
Experiences from Integrating
Large Language Model Chatbots into the Classroom
Arto Hellas

Aalto University
Espoo, Finland

arto.hellas@aalto.fi

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

Leo Leppänen
University of Helsinki

Helsinki, Finland
leo.leppanen@helsinki.fi

ABSTRACT
In the present study, we provided students an unfiltered access to
a state-of-the-art large language model (LLM) chatbot. The chat-
bot was intentionally designed to mimic proprietary commercial
chatbots such as ChatGPT where the chatbot has not been tailored
for the educational context; the underlying engine was OpenAI
GPT-4. The chatbot was integrated into online learning materials of
three courses. One of the courses focused on software engineering
with LLMs, while the two other courses were not directly related to
LLMs. Our results suggest that only a minority of students engage
with the chatbot in the courses that do not relate to LLMs. At the
same time, unsurprisingly, nearly all students in the LLM-focused
course leveraged the chatbot. In all courses, the majority of the LLM
usage came from a few superusers, whereas the majority of the
students did not heavily use the chatbot even though it was read-
ily available and effectively provided a free access to the OpenAI
GPT-4 model. We also observe that in addition to students using
the chatbot for course-specific purposes, many use the chatbot for
their own purposes. These results suggest that the worst fears of
educators – all students overrelying on LLMs – did not materialize
even when the chatbot access was unfiltered. We finally discuss
potential reasons for the low usage, suggesting the need for more
tailored and scaffolded LLM experiences targeted for specific types
of student use cases.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
large language models, chatbots, classroom experiences, usage anal-
ysis, experience report

1 INTRODUCTION
Large Language Models (LLMs) such as ChatGPT have captured
the attention of both the academia and the general public. Initial
hype—especially outside of academic works—has framed LLMs as
omnipotent replacements for every creative and knowledge worker.
Reactions to the use of LLM-based generative systems in academic
settings have been mixed, ranging from calls for—and realized—
bans [5] to claims that they are the new normal and teaching should
be reorganized around them [23].

The avalanche of LLMs is visible also in computing education and
computing education research, where researchers have highlighted
a variety of tasks that LLMs can do [6, 31]. As students begin to
use these tools, several of the threats identified by researchers
have come into clearer focus. For instance, students often do not
understand the code automatically generated by LLMs because they

did not write it [32]. Even so, students may quickly accept incorrect
code suggestions and tinker with the code before discovering they
do not need it, only to start over again [13, 32, 37]. More generally,
there’s evidence that the use of LLM assistants may, for example,
lead to programmers writing less secure code [29].

In this article, we outline our experiences from integrating a state-
of-the-art LLM-powered1 chatbot into three CS-related courses
offered at Aalto University. The integration with the LLM was unfil-
tered, meaning that students could also discuss contents unrelated
to the courses. The closest match to our study was recently con-
ducted by Prasad et al. [30], who provided unrestricted access to
an LLM through a programming environment plugin, and explored
how students used the LLM. While a lot of concerns about poten-
tial student over-reliance have been raised in previous work [31],
combined with the prior study by Prasad et al. [30], our work pro-
vides further information on how students use an unrestrained
LLM chatbot that is purposefully similar to commercially available
LLM-based chatbots such as ChatGPT.

Our research questions for the present study are as follows:
(RQ1) How does the use of the LLM-based course assistant relate
to the course?; (RQ2) How does the perceived usefulness of the
LLM-based course assistant relate to the course?; and (RQ3) How
does the use of the LLM-based course assistant relate to student
background, and prior experience with LLMs?

2 BACKGROUND
Computing education as a field has been continuously evolving,
influenced by increases in processing power, availability of personal
computers, access to the internet, online learning management
systems, open online courses, and most recently large language
models. The amount of learners is huge, bolstered by initiatives
such as Computer Science for All [11] and Hour of Code [10], where
the latter has reported over a hundred million students.

Programming education—a part of computing education—and
the ways how programming education could be improved is a sig-
nificant research topic in computing education research [21]. When
learning to program, students learn to understand both syntax and
semantics of the programming language, slowly acquire plans that
are used to reach reoccurring goals, and learn pragmatic aspects
such as working with the available tools [7]. This takes plenty
of effort and can be challenging; nearly one-third of introductory
programming students in higher education fail the introductory
programming course [40]. Improving pedagogy, classroom design,
and instruction can help improve retention, although even after
improvements, there still exists a considerable body of students
who fail to succeed [39].
1We used GPT-4 which was the best model available at the time of the study.

ar
X

iv
:2

40
6.

04
81

7v
1

 [
cs

.C
Y

]
 7

 J
un

 2
02

4

https://orcid.org/0000-0001-6502-209X
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0003-3969-8410

Arto Hellas, Juho Leinonen, and Leo Leppänen

Courses employ teaching assistants in a variety of tasks includ-
ing assisting students in programming labs, grading assignments,
and giving office hours [24]. With infinite qualified teaching assis-
tants, a classroom could in principle employ one-to-one mastery
learning, which has been shown to lead to two standard deviation
improvement in learning outcomes when compared to students in
traditional classroom [2]. However, the increasing enrollments in
programming classrooms and the associated costs would make this
unfeasible. Thus, programming classrooms often use automated as-
sessment systems [28]. Automated assessment systems can enhance
the efficiency and scalability of the assessment process, making it
possible to provide immediate feedback to students and ensure a
fair and unbiased evaluation as every student’s work is subjected
to the same criteria. Despite the benefits, automated assessment
has limitations as it mainly focuses on assessing the correctness
of student-written code, failing to capture and aid in the problem-
solving process [14].

The recent rise of large language models has been highlighted
as an additional avenue that could improve—and will certainly
impact—computing education [1, 3, 6]. Researchers have already
explored the capabilities of large language models, highlighting
their potential in writing code and solving and creating program-
ming assignments [8, 33, 35], explaining code [18, 22], identifying
programming concepts [36], improving programming error mes-
sages [19, 34], and responding to students’ help requests [9]. While
most of the studies on generative AI and LLMs in the context of
computing education are based on expert evaluation of model out-
puts and single-shot experiments, the studies highlight the potential
of using LLMs for formative feedback.

To highlight this, studies exploring the use of LLMs as teaching
assistants are starting to emerge [16, 17, 30]. While expert evalua-
tions and one-off experiments provide valuable insights, there is
a need for further studies that consider the potential and impacts
of LLM-based teaching assistants—or chatbots—in computing edu-
cation. Perhaps the closest match to our work is that of Prasad et
al. [30] who found that students did not use LLMs much beyond the
assignment where they were introduced in an upper-level course
when students were provided free, unrestricted access to LLMs
through a visual studio code plugin.

3 METHODOLOGY
3.1 Context and chatbot
The experiments were conducted at courses offered by Aalto Uni-
versity in Finland. The courses in question use an online learning
platform that allows hosting interactive ebooks with embedded
assignments. During the summer of 2023, we integrating a LLM-
based chatbot to the course platform. The chatbot was based on
OpenAI APIs2 and students could engage in dialogue with it. We
intentionally did not conduct any prompt engineering to e.g. con-
strain or modify the responses, and allowed students to use the
chatbot similarly to how one would use a dialogue-based system
like ChatGPT.

The chatbot is available for learners on each course material
page. When clicking an icon indicating the chatbot, the chatbot

2We used the state-of-the-art model, GPT-4.

opens up in a modal window in which it can be conversed with.
Students were made aware that any communication that they had
with the chatbot would be stored both on the course platform and
sent to the OpenAI APIs. The use of the chatbot was limited to 5
messages per minute and to 100 messages per day.

The platform and the courses that use the chatbot informed
students of the chatbot and the policy associated to using the chat-
bot, highlighting that the chatbot is an assisting technology and
that using the chatbot for creating solutions for assignments is not
acceptable. The policy of use was provided as follows.

In the Fall of 2023, we introduced a large language model
-based generative AI assistant to the course platform. You
can find it on the lower right corner of the material pages
when logged in – clicking it opens up a chat. The current
version of the course assistant is based on ChatGPT. The
assistant is not a TA, but a tool to help you with the course.
Similarly to asking information from your peers, course
teachers, and TAs, you can use the AI assistant to help you
with the course and the materials. You can, for example,
ask for it to provide additional information about a topic,
to explain code, to identify bugs in your code, and so on.
You can also ask it for help when you are stuck e.g. with a
programming assignment.

There are humans available for help as
well, as discussed in the part on “Asking
for help and discussion area”.

Do not use the assistant for creating solutions to the as-
signments, or ask it to complete the assignments for you,
as this is harmful for learning. Like using solutions from
others, using solutions generated by generative AI and
large language models constitutes as plagiarism.

The use of generative AI and large lan-
guage models such as ChatGPT for com-
pleting coursework on your behalf is not
allowed. Using solutions from ChatGPT or
similar relates to representing the work
of others as your own. When submit-
ting coursework, only use solutions con-
structed by yourself.

If you are uncertain whether your use of the assistant is
allowed, please ask the course staff, and keep in mind that
you are responsible for your own learning. A good way
to rehearse and assess whether you have internalized the
concepts and that you have worked on with your peers,
TAs, or the assistant (etc), is to take a 30 minute break after
the collaboration and complete (or redo) the problems on
your own.

3.2 Courses
During the fall of 2023, the chatbot was in three courses offered
using the platform: (1) Software Engineering with Large Language
Models, (2) Device-Agnostic Design, and (3) Web Software Devel-
opment. The Software Engineering with Large Language Models

Experiences from Integrating Large Language Model Chatbots into the Classroom

(SE with LLMs) course was a tailored course for software engi-
neers working in the industry. The course introduces principles
of LLMs, including how they work and how they are prompted,
and broadly discusses leveraging them in different phases of the
software development life cycle. Students completed tasks from the
software development life cycle, including documentation tasks,
programming tasks, and testing tasks.

The Device-Agnostic Design (DAD) course is a first-year MSc
course that focuses on the principles of designing applications that
work on a wide range of devices with multiple possibilities for input
modalities. The course projects used Dart and Flutter as the tech-
nologies. Finally, the Web Software Development (WSD) course is a
2nd year Bachelor’s level computer science course where students
learn to design and implement web applications. In the course, stu-
dents used Deno and Hono for building server-side functionality.
Notably, the course tries to leverage new technologies and intro-
duced also Deno KV3 and used Svelte and SvelteKit4 for building
the client-side functionality.

One of the authors of this article is the responsible teacher of all
of the three courses.

3.3 Surveys and feedback
The course platform had a brief background survey and a brief
feedback item for providing feedback on the utility of the LLM based
chatbot. Providing survey answers and feedback was voluntary and
students were not compensated for answering in any way.

3.3.1 Background survey. The background survey asked for expe-
rience in programming and in the use of LLMs. The questionnaire
contained three items, which were as follows.

(1) On a range from ‘Not at all experienced’ to ‘Very experi-
enced’, how would you characterize your prior program-
ming experience?

(2) If you havewritten programs before, in lines of code, what is
the largest program you have written? (NA=not applicable)

(3) On a range from ‘Not at all experienced’ to ‘Very expe-
rienced’, how would you characterize your experience of
using large language models (e.g. ChatGPT, GitHub Copilot,
...)?

Items 1 and 3 were answered using a scale from 1 to 9, where
1 corresponded to not at all experienced, while 9 corresponded to
very experienced. Item 2 was responded to using the following
options: NA, Under 500, 500-5000, 5001-40000, and over 40000.

3.3.2 Usefulness of the chatbot. At the end of every dialogue with
the chatbot, the course material opened a dialog with the question
“How useful was the chatbot?” that could be answered with a rating
ranging from 1 star to 5 stars.

3.4 Data collection and filtering
All data was collected during the Fall of 2023 and processed ac-
cordingly to the national ethical guidelines. No ethical review was
required. Overall, during the Fall of 2023, 257 students used the
chatbot. From these, 228 provided research consent (89%). From the
3A globally replicated low-latency key-value database announced in May 2023.
4The course used Svelte 5 alpha, which was released in November 2023, one week
before the first lecture that focused on building client-side functionality.

Table 1: Descriptive statistics of the chatbot usage per course.

Course Users Messages

(1) SE with LLMs 59 / 60 (98%) 5916
(2) DAD 24 / 109 (22%) 99
(3) WSD 135 / 554 (24%) 1094

228, 14 did not actively participate in any of the courses and were
omitted from the analysis. Thus, the analyses on chatbot usage
focus on 214 students. As the background survey was optional, not
all 214 students provided background data.

3.5 Usage coefficient analysis
In order to study whether there are differences between courses and
course chapters in how students used the chatbot, we calculated a
usage coefficient for each course chapter. First, we calculated the
average chatbot use for each student separately. Then, for each
student, we calculated a coefficient comparing their chatbot use in
each chapter to their personal average. For example, a coefficient
of 0.5 would indicate that the student used the chatbot only half of
their usual average, while a coefficient of 2 would mean they used
the chatbot twice as much as their average for a specific chapter.
Then, for each chapter, we calculated the average coefficient over
all students. This allows calculating statistics such as the ranges
and the standard deviations of the coefficients per course, both of
which can indicate the magnitude of differences between chapters.
The results of this analysis are presented in Section 4.3.

4 RESULTS
4.1 Descriptive statistics
Descriptive statistics of the chatbot usage per course are outlined
in Table 1.5 The usage of the chatbot was highest in the SE with
LLMs course, where 98% of the participants used the chatbot. In
the two other courses, the usage was lower, where 22% and 24% of
the participants used the chatbot for the DAD course and the WSD
course, respectively. As shown in the table, the amount of messages
also differed considerably between the courses, ranging from an
average of 4 messages per chatbot user (in DAD) to an average 100
messages per chatbot user in SE with LLMs.

Table 2 outlines statistics from participants’ self-reported prior
experience collected using the survey outlined in 3.3.1. Overall,
participants in SEwith LLMs rated their programming experience as
somewhat higher than those in the other courses. On the other hand,
participants in the other courses self-reported their experience with
LLMs as somewhat higher than participants in SE with LLMs.

4.2 Chatbot usage per course
Chatbot usage was highly variable between the students, producing
a distribution that, at least visually, appears roughly Zipfian. While
the two most active users had over 400 messages with the chatbot,
the third most active student had under 300 messages. Of the 214
students who used the chatbot, 18 students produced over one-half

5Note that as a few students took part in multiple courses, the sum of the individual
courses’ participant counts is slightly larger than the total number of students overall.

Arto Hellas, Juho Leinonen, and Leo Leppänen

Table 2: Participants’ self-reported prior overall program-
ming experience (Prog. Exp.), programming experience in
lines of code (LOC), and experience of using large language
models (LLM exp.). Symbol 𝜇 denotes mean and symbol 𝜂
denotes median.

Course n Prog. Exp. LOC LLM Exp.

𝜇 𝜂 𝜇 𝜂 𝜇 𝜂

(1) SE with LLMs 47 6.1 7 2.4 2 2.7 2
(2) DAD 8 5.1 6 1.8 2 4.5 4
(3) WSD 73 5.0 5 1.9 2 4.2 4

Figure 1: Student chatbot usage distribution per course.

of the messages. Only 61 (28.5 %) had 25 or more messages, while
85 students (39.7 %) had 10 or more messages.

Observing the courses in isolation, we note that both the SE with
LLMs course, and the WSD course, exhibit the same phenomenon.
In both courses, two power users have significantly more inter-
actions with the chatbot than others students, with the number
of interactions quickly decreasing. These top power users have
423 and 414 messages in the case of SE with LLMs, and 156 and
122 interactions in the case of WSD. For comparison, the third-
most active users on these courses have 262 and 49 interactions,
respectively. These power users are distinct students. For the De-
vice Agnostic Design course, the usage levels are generally very
low, with the highest number of messages for any student being 12.
The per-course usage distributions are shown in Figure 1.

4.3 Chatbot usage per chapter
We further looked into the use of the chatbot in individual chapters
of the material, focusing on deviations from average usage behavior.
The aggregate statistics for the three courses are shown in Table 3.
From the table, we can see that usage was quite similar between
the WSD course and the DAD course, but the SE with LLMs course
showed different usage behavior. In the SE with LLMs course, the

Table 3: Chatbot Usage Coefficients per Course

Course Mean Median SD Range

(1) SE with LLMs 0.91 0.97 0.45 [0.26, 1.77]
(2) DAD 1.00 0.97 0.23 [0.72, 1.32]
(3) WSD 0.98 0.96 0.22 [0.64, 1.45]

standard deviation and the range of coefficients was larger, suggest-
ing that there were larger differences between individual chapters
of the material in how much students used the chatbot.

Overall, in the SE with LLMs, the chatbot was most used in a
chapter on tooling and working with Python, which included a
range of programming problems, explicitly allowing students to
use the chatbot for solving them to demonstrate LLM code gen-
eration capabilities. The second chapter with the most use was a
chapter that focused on building a larger application with the help
of LLMs, starting from decomposing the problem and resulting with
an application with a graphical user interface. The chapters with
the least chatbot usage focused on review and testing and software
engineering, neither of which had assignments and both of which
discussed the topics on a higher level.

In the DAD course, the least usage was observed in a chapter
on Flutter basics, which introduced participants to showing simple
content in a Flutter application, while the most usage was observed
in a chapter on handling input with Flutter. Both chapters included
programming problems, but the problems in the chapter on han-
dling input were considerably more complex

In the WSD course, the chatbot was most used in a chapter intro-
ducing the concept of storing data on server using Deno KV and a
chapter on state management with Svelte. Notably, in both of these
chapters, the usefulness feedback median was 1, indicating that the
chatbot was not at all useful – very likely due to the technologies
being so new that the LLM would suggest deprecated approaches.
The chatbot was least used in a chapter on data validation, which in-
troduced the principles of validating data, and introduced a library
for the task.

4.4 Chatbot usefulness
At the end of every dialogue, students were prompted to rate the
usefulness of the chatbot using a rating from 1 to 5 stars. Table 4
outlines the results. Overall, students in the SE with LLMs consid-
ered the chatbot as somewhat more useful (avg. rating 3.8/5), than
students in the other courses who rated the chatbot on average
3.1/5. The median usefulness in all of the courses was 4 out of 5.
These numbers, however, need to be considered in the context of a
possible self-selection bias: a student who trials the chatbot once
and determines it unusable would produce only a single low rating,
while superusers happy with the chatbot might produce hundreds
of high ratings. We return to this topic in the discussion.

4.5 Usage and student backgrounds
Using Spearman’s Rho (Table 5), we also observed that chatbot
usage, measured as the number of messages, was moderately neg-
atively correlated with students’ previous experience with LLMs
(𝜌 = −0.41, 𝑝 < 0.01). We hypothesize that this decrease in usage

Experiences from Integrating Large Language Model Chatbots into the Classroom

Table 4: Average usefulness of the chatbot in each of the
courses. Themedian usefulness was 4 (out of 5) in all courses.

Course Ratings Average Usefulness

(1) SE with LLMs 456 3.8
(2) DAD 35 3.1
(3) WSD 242 3.1

Table 5: Correlation coefficients between chatbot usage and
student experience variables. Data contains only those stu-
dents who responded to the experience survey. Bolded values
have 𝑝 < 0.001.

Usage Prog. Exp. LOC LLM Exp.

Usage 1.00 0.10 0.11 -0.41
Prog. Exp. 1.00 0.58 0.16
LOC 1.00 0.19
LLM Exp. 1.00

with experience can be explained by inexperienced students run-
ning various tests and trials to get a better feel of the LLM, which
those already familiar with LLMs would presumably not conduct
at least to the same degree. On the other hand, as we briefly dis-
cuss in our study limitations, students with more experience with
LLMs may have access to LLMs through other means. The correla-
tions between chatbot usage and prior programming experience or
largest program written were not statistically significant (𝜌 = 0.10,
𝑝 = 0.25 and 𝜌 = 0.11, 𝑝 = 0.20, respectively).

5 DISCUSSION
5.1 Course and population differences
The courses differed in terms of participants and chatbot usage.
The SE with LLMs was attended by software engineers from the
industry who rated their prior programming experience higher
than students in the other courses. At the same time, students
rated their prior experience with LLMs higher than the software
engineers. The differences in programming experience was to be
expected, while we were somewhat surprised with the difference in
LLM experience. Students may be more active in looking for help
from new sources and more likely to adapt new tools as they come;
indeed, in our context, students are actively discussing LLMs, which
is also visible in the quantity of theses related to LLMs. Moreover,
software engineers might be constrained in terms of the tools that
they can adapt, and larger companies can still be vary of LLMs due
to existing legal disputes6 and uncertainties.

5.2 Chatbot usefulness
Our results indicate that at least some students find LLMs highly
useful, becoming powerusers, but at the same time a significant
amount of students barely engage with them. As the usefulness
ratings collected from the students are dominated by the first group,

6See e.g. https://githubcopilotlitigation.com/

they should be interpreted with caution: while the intrinsic com-
ponent of the evaluation was positive, it suffers from a potential
self-selection bias and the main proxy for extrinsic effectiveness,
actual usage, offers a less clear view. Further study is clearly needed.

At the same time, these results on the use and usefulness of LLMs
were also to be expected. While the SE with LLMs course explicitly
instructed participants to use LLMs, the other courses offered the
chatbot more as an additional support mechanism. This already can
impact the use of the chatbot significantly. In our case, less than
10% of the students who used the chatbot produced more than 50%
of the messages. This also aligns with prior work that found that
most students did not use an LLM-based chatbot beyond initially
trying it out when it was introduced [30].

When considering the relative differences in how students used
the chatbot in the courses, we see parallels to the use of help re-
sources in online courses. Students differ in how, when, and from
whom they ask for help [25]; in online courses, the majority of par-
ticipants do not engage in discussions, while some are very active,
even to be labeled as “superposters” [12, 25]. As prior research has
highlighted that there are students who perhaps read posts but do
not necessarily comment on posts or ask questions [15], a possible
future stream of research would be to identify and highlight dis-
cussions with the chatbot that have been very useful for learning,
and allow sharing them to other course participants on the online
platform.

Similarly, the average usefulness differed between the courses.
The higher usefulness of the chatbot likely relates to the direct use
for course tasks, while the lower usefulness in other courses could
relate to course technologies. Both DAD and WSD have students
work on larger projects with multiple files, which might not be very
convenient with the chatbot. In addition, both courses also keep up
to date with technology versions; as an example, WSD used Svelte 5
alpha as the frontend technology, which was released just before the
start of the classes that focused on building frontend functionality.
As LLMs have a knowledge cutoff point that reflects the time when
the data that was used for training, LLMs in general do not have
information of technologies released after specific moments in time.
One potential direction for future work would be to add retrieval
augmented generation functionality to the course materials, which
would allow the LLMs to retrieve information from the materials
when creating a response.

5.3 Instructor viewpoint
Overall, when considering the possibility of embedding an LLM-
based chatbot to the course platform, we noted that students are
already gaining experience from using LLMs and some students also
have accounts to services such as OpenAI ChatGPT. By providing
access to a chatbot that leverages a state-of-the-art LLM, we created
a possibility of leveling the playing field, where students could use
a state-of-the-art LLM even if they would not be paying for it. The
cost of using the OpenAI API was less than $200 for the whole fall
semester.

While the SE with LLMs was a new course, DAD and WSD
are courses that have been offered in previous years. The courses
allow students to ask for help through the online platform and offer
labs for students where they can ask for help. The introduction of

https://githubcopilotlitigation.com/

Arto Hellas, Juho Leinonen, and Leo Leppänen

the LLM-based chatbot did not affect the use of the help request
functionality or the labs in an observable manner. Prior research
has pointed out that making sample solutions available to students
can lead to reduced use of support [27]; although the study contexts
are different, we can speculate that the LLM-based chatbot was not
simply seen as a source for sample solutions.

The courses also use tools for plagiarism detection that use
fingerprinting and compare solutions to detect similarities. We
did not observe noticeable differences in plagiarism, nor did we
identify students explicitly seeking to simply use the models for
solving their assignments. We however acknowledge that detecting
LLM-generated content can be difficult, and the courses may have
suffered from the problem already earlier.

Perhaps one of the key observations from class discussions was
that the chatbot was rather poor at helping with errors and with
debugging larger code, which was also included in the few written
feedbacks. While earlier research has highlighted the possibility
of using LLMs for enhancing programming error messages [19,
34], the prior studies have been conducted with introductory-level
programming assignments that are relatively small and well-scoped.
In our context, the applications where students needed help were
typically larger, consisting of multiple files. This highlights also the
need to consider moving towards IDE-integrations in chatbots, as
has already been done with e.g. GitHub Copilot.

5.4 Limitations of work
This study comes with a range of limitations, which we discuss
here. First, we acknowledge that students may have used LLMs also
through other means, for example through their own accounts on
LLM providers. While we did not ask whether students used other
LLMs, it is possible that this could be the case. Second, responding
to the various survey instruments was voluntary.While we received
over 700 responses to the brief usefulness rating that students could
answer by clicking once, as the feedback was tied to actually using
the chatbot, the responses naturally underrepresent students who
did not extensively—or at all—use the chatbot. Third, as the student
background was self-reported, it might not accurately reflect the
real ground-truth experience levels of the students. Fourth, while we
built the chatbot on the OpenAI APIs, we did not collect information
on how much time creating the response took. Especially on larger
responses, the time to produce the response can be considerable,
which by itself can already reduce the perceived usefulness of the
chatbot.

We also acknowledge that OpenAI APIs were under a denial of
service attack on a few days, which could also influence the time
to form a response – or even whether a response was formed at
all. We also note that the chatbot was embedded into the learning
materials, and not e.g. to any programming environment that the
students used. This likely influences the usefulness of the chatbot
especially with larger assignments. Finally, this type of “intrinsic”
evaluation of a natural language generation system is generally
viewed as inferior to an “extrinsic” evaluation focused on how the
system allows the user to complete some specific task [4, 38]. Our
analysis also focuses on the average performance of the chatbot, an

approach that ignores the potential for catastrophic errors that—
even if rare—could meaningfully affect whether a chatbot like this
is in reality an ethically feasible learning aid [26].

6 CONCLUSION
In this work, we report our experiences from giving students access
to a LLM-based chatbot. We purposefully made the chatbot similar
to commercially available chatbots, so that student use would hope-
fully be as authentic as possible. Our experiences suggest that the
worst fears of educators—most students developing severe overre-
liance on LLM chatbots—might not materialize, even if the chatbot
does not have any “guardrails” [20].

To summarize, our answers to the research questions are as
follows: (RQ1) The use of the chatbot differed considerably between
the courses and to some extent between course material chapters,
where the chatbot wasmost used in a course that taught participants
to use LLMs in software engineering. The other two courses saw
less use of the chatbot, and there was less variation in the amount
of use between course materiel chapters. (RQ2) The chatbot was
perceived as most useful in the course that focused on LLMs in
software engineering (average 3.8/5), while participants in other
courses rated the interaction as somewhat less useful (average 3.1/5).
In all courses, the feedback median for usefulness was 4. Anecdotal
evidence highlighted that the students did not find the chatbot very
useful for debugging or improving error messages, despite some
previous works highlighting LLMs’ potential for these tasks [19, 34].
Similarly, the usefulness of the chatbot in course material chapters
that involved very recent technologies was low. (RQ3) Previous
experience with LLMs was linked with lower use of the chatbot,
but prior programming experience was not related to the chatbot
usage.

As a part of our future work, we are exploring the relationship
of self-regulation, large language model use, and perceptions and
conceptions of plagiarism.

ACKNOWLEDGMENTS
This research was supported by the Research Council of Finland
(Academy Research Fellow grant number 356114).

REFERENCES
[1] Brett A. Becker, Michelle Craig, Paul Denny, Hieke Keuning, Natalie Kiesler,

Juho Leinonen, Andrew Luxton-Reilly, Lauri Malmi, James Prather, and Keith
Quille. 2023. Generative AI in Introductory Programming Education. https:
//csed.acm.org/large-language-models-in-introductory-programming/ CS2023
Curricular Practices Volume.

[2] Benjamin S Bloom. 1984. The 2 sigma problem: The search for methods of group
instruction as effective as one-to-one tutoring. Educational researcher 13, 6 (1984),
4–16.

[3] Peter Brusilovsky, Barbara J. Ericson, Cay S. Horstmann, Christian Servin, Frank
Vahid, and Craig . 2023. Significant Trends in CS Educational Material: Current
and Future. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 2 (Toronto ON, Canada) (SIGCSE 2023). ACM, NY, NY, USA,
1253. https://doi.org/10.1145/3545947.3573353 Draft report: https://csed.acm.
org/the-future-of-cs-educational-materials/.

[4] Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. 2020. Evaluation of text
generation: A survey. arXiv preprint arXiv:2006.14799 (2020).

[5] Geert De Clercq and Josie Kao. 2023. Top French university bans use of ChatGPT
to prevent plagiarism. Reuters (2023). https://www.reuters.com/technology/top-
french-university-bans-use-chatgpt-prevent-plagiarism-2023-01-27/

[6] Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio Santos,

https://csed.acm.org/large-language-models-in-introductory-programming/
https://csed.acm.org/large-language-models-in-introductory-programming/
https://doi.org/10.1145/3545947.3573353
https://csed.acm.org/the-future-of-cs-educational-materials/
https://csed.acm.org/the-future-of-cs-educational-materials/
https://www.reuters.com/technology/top-french-university-bans-use-chatgpt-prevent-plagiarism-2023-01-27/
https://www.reuters.com/technology/top-french-university-bans-use-chatgpt-prevent-plagiarism-2023-01-27/

Experiences from Integrating Large Language Model Chatbots into the Classroom

and Sami Sarsa. 2024. Computing Education in the Era of Generative AI. Commun.
ACM (2024). https://doi.org/10.1145/3624720

[7] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[8] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Proceedings of the 24th Australasian
Computing Education Conference (Virtual Event, Australia) (ACE ’22). ACM, NY,
NY, USA, 10–19. https://doi.org/10.1145/3511861.3511863

[9] Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää,
and Juha Sorva. 2023. Exploring the Responses of Large Language Models to
Beginner Programmers’ Help Requests. In Proceedings of the 2023 ACMConference
on International Computing Education Research - Volume 1 (Chicago, IL, USA)
(ICER ’23). Association for Computing Machinery, New York, NY, USA, 93–105.
https://doi.org/10.1145/3568813.3600139

[10] Hour of Code. [n. d.]. Blurps and useful stats. https://hourofcode.com/us/
promote/stats. Accessed: 2024-01-05.

[11] White House. 2016. Fact sheet: President obama announces
computer science for all initiative. Retrieved [2024-01-04] from
https://obamawhitehouse.archives.gov/the-pressoffice/2016/01/30/factsheet-
president-obama-announces-computer-science-all-initiative (2016).

[12] Jonathan Huang, Anirban Dasgupta, Arpita Ghosh, Jane Manning, and Marc
Sanders. 2014. Superposter behavior in MOOC forums. In Proceedings of the first
ACM conference on Learning@ scale conference. 117–126.

[13] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI ’23). ACM, NY, NY, USA, Article 455, 23 pages. https://doi.org/
10.1145/3544548.3580919

[14] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature
review of automated feedback generation for programming exercises. ACM
Transactions on Computing Education (TOCE) 19, 1 (2018), 1–43.

[15] René F Kizilcec, Mar Pérez-Sanagustín, and Jorge J Maldonado. 2017. Self-
regulated learning strategies predict learner behavior and goal attainment in
Massive Open Online Courses. Computers & education 104 (2017), 18–33.

[16] Harsh Kumar, Ilya Musabirov, Mohi Reza, Jiakai Shi, Anastasia Kuzminykh,
Joseph Jay Williams, and Michael Liut. 2023. Impact of Guidance and Interaction
Strategies for LLM Use on Learner Performance and Perception. arXiv preprint
arXiv:2310.13712 (2023).

[17] Harsh Kumar, Ilya Musabirov, Joseph Jay Williams, and Michael Liut. 2023.
QuickTA: Exploring the Design Space of Using Large Language Models to Pro-
vide Support to Students. Learning Analytics and Knowledge Conference 2023
(LAK’23).

[18] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. arXiv:2304.03938 [cs.CY]

[19] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A. Becker. 2023. Using Large Language Models to Enhance Program-
ming Error Messages. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). ACM, NY,
NY, USA, 563–569. https://doi.org/10.1145/3545945.3569770

[20] Mark Liffiton, Brad Sheese, Jaromir Savelka, and Paul Denny. 2023. CodeHelp:
Using Large Language Models with Guardrails for Scalable Support in Program-
ming Classes. arXiv:2308.06921 [cs.CY]

[21] Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos,
Amruth N Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard,
and Claudia Szabo. 2018. Introductory programming: a systematic literature
review. In Proc. Companion of the 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education. 55–106.

[22] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using Code
Explanations Generated by Large Language Models in a Web Software Develop-
ment E-Book. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). ACM, NY, NY, USA,
931–937. https://doi.org/10.1145/3545945.3569785

[23] Rohan Mehta. 2023. Banning ChatGPT will do more harm than good. MIT Tech-
nology Review (2023). https://www.technologyreview.com/2023/04/14/1071194/
chatgpt-ai-high-school-education-first-person/

[24] Diba Mirza, Phillip T Conrad, Christian Lloyd, Ziad Matni, and Arthur Gatin.
2019. Undergraduate teaching assistants in computer science: a systematic
literature review. In Proceedings of the 2019 ACM Conference on International
Computing Education Research. 31–40.

[25] Matti Nelimarkka and Arto Hellas. 2018. Social help-seeking strategies in a
programming MOOC. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. 116–121.

[26] Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry, and Verena Rieser.
2017. Why We Need New Evaluation Metrics for NLG. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, Martha
Palmer, Rebecca Hwa, and Sebastian Riedel (Eds.). Association for Computational
Linguistics, Copenhagen, Denmark, 2241–2252. https://doi.org/10.18653/v1/D17-
1238

[27] Henrik Nygren, Juho Leinonen, and Arto Hellas. 2019. Non-restricted Access to
Model Solutions: A Good Idea?. In Proc. of the 2019 ACM Conf. on Innovation and
Technology in Computer Science Education. 44–50.

[28] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated assess-
ment in computer science education: A state-of-the-art review. ACM Transactions
on Computing Education (TOCE) 22, 3 (2022), 1–40.

[29] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2023. Do users
write more insecure code with AI assistants?. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. 2785–2799.

[30] Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi.
2023. Generating Programs Trivially: Student Use of Large Language Models. In
Proceedings of the ACMConference on Global Computing Education Vol 1. 126–132.

[31] James Prather, Paul Denny, Juho Leinonen, Brett A Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, et al. 2023. The robots are here: Navigating the generative ai revolution
in computing education. arXiv preprint arXiv:2310.00658 (2023).

[32] James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. “It’s Weird That It Knows What I Want”: Usability and Interactions
with Copilot for Novice Programmers. ACM Trans. Comput.-Hum. Interact. 31, 1,
Article 4 (nov 2023), 31 pages. https://doi.org/10.1145/3617367

[33] Ben Puryear and Gina Sprint. 2022. Github copilot in the classroom: learning to
code with AI assistance. J. of Computing Sciences in Colleges 38, 1 (2022), 37–47.

[34] Eddie Antonio Santos, Prajish Prasad, and Brett A Becker. 2023. Always Provide
Context: The Effects of Code Context on Programming Error Message Enhance-
ment. In Proceedings of the ACM Conference on Global Computing Education Vol
1. 147–153.

[35] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research - Volume 1 (Lugano and Virtual Event, Switzerland) (ICER
’22). ACM, NY, NY, USA, 27–43. https://doi.org/10.1145/3501385.3543957

[36] Andrew Tran, Linxuan Li, Egi Rama, Kenneth Angelikas, and Stephen MacNeil.
2023. Using Large Language Models to Automatically Identify Programming
Concepts in Code Snippets. In Proc. of the 2023 ACM Conf. on Int. Computing
Education Research - Volume 2, Vol. 1. ACM, 563–569.

[37] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In CHI Conference on Human Factors in Computing Systems
Extended Abstracts. Association for Computing Machinery, NY NY, USA, 1–7.

[38] Chris van der Lee, Albert Gatt, Emiel van Miltenburg, and Emiel Krahmer. 2021.
Human evaluation of automatically generated text: Current trends and best
practice guidelines. Computer Speech & Language 67 (2021), 101151.

[39] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A systematic
review of approaches for teaching introductory programming and their influence
on success. In Proc. of the tenth annual conf. on Int. computing education research.
19–26.

[40] Christopher Watson and Frederick WB Li. 2014. Failure rates in introductory
programming revisited. In Proc. of the 2014 conference on Innovation & technology
in computer science education. 39–44.

https://doi.org/10.1145/3624720
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3568813.3600139
https://hourofcode.com/us/promote/stats
https://hourofcode.com/us/promote/stats
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3544548.3580919
https://arxiv.org/abs/2304.03938
https://doi.org/10.1145/3545945.3569770
https://arxiv.org/abs/2308.06921
https://doi.org/10.1145/3545945.3569785
https://www.technologyreview.com/2023/04/14/1071194/chatgpt-ai-high-school-education-first-person/
https://www.technologyreview.com/2023/04/14/1071194/chatgpt-ai-high-school-education-first-person/
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3501385.3543957

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Context and chatbot
	3.2 Courses
	3.3 Surveys and feedback
	3.4 Data collection and filtering
	3.5 Usage coefficient analysis

	4 Results
	4.1 Descriptive statistics
	4.2 Chatbot usage per course
	4.3 Chatbot usage per chapter
	4.4 Chatbot usefulness
	4.5 Usage and student backgrounds

	5 Discussion
	5.1 Course and population differences
	5.2 Chatbot usefulness
	5.3 Instructor viewpoint
	5.4 Limitations of work

	6 Conclusion
	Acknowledgments
	References

