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ABSTRACT
Since computing education began, we have sought to learn why
students struggle in computer science and how to identify these
at-risk students as early as possible. Due to the increasing availabil-
ity of instrumented coding tools in introductory CS courses, the
amount of direct observational data of student working patterns
has increased significantly in the past decade, leading to a flurry of
attempts to identify at-risk students using data mining techniques
on code artifacts. The goal of this work is to produce a systematic
literature review to describe the breadth of work being done on the
identification of at-risk students in computing courses. In addition
to the review itself, which will summarize key areas of work being
completed in the field, we will present a taxonomy (based on data
sources, methods, and contexts) to classify work in the area.
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1 INTRODUCTION
Theadoptionof instrumentedcodingtools in introductoryCScourses
has created an opportunity to directly observe and react to student
data. This has lead to increased interest in models that can be used
to identify at-risk students in computing courses [3, 4].

This burst of work has lead to a split in the community. Earlier
work often relied on the use of student preferences or demographic
factors that could be gathered as or before a course began [5]. How-
ever, more recent attempts frequently eschew these features, focus-
ing instead on data generated in the course [1, 2]. This working
group seeks to connect the various communities – including those
outside of computing education – that are supporting the work of
identifying at-risk students in computing courses.

The goal of this work is to produce a systematic literature review
to describe the breadth of work being done on the identification
of at-risk students in computing courses. In addition to the review
itself, which will summarize key areas of work being completed in
the field, we will present a taxonomy (based on data sources, meth-
ods, and contexts) to classify work in the area. We hope the review
and accompanying taxonomy will help to connect researchers in
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this area by identifying clusters of related work being published in
different venues and highlighting opportunities for collaboration,
integration, and broader dissemination.
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