompts at just 16.5%.

As shown in Figure 3, complex prompts yield consistent gains in
recall (J) across all scenarios—most importantly +31.2 percentage
points (pp) for Prob-Key and +11.0 pp for Prog-Key, with smaller im-
provements for All-Low (+5.7 pp), Prog-Low (+8.0 pp) and Prob-Low
(+5.5 pp), and a marginal decline for All-Key (—0.2 pp). Precision
(O) is high under simple prompts (73.0 %-88.8 %) and is only mod-
erately affected by added complexity: it increases by up to +20.7 pp
for Prob-Low, but decreases by 8.2 pp for All-Key and by 1.2 pp for
Prog-Key. Together, these findings indicate that complex prompts
substantially improve recall, especially for key learnables, while
leaving an already high precision largely unchanged.



Adaptive Learning Curve Analytics with LLM-KC Identifiers for Knowledge Component Refinement

GPT-4
GPT-40 5 z 20.5

@
3

03-mini 92.8

a
3

DeepSeekR1 92.5

Llama-2-70b

=
3]
Average Value

89.0

Llama-4-Scout

N
1S3

¥ Ng & o
< 8 & &
N7 2 & &
o/ N o°
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Figure 3: Scatter plots comparing average J and O for simple
(S) versus complex (C) prompts across all task types (All,
Program, Problem) and GT KC levels (Low, Key).

4.3 KC Correctness and Learning Curves

We evaluate the ground-truth and generated KCs by analyzing their
learning curves. For each KC, we show the average error from all
students for their corresponding attempt with each KC.

For each model, we evaluate the learning curve trend by fitting a
linear model to each curve. To describe the trend, we consider the
slope of the curve, and the average distance of all the points in the
curve to this line. We fit two lines: one line over the full sequence of
attempts for the KC (full trend), and one line over the first 5 attempts
(early trend). The intuition behind early trends is that usually the
first few attempts for each KC can show learning, and for further
attempts, the curve can include noise from interactions with other
KCs. It is expected that a “good KC” should have a negative slope,
i.e., the error decreases with the number of attempts.

In Table 3, we show the full and early trends for ground-truth
and LLM-generated KCs, grouped by prompt type. For each type,
we show the averages of all input types — problem-only, program-
only, and both. The data for all KCs are very noisy - the deviation
from the line is high for all KCs. The ground-truth KCs have higher
slopes than the LLM-generated ones, and the models with the lowest
average slopes are GPT-40, GPT-4, and 03-mini.

On Figure 4, we show examples of “good” and “bad” learning
curves. In the first few attempts of the KC, the “good” learning curve
shows a decreasing error rate. Since we make the learning curves
based on the KCs per assignment, the presence of multiple KCs per
assignment adds noise to the performance of this KC. The examples
are from ground-truth KCs, but they are also representative of the
LLM-generated KCs.
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Table 3: Averaged error metrics for ground-truth and LLM-
generated KCs (slope + average distance from the line). Full
shows the slope over the whole learning curve, and Early
shows the slope over the first 5 attempts for each KC. We
show the results per prompt type, averaged for program-only,
problem-only, and both.

Model S C
Full Early Full Early

GPT-4 0.004 £ 0.079  0.043 = 0.043  0.006 £ 0.077 0.036 + 0.034
GPT-40 0.006 + 0.079  0.044 + 0.044 0.008 £ 0.078  0.042 + 0.040
GPT-03-mini 0.006 + 0.081 0.041 = 0.041  0.005 £ 0.078 0.033 + 0.035
DeepSeekR1 0.011 £ 0.076  0.036 = 0.038  0.006 £ 0.076  0.029 + 0.041
Llama-2-70b 0.022 £ 0.074 0.064 = 0.040 0.020 £ 0.081 0.063 + 0.039
Llama-4 0.025 + 0.079  0.061 +0.040 0.016 £ 0.077  0.043 + 0.042

Ground-truth
Key Learnables  0.025 + 0.068 0.055 + 0.035
0.020 + 0.071  0.060 + 0.034

Low-Level

KC: arithmetics

KC: for loop from int literal to parameter value
10 7 B

Error Rate
Error Rate

-~ Full Trend (0.005+0.095) | | & «eenr Full Trend (0.004+0.062)
\ == Early Trend (-0.069+0.066) == Early Trend (0.130+0.042)

[ 20 80 [ ) 20 30 a0 50 60 70

W &
Attempt Attempt

Figure 4: Examples for good (left) and bad (right) learning
curves.

5 Discussion

5.1 Context-Type Comparison

The striking disparity in GPT-4’s key-learnable extraction between
code and text reveals a clear content sensitivity: under a simple
prompt, the model attains a Jaccard index of 63% with perfect pre-
cision (O = 100%) on programmatic inputs, yet on purely textual
problems its recall falls to 54% and precision to 75%. This suggests
that GPT-4’s pattern-matching abilities align naturally with the
rigid syntactic structures of code—minimizing hallucinations—but
that free-form prose, with its richer semantics and variable phras-
ing, overwhelms a minimalist prompt. Therefore, even when using
the same model and prompting strategy, structured code tasks may
require only light prompting to achieve high accuracy, whereas
text-centric tasks benefit from more elaborate prompts or retrieval-
augmentation to shore up both coverage and correctness.

5.2 Model Comparative Advantages

As shown in the Figure 2, we can classify the models into three
prototypes: precision-focused prototypes represented by 03-mini,
which achieve zero false positives under simple prompts; coverage-
focused prototypes represented by GPT-40 and GPT-4, which have
the highest recall for key learnable concepts under complex prompts
rich in examples; and weak candidate models L1ama-2-70b and
Llama-4-Scout, which show low recall and moderate precision
under both prompt modes. This shows that while example injection
can significantly improve recall (GPT-40 is most robust for program
logic, while GPT-4 shows the largest improvement for text-based



UKICER 2025, September 04-05, 2025, Edinburgh, United Kingdom

reasoning), it also sacrifices precision, emphasizing the need for
balance between increasing coverage and the risk of false positives.

5.3 Prompt Complexity and Automation.

Under simple prompts (S), which serve as a baseline, models receive
only minimal instructions with no ground-truth KC example and
thus demonstrate their out-of-the-box performance. In contrast,
complex prompts (C) include a one-shot example of ground-truth
KC and operate in a semi-automated human-model collaborative
workflow: the one-shot example directly conveys potential target
labels, resulting in substantial gains in true-positive rates and Jac-
card index (an average uplift of 5.5-31.2 percentage points across
Problen, Program, and All, most pronounced for Problem to identify
key learnable), while inevitably introducing some annotation bias.
Crucially, precision remains stable: The overlap coefficients already
lie between 73.0 % and 100 % under S and shift by only -8.2 to +20.7
percentage points under C, indicating that recall improvements do
not come at the expense of precision. This trade-off between “zero
manual-cost” automation and “exemplar-guided” accuracy high-
lights a spectrum along which practitioners can balance throughput
and human oversight based on application requirements.

5.4 Error-Rate Slopes for GT and LLM KCs

From Table 3, we observe that GPT-4, GPT-40, and 03-mini generate
KCs with full-curve slopes of only 0.004-0.006, substantially lower
than the 0.025 observed for ground-truth KCs. In the early phase,
their slopes of 0.041-0.044 also fall below the ground-truth value
of 0.055. This indicates that, although LLM-extracted KCs have not
yet reached ideal negative slopes, they more closely capture the
“error rate decreasing with practice” trend than human-annotated
GT KCs—at least, on average, they exhibit weaker positive growth
or a greater tendency toward downward trends.

The larger models Llama-4 and Llama-2-70b exhibit higher full-
trend slopes (0.022-0.025) and early-trend slopes (0.061-0.064) than
the GPT series, suggesting that the KCs they extract are less likely to
demonstrate sustained declines in error rate. DeepSeekR1 achieves
a lower early-trend slope (0.036), showing its relative advantage in
capturing negative or smaller positive trends during initial practice
opportunities. This implies that model capacity alone does not
determine KC extraction quality; instead, internal architecture and
pre-training/fine-tuning strategies play a more significant role.

Under the S (Simple) prompt context, the average slopes are
the lowest. Under the C (Complex) context, slopes do not improve
substantially, and noise levels (average deviation) even increase
slightly. This suggests that complex prompts do not significantly
enhance the models’ ability to extract KCs that effectively represent
students’ learning through a “steady error decrease with practice”
trend, and that prompt engineering offers limited benefit for ex-
tracting effective KCs as evaluated by learning curves, even though
the complex prompt led to better performance as evaluated by the
Jaccard index and Overlap coefficient.

As illustrated in Figure 4, even when individual KC learning
curves exhibit downward trends, interference from multiple KCs
within the same assignment often induces “rebounds” or “plateaus,”
resulting in high overall noise. The average deviation for ground-
truth KCs (= 0.068) is nontrivial, and LLM-generated KCs show
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even higher deviations (~ 0.074-0.081), indicating that multi-KC
interference remains a challenge for automated KC identification.
In summary, lower slopes more accurately reflect the expected
“error rate decreasing” trend. From this perspective, GPT-4, GPT-
40, and 03-mini are closer to pedagogical expectations; although
they have not yet achieved ideal negative slopes, they outperform
human-annotated ground-truth KCs in several respects.

5.5 Limitations and Future Work

This study is constrained by a limited set of tasks and models, which
warrants a broader evaluation across diverse domains (e.g., differ-
ent subjects in addition to programming). In addition, our learning
curve analysis only considers correctness at the assignment level
and does not isolate individual KCs within each assignment al-
though an assignment with multiple KCs could have some correct
even if the overall result is that the submission is incorrect. The
predominantly flat or noisy error-rate trends suggest that current
KC extraction methods cannot reliably disentangle pure concept
learning. Additionally, the GT KC quality was poor as measured by
learning curves, which suggests that learning curves might not be
the ideal way to measure the quality of KCs in our context.

In the future, we will (1) extend our evaluation to diverse do-
mains, (2) formalize KCs with concise human-readable definitions
and deploy a hybrid LLM-expert two-phase validation pipeline
to yield precise per-KC success rate, and (3) improve learning
curve modeling via piecewise regression, multimodal signals, and
clustering-based de-noising to isolate true learning trends.

6 Conclusion

In this study, we replicate and extend the LLM-KCI framework
originally proposed by Niousha et al. ( [19]), introducing a more
comprehensive evaluation of knowledge components (KCs) gen-
erated by human annotations and LLMs under different prompts
strategies. Unlike previous studies, we benchmark static overlap
metrics and dynamic learning curve trends to evaluate the qual-
ity of KCs. Results show that more complex prompts enhance the
ability of LLMs to generate high-level KCs that are consistent with
expert annotations. Importantly, our learning curve analysis finds
that there is a lot of noise in both the ground truth (GT) and LLM-
generated KCs, revealing the limitations of current annotation prac-
tices. However, we find that the error rate trends of some LLMs are
as stable as or even more stable than those of human-annotated
KCs. These findings highlight our key contribution: showing that
under a well-calibrated prompting strategy, LLMs can serve as a
viable and scalable alternative to manual KC authoring, potentially
enabling reliable KC tagging with less human effort.
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