
Detecting ChatGPT-Generated Code Submissions in a CS1 Course
Using Machine Learning Models

Muntasir Hoq
North Carolina State University

United States
mhoq@ncsu.edu

Yang Shi
North Carolina State University

United States
yshi26@ncsu.edu

Juho Leinonen
The University of Auckland

New Zealand
juho.leinonen@auckland.ac.nz

Damilola Babalola
North Carolina State University

United States
djbabalo@ncsu.edu

Collin Lynch
North Carolina State University

United States
cflynch@ncsu.edu

Thomas Price
North Carolina State University

United States
twprice@ncsu.edu

Bita Akram
North Carolina State University

United States
bakram@ncsu.edu

ABSTRACT
The emergence of publicly accessible large language models (LLMs)
such as ChatGPT poses unprecedented risks of new types of pla-
giarism and cheating where students use LLMs to solve exercises
for them. Detecting this behavior will be a necessary component
in introductory computer science (CS1) courses, and educators
should be well-equipped with detection tools when the need arises.
However, ChatGPT generates code non-deterministically, and thus,
traditional similarity detectorsmight not suffice to detect AI-created
code. In this work, we explore the affordances of Machine Learning
(ML) models for the detection task. We used an openly available
dataset of student programs for CS1 assignments and had ChatGPT
generate code for the same assignments, and then evaluated the per-
formance of both traditional machine learning models and Abstract
Syntax Tree-based (AST-based) deep learning models in detecting
ChatGPT code from student code submissions. Our results suggest
that both traditional machine learning models and AST-based deep
learning models are effective in identifying ChatGPT-generated
code with accuracy above 90%. Since the deployment of such mod-
els requires ML knowledge and resources that are not always acces-
sible to instructors, we also explore the patterns detected by deep
learning models that indicate possible ChatGPT code signatures,
which instructors could possibly use to detect LLM-based cheating
manually. We also explore whether explicitly asking ChatGPT to
impersonate a novice programmer affects the code produced. We
further discuss the potential applications of our proposed models
for enhancing introductory computer science instruction.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03. . . $15.00
https://doi.org/10.1145/3626252.3630826

CCS CONCEPTS
• Applied computing→ Education.

KEYWORDS
ChatGPT; large language model; artificial intelligence; introductory
programming course; CS1; cheat detection; plagiarism detection
ACM Reference Format:
Muntasir Hoq, Yang Shi, Juho Leinonen, Damilola Babalola, Collin Lynch,
Thomas Price, and Bita Akram. 2024. Detecting ChatGPT-Generated Code
Submissions in a CS1 Course UsingMachine LearningModels. In Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2024), March 20–23, 2024, Portland, OR, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3626252.3630826

1 INTRODUCTION
Plagiarism is a common problem in introductory programming
courses [3]. Previous work has found, for example, that students
might resort to plagiarism due to struggling [18] and might be
confused about what constitutes plagiarism in programming [6, 27,
28]. In the context of programming, plagiarism can take various
forms, such as copying code from the internet (e.g., StackOverflow),
sharing solutions between students, and contract cheating.

Recently, a new possible type of plagiarism has emerged: us-
ing powerful, LLM-based AI models and tools such as ChatGPT1
and GitHub Copilot2 to create solutions to programming exercises.
While these tools might help professional programmers develop
code more efficiently3 and can be used by instructors to create edu-
cational resources [10, 48], programming educators have raised con-
cerns around potential student over-reliance on these models [5, 9].
Students using such models without attributing the created code
to the model might be considered a new type of plagiarism. Prior
work has found that most introductory programming problems can
be successfully solved by state-of-the-art AI models [8, 15, 43] and
1https://openai.com/blog/chatgpt
2https://github.com/features/copilot
3https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-
developer-productivity-and-happiness/

https://orcid.org/0000-0001-6829-9449
https://doi.org/10.1145/3626252.3630826
https://doi.org/10.1145/3626252.3630826
https://openai.com/blog/chatgpt
https://github.com/features/copilot
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Muntasir Hoq et al.

that this performance is better than the performance of average
students [15, 43]. Similar performance has been observed for more
complex data structures and algorithms-level exercises [16].

Code plagiarism or over-reliance on AI models can be difficult
to detect. Programming plagiarism detection tools that have been
traditionally used in introductory programming courses such as
MOSS4 and JPlag [45] are based on comparing student submissions
to each other. However, recent LLM models can generate many dif-
ferent solutions non-deterministically, so, as prior work has argued
[42], simply including LLM-generated solutions in MOSS or JPlag
may not be sufficient to detect this sort of plagiarism. Some recent
efforts aim to detect AI-generated content using AI models, hoping
to mitigate this challenge [46].

In this work, we study the automatic detection of ChatGPT-
created programs for introductory programming exercises. We use
a publicly available dataset of student-written programs in a CS1
course and use ChatGPT to create programs for the same exer-
cises. This is the continuation of our previous study [24], where
we tried detecting ChatGPT and student code. In this study, we
evaluate different classification methods for identifying code as AI-
generated or student-written. We also compare the structure of the
student-created programs to those created by ChatGPT to analyze
differences between student and ChatGPT code. Finally, we discuss
educational applications for our proposed detection system that go
beyond cheating detection and can serve as a tool for providing
students with formative feedback and timely intervention during
times of struggle. Our research questions (RQs) for this work are:

• RQ1: How well can ChatGPT-created programs be distin-
guished from student-created programs in CS1 courses?
What are the differences between student and ChatGPT-
generated programs?

• RQ2: How do prompts given to ChatGPT impact the simi-
larity of its generated code to student code?

2 RELATEDWORK
Cheating and plagiarism are more common issues in introductory-
level courses than in higher-level courses, i.e., ones attended by
graduate students [51]. Studies have shown that cheating is com-
mon among struggling students, who might engage in it despite
awareness of university policy [50, 51]. This issue is amplified
in online learning where there are more students and less direct
instruction and supervision [7, 26]. In addition to fairness and in-
tegrity, plagiarism is a concern to educators because it can hinder
learning opportunities. From a theoretical perspective, using AI or
online resources may be seen as a form of help-seeking, in which
students use external resources to overcome challenges in their
learning [40, 41]. However, this literature distinguishes between
adaptive help-seeking, in which students use these resources to
further their understanding and support learning, and expedient
help-seeking, where learners use help as a means of avoiding engag-
ing with the problem, which typically inhibits learning [47]. While
LLMs have the potential to substantially support students during
their programming process through offering programming support
such as code explanation, worked examples, and feedback [19, 34–
36, 48], over-reliance on such tools can inhibit students’ learning
4 https://theory.stanford.edu/~aiken/moss/

of foundational programming skills. Students who cheat, simply
put, never learn to do the work.

Some of the most common plagiarism detection tools among
educators are Moss4 and JPlag [45], both of which rely on token
similarity between programs. Kechao et al. [31] have proposed a
plagiarism tool that uses the CloSpan data mining algorithm to
mine comparable code segments, compute program similarities,
and generate a plagiarism report. Experimental results showed im-
proved precision and detection efficiency compared to MOSS, pro-
viding more detailed information and visualizing comparable code
fragments. A more recent plagiarism detection tool uses XGBoost
incremental learning algorithm [25], yielding a high accuracy in
plagiarism detection for academic and software industry scenarios.
However, these models are not equipped to detect LLM-generated
code as LLMs generate code through a stochastic process and can-
not be used as pre-determined references for similarity detection.

Several studies have proposed methods to detect LLM-generated
text. For instance, Mitchell et al. [39] have developed the DetectGPT
tool, which uses probability curvature to detect LLM-generated
text. However, few studies have focused on distinguishing between
human and LLM-generated programs. In this paper, we train deep
learning models to identify LLM-generated code and identify their
unique structural differences when compared to student programs.

3 METHOD
3.1 Dataset
Weuse the student-written code from a publicly available dataset ob-
tained from the CodeWorkout5 platform. The CodeWorkout dataset
contains student code from an introductory programming course
in Java. The dataset covers 50 programming problems. We use the
first 10 problems from the Spring 2019 semester in our experiment.
Uncompilable submissions are removed from the dataset as uncom-
pilable code can not be parsed into Abstract Syntax Trees (ASTs),
which is required by some of the approaches we compare. Incorrect
submissions are also removed from the dataset as we observed
during the ChatGPT code generation phase (Section 3.2) that Chat-
GPT can correctly solve all 10 programming problems. Thus, we
train the models to differentiate correct student vs. correct Chat-
GPT code. The programming problems cover introductory Java
programming concepts, such as methods, variable declaration, data
types, conditionals, strings, etc. Students in this course were given
the problem statement for each assignment with a Java function
prototype. The characteristics of the student-written solutions are
provided in Table 1.

3.2 ChatGPT-Generated Code
A dataset comprising programming code generated by ChatGPT
is created for the purpose of this study. To create this dataset, we
present ChatGPT with the problem statements of the first ten prob-
lems. We used the GUI6 to interact with ChatGPT (March 2023)
since introductory programming students will most likely use the
online ChatGPT GUI, not the GPT API. The ChatGPT prompt con-
sists of: “Solve this problem: [problem statement]. The function
prototype is given: [function prototype]”. We include the prototype
5https://codeworkout.cs.vt.edu/
6https://chat.openai.com/

https://theory.stanford.edu/~aiken/moss/
https://codeworkout.cs.vt.edu/

Detecting ChatGPT-Generated Code Submissions in a CS1 Course Using Machine Learning Models SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

Table 1: Dataset properties

Dataset CodeWorkout ChatGPT
Language Java Java
programs 3162 3000
problems 10 10
Class 1 0
min code length 4 3
max code length 83 27
mean code length 17 10

since it is given to the students with the problem statement in the
CodeWorkout platform, and we want ChatGPT to have the same in-
formation as students when constructing the solutions. In order to
maintain balance in the dataset, we collect 300 ChatGPT-generated
solutions for each problem, which are used for comparison with the
student code. To generate each instance of a solution to a specific
problem, we regenerate the response of ChatGPT to get different
solutions. The correctness of ChatGPT-generated code is manually
examined to ensure that we only include the correct programs. For
the 10 problems, ChatGPT did not generate any incorrect code.
The characteristics of the ChatGPT-generated code are provided in
Table 1. In the ChatGPT code generation process, we observe that
for small and simple introductory programming problem solutions,
ChatGPT solutions have fewer variations than student submissions.
We discuss this more in Section 5.

3.3 Automatically Distinguishing ChatGPT and
Student Code

We use differentMLmodels to detect the code sources automatically.
We use both traditional ML techniques and recent neural methods
to detect student-written code and ChatGPT-generated code. The
traditional methods include SVM [13, 22] and XGBoost [22, 25].
The more recent methods include code2vec [4], ASTNN [59], and
SANN [23]. Furthermore, as a baseline, we use MOSS to verify if
we can detect ChatGPT-generated code with traditional tools.

We evaluated three state-of-the-art ML code classification mod-
els based on their ability to classify programming code as either
student-written or generated by ChatGPT. code2vec [4] is an
attention-based neural network model designed to learn condensed
vector representations for programming code. It has found appli-
cations in educational contexts, including bug detection, perfor-
mance prediction, and skill representation [52–56]. The model pro-
cesses Abstract Syntax Trees (ASTs) of code snippets and trans-
forms paths between leaf nodes into fixed-length vectors using
an attention mechanism that assigns weights to code structures
and paths according to their significance for the outcome. This
approach highlights significant code structures and paths, aiding
in task understanding. ASTNN [59] is an AST-based Neural Net-
work for code classification tasks. It takes an AST of a code snippet
and generates a structure-based vector representation. It excels in
tasks like code correctness prediction, pattern detection, and clone
identification [14, 17, 37, 57, 59]. ASTNN captures code structure
and is ideal for categorizing code snippets, including distinguishing
between student-written and ChatGPT-generated code. SANN [23]
is also an AST-based model utilizing optimized subtree extraction,

a two-way embedding approach, and an attention mechanism to
represent student code in an effective way. It has shown its effec-
tiveness in student code correctness prediction and detecting code
patterns and algorithms from student submissions [23].

4 EXPERIMENTS
Our experiments are designed to distinguish between student-
written and ChatGPT-generated code. To detect the source of a
program, we perform a binary classification task, where we identify
if a piece of code has been written by a student (class 1) or generated
using ChatGPT (class 0). We trained each model with submissions
from all 10 problems in our dataset. We use accuracy, precision,
recall, and F1-score as the evaluation metrics. Utilizing a variety
of evaluation metrics enables a complete understanding of model
strengths and weaknesses [23, 49].

As a baseline for comparison, we evaluated more traditional ML
models, including SVM and XGBoost. For these models, we used
TF-IDF [21] to represent each program in our dataset as a numeric
vector, where each index of that vector represents the frequency of a
specific token in the given program (e.g., for or double), compared
to its relative frequency across all programs. We used 10-fold cross-
validation within the training dataset to tune the hyperparameters
of the traditional ML models. For SVM, the kernel is set to ‘poly’
from the set {‘linear’, ‘poly’, ‘rbf’}, C to 10 from the set {0.1, 1, 10}.
For XGBoost, we set the value of max_depth to 10 from the set of
{3, 6, 10}, gamma to 1 from the set {1, 5, 9}, and n_estimator to 180.

We performed a manual search to tune the hyperparameters of
the code2vec, ASTNN, and SANNmodels due to the time constraints
associated with performing a grid search on deep learning models.
The dataset is split in a 3:1:1 ratio for training, validating, and
testing. We selected the best hyperparameters using the validating
dataset, while the results were reported on the testing dataset. We
set the embedding size to 128, 128, and 256 from a set of {64, 128,
256} for code2vec, ASTNN, and SANN, respectively. The maximum
epoch is set to 200 with a patience of 50 to prevent overfitting. To
generate the ASTs from the programming code, an open-source
tool called javalang7 is used. javalang provides a lexer and a parser
for the Java programming language.

5 RESULTS
5.1 Code Source Identification
To investigate how well student-written and ChatGPT-generated
code can be distinguished in an introductory programming course
(RQ1), we perform a classification task using the SVM, XGBoost,
code2vec, ASTNN, and SANN models. In the experiments, we ran-
domly selected 60% of the dataset for the training set and 20%
in each of the validation and test sets. The testing results of the
experiment are shown in Table 2.

From Table 2, one can see that all ML models can distinguish
between student-written and ChatGPT-generated code well. All
accuracies and F1 scores are higher than 90%. Table 2 also shows
that deep learning models tend to outperform traditional models,
with SANN performing the best in terms of accuracy, recall, and
F1-score with values of 0.97, 0.97, and 0.97, respectively. This means

7https://github.com/c2nes/javalang

https://github.com/c2nes/javalang

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Muntasir Hoq et al.

Table 2: Performance comparison of different models

Model Accuracy Precision Recall F1-score
SVM 0.90 0.90 0.90 0.90
XGBoost 0.91 0.91 0.91 0.91
code2vec 0.95 0.95 0.95 0.95
ASTNN 0.92 0.99 0.87 0.92
SANN 0.97 0.97 0.97 0.97

it can identify 97% of ChatGTP-generated code (recall) while only
falsely signaling a student of using ChatGPT 3% of the time (1 -
precision), suggesting the model is likely viable for classroom use.
If higher precision is required, the ASTNN has the highest, with a
value of 0.99, while still catching 87% of ChatGPT code.

In general, the AST-based models perform better than the tra-
ditional ML models in accuracy, precision, recall, and F1-score.
However, the performance of the traditional ML models is compet-
itive compared to the AST-based models, though traditional ML
models deal with code as textual data, whereas AST-based models
try to encode the syntactic and semantic information of the code.
This indicates that there are substantial textual differences between
student-written and ChatGPT-generated code.

5.1.1 MOSS’s Detection of ChatGPT Code. The current state
of practice for plagiarism detection is to use a similarity detection
tool likeMOSS [12]. Therefore, we usedMOSS as a baseline to detect
ChatGPT-generated solutions. MOSS is designed to detect the simi-
larity of solutions (i.e., to detect students copying each others’ code).
Therefore, to use MOSS to detect ChatGPT-generated solutions, an
instructor would need to create a database of ChatGPT-generated
solutions and upload them to MOSS, along with student-submitted
code. If a ChatGPT-generated solution matches a student-submitted
one, it can indicate likely plagiarism. We simulated this by submit-
ting all student- and all ChatGPT-generated solutions to MOSS for
each problem (some of which could represent students submitting
ChatGPT-generated code). With 300 ChatGPT-generated solutions,
MOSS analyzed 300*299/2 = 44850 unique solution pairs for simi-
larity. We set the language to Java and the MOSS similarity score
to 20%8. This threshold is chosen based on the authors’ experience
in integrating MOSS into their CS classrooms.

Our results show that across the 10 problems, a maximum of
350/44850 (< 1%) of the ChatGPT solution pairs had a similarity ratio
above the 20% threshold. This suggests that even if an instructor
uses a large database of ChatGPT solutions to detect plagiarism
with MOSS, the vast majority (99%) of student-submitted ChatGPT-
generated solutions would not be detected as similar to others. This
shows that current tools like MOSS are insufficient for detecting
ChatGPT-generated code.

5.1.2 Exploring Code Structures and Patterns. To understand
why themodels are effective at differentiating student and ChatGPT-
generated code, we analyzed the structural differences between
introductory student code and code generated by ChatGPT us-
ing the ten programming problems. We randomly selected one

8We used a similar threshold for the student-generated code and found it was sufficient
to detect cheating in up to 500 pairs per problem

Figure 1: Student-written solution for caughtSpeeding

Figure 2: ChatGPT-generated solution for caughtSpeeding

instance of student-written code and one instance of ChatGPT-
generated code for each problem. An example solution pair for the
caughtSpeeding problem is given in Figures 1 and 2.

The ChatGPT-generated code demonstrates a distinct set of pat-
terns. The generated code is much more concise than student sub-
missions, with an average length of 10 lines compared to 17 lines
written by students. These code solutions have high code efficiency
and rarely any code duplication compared to student code. We
found several structural differences in the ChatGPT-generated solu-
tions compared to the student-written code: 1) ChatGPT-generated
code frequently employs ternary operators as an alternative to mul-
tiple if-else conditions. This practice allows for more concise and
streamlined code, contributing to its brevity. 2) Unlike students’
code which often assigns a value to a boolean variable before return-
ing it, ChatGPT code directly returns the expression. This approach
eliminates the need for an additional assignment statement, further
enhancing code efficiency. 3) Another common pattern of ChatGPT
code is to assign complex expressions to variables before using
them as conditions in later if-statements, whereas students directly
use the expressions as conditions, often duplicating them across
multiple if-statements. ChatGPT uses a direct return statement fol-
lowing an if-return statement, omitting the need for an else-return
statement that is commonly observed in student code. Generally,
ChatGPT-generated code has simplified the control flow and re-
duced overall code length. These patterns focus on Boolean logic

Detecting ChatGPT-Generated Code Submissions in a CS1 Course Using Machine Learning Models SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

Table 3: Average edit distance among various sources

Pairs Edit distance
Student-Student 138.64
Student-ChatGPT 136.20
Student-Impersonate 115.30
Student-Roleplay:novice 114.40
Student-Avoid complications 134.60
Student-Roleplay:introductory 114.30
ChatGPT-ChatGPT 88.30

and conditionals since that was the primary focus of the 10 prob-
lems we analyzed. They likely mirror differences between novice
and expert code, mostly on which ChatGPT was trained.

In summary, analysis of even a small sample of student- and
ChatGPT-written code shows why our ML models were able to dif-
ferentiate the two accurately: ChatGPT writes code like an efficient,
professional programmer, and novices approach programming fun-
damentally different than experts [58], even at the level of brain
activity [33]. These findings were supported by looking further into
the attention weights of the code2vec model and observing that the
most influential features in detecting student versus ChatGPT code
relied on parts of the program that represented these patterns.

5.2 Varying ChatGPT Prompts
Based on our results, ChatGPT-generated code looked very different
from student code. Thus, our next question was whether students
could complicate the detection process by prompting ChatGPT
to impersonate novice students (RQ2). To examine this question,
we conducted a pilot study to explore how and to what degree
student codes are similar to ChatGPT when prompted to mimic
novice programmers. We developed a small dataset that contains 20
programs per four categories of prompts for each problem designed
to mimic novice programmer code (as suggested by [32]). The
prompts used in this study include i) “Act as a novice programmer”
(We will denote this prompt as “impersonate” in the rest of the
paper for brevity), ii) “Write the code as a novice programmer”
(“roleplay: novice”), iii) “Avoid complications while writing the
code” (“avoid complication”), and iv) “Write it as an introductory
programming student” (“roleplay: introductory”) along with the
same problem descriptions used before. For this pilot study, we
analyzed the number of changes in each pair of code from different
sources using the edit distance calculated with the Levenshtein
algorithm to learn the difference between each type of generated
code and use the distance to represent the difference, where a
smaller difference means similar output with different prompts [22].
To calculate the edit distance, we strip off all the code comments as
they do not play a meaningful role in the program structure.

Table 3 presents the average edit distance observed among pro-
grams generated from variants of prompts and student code. We
randomly sampled 20 programs for each problem (from 300 pro-
grams per problem for both student and ChatGPT code) and cal-
culated average edit distances over all 10 problems between all
pairs of student and ChatGPT programs, including the programs
obtained from the prompt variations.

An average edit distance of 138.64 in the student-student code
shows that novice programmers may follow different unique so-
lution paths during problem-solving. Conversely, the ChatGPT
code pairs (using the original prompt without any prompt varia-
tion) exhibit less variation in edit distances with a lower average
(88.30). This aligns with our earlier observations where, for sim-
ple and small introductory programming problems involving basic
concepts, ChatGPT demonstrates reduced variations and produces
technically sound, optimized, and expert-like programs. Similarly,
we observe a higher average edit distance between student code and
ChatGPT code using different prompts, including ChatGPT (using
the original prompt without any prompt variation), impersonate,
roleplay: novice, avoid complications, and roleplay: introductory
pairs. Among these, student-ChatGPT and student-avoid compli-
cations show the highest variation in programs, meaning higher
variation between student code and the ChatGPT-generated code
from different prompts, including the original one.

We further investigated the prompts, including “impersonate”,
“roleplay: novice,” and “roleplay: introductory,” as they show less
variation than the previously mentioned ones. In analyzing these
three prompts, notable differences emerge in the code based on the
complexity of the problems. Larger problems, defined by higher line
numbers (>10), exhibit considerable variation in student-written
programs and ChatGPT-generated solutions. With prompt varia-
tions, ChatGPT produces different solutions compared to the orig-
inal prompt (10% lower edit distance than student-ChatGPT on
average). Nevertheless, these programs remain more optimized and
compact compared to student code, especially in the case of return
statements, avoiding unnecessary else statements and eliminating
unreachable else statements in conditional statements, resulting in
a more expert-like programming style. In contrast, novice program-
mers tend to demonstrate unoptimized programming practices,
which experts and ML detectors may identify by observing these
patterns in the programming structures.

The scenario changes for smaller problems with fewer lines of
code (<10). The solution space for these problems is smaller, leading
to fewer possibilities of variation and, consequently, a lower aver-
age edit distance (20% lower edit distance than student-ChatGPT
on average). Detecting differences becomes more challenging in
such cases, particularly when the code size is very small and Chat-
GPT solutions and student programs may share similar patterns.
However, novice programs still exhibit distinct novice traits that
experts and educators can easily recognize, such as placing values
before variable names in expressions (e.g., 60<=temp), using mul-
tiple if conditions instead of else-if conditions, and other patterns
mentioned earlier. These traits can help differentiate novice-written
code from ChatGPT-generated solutions.

In short, larger problems show more variation in student and
ChatGPT solutions with or without prompt variation, with Chat-
GPT producing optimized and compact code. In smaller problems,
where solution space and variation in code are limited, distinguish-
ing between ChatGPT and student solutions can be challenging, but
novice traits in student code are still likely identifiable by educators.

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Muntasir Hoq et al.

6 DISCUSSION
The emergence of advanced AI tools brings ample opportunities for
CS education. However, it can also cause adverse effects, especially
in introductory programming classrooms, as students might use
these tools to generate homework solutions without understanding
the generated code. In this paper, we conduct an exploratory study
to show that there are patterns in ChatGPT-generated code that
both machine learning models and computing education practi-
tioners may be able to use for detecting AI-generated codes. Based
on our results, ML-based methods can detect ChatGPT-generated
code submissions for a set of relatively simple problems with high
accuracy (97%). The ChatGPT code submissions share patterns that
human instructors could identify, such as using more advanced
programming constructs than the typical student would use. Our
results demonstrated that code generated by directly prompting
ChatGPT for a solution can be effortlessly detected by 1) data-driven
code analysis approaches and 2) instructor inspections. However,
most of the features that can be used to detect ChatGPT-generated
code rely on that code using advanced concepts, so the accuracy
in detecting LLM code might be lower in more advanced courses
where students are expected to write more optimized code.

We further explored situations where code is generated with
different prompts inspired by [32]. We found that even if students
attempt to make simple modifications to the prompts for ChatGPT
to generate code that mimics novice programming code, the code
generated is still distinguishable from students’ own written code.
For example, when we tried to add the sentence “Write the code
as a novice programmer”, or “Act as a novice programmer while
programming”, etc., the generated code is still structurally differ-
ent from actual students’ programming code (e.g., the ChatGPT-
generated code still uses ternary operators). While more systematic
experiments are required to validate these findings, the preliminary
results suggest that our findings on detecting the AI-generated code
remain promising across different prompts.

Teaching and Learning Implications: Identifying code gener-
ated by ChatGPT offers various advantages for CS Education. For
instance, it enables instructors to intervene when the utilization
of generative AI programming tools is deemed to hinder learn-
ing. Data-driven plagiarism detection methods have a limitation:
the evidence that can be presented to students showing that they
committed cheating is not as compelling due to the variations in
ChatGPT-generated codes. However, cheating detection does not
necessarily need to be the sole end goal for data-driven detection
tools. In fact, the alarm systems can serve as formative feedback
systems [11, 29]. For example, a highly accurate detection system
can be integrated into students’ submission system to prevent stu-
dents from submitting possibly AI-generated source code until they
have made substantial changes that ensure a proper understanding
of the code being submitted. Alternatively, the system can prompt
the student to reflect on the submitted code to assess their code
comprehension and code generation skills. Moreover, since possible
cheating students may face challenges in learning [18], the system
could also serve as a detector of learning difficulty, and students
who trigger the alarms frequently could be targeted by possible
support interventions to learn related concepts.

Pedagogical Implications: Generative AI as a tool will expand
in the foreseeable future. Schools and teachers should teach students
how to use AI ethically and efficiently. AI-based tools are double-
edged swords: they can be over-relied on but might help students
learn concepts [1, 2, 20]. It remains an open question when and
how [38] students should seek help from AI-driven tools.

Limitations: One main limitation of this study is that we used
a small subset of the original CodeWorkout dataset for ChatGPT-
generated code (10 problems). They mainly focus on the usage of
conditionals and are relatively simple and straightforward, and
are limited in the variety of possible code structures. Future work
should conduct an evaluation of more complex problems, such as
ones involving a combination of loops or array structures. In addi-
tion, one assumption in our current research is that novice students
have access to and know how to use ChatGPT to generate code.
While there is little existing research (see e.g. [30, 44] for some
preliminary results) systematically investigating how students in-
teract with generative AI tools, such as ChatGPT, students may not
know how to manipulate the prompts or do not have the ability
to work with such tools. Moreover, what type of use of generative
AI constitutes plagiarism is an open discussion. For example, most
instructors likely consider the case presented in this paper as plagia-
rism, where students would directly query ChatGPT to provide an
answer to a programming exercise. The situation is more complex
if students use ChatGPT to receive intermittent help while conduct-
ing problem-solving, however. For example, ChatGPT can be used
to debug code and to explain code [34–36], and it is unclear if these
use cases should be disallowed. Finally, this work only includes
cheat detection models that have not yet been incorporated into
live classes, which could be a future research direction.

7 CONCLUSION
In this paper, we introduced an automatedMLmethod to detect code
generated by ChatGPT in an introductory programming course. Our
results suggest that machine learning methods are able to detect
such AI code with a high performance (97% accuracy by SANN)
in our dataset, which marks an important step towards exposing
ChatGPT-generated code in CS1 courses. We further suggested
patterns commonly occurring in ChatGPT-generated code that
instructors can identify. We also found that possible variations in
prompts will not cause large changes to these patterns. We further
discussed possible applications of code source detection tools to
improve introductory computer science education.

REFERENCES
[1] Bita Akram, Wookhee Min, Eric Wiebe, Bradford Mott, Kristy Elizabeth Boyer,

and James Lester. 2018. Improving stealth assessment in game-based learning
with LSTM-based analytics. In EDM. 208–218.

[2] Bita Akram, Wookhe Min, Eric Wiebe, Anam Navied, Bradford Mott, Kristy Eliza-
beth Boyer, James Lester, et al. 2020. Automated assessment of computer science
competencies from student programs with gaussian process regression. In EDM.

[3] Ibrahim Albluwi. 2019. Plagiarism in programming assessments: a systematic
review. TOCE 20, 1 (2019), 1–28.

[4] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. POPL 3 (2019), 1–29.

[5] Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard-Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
SIGCSE. 500–506.

[6] Georgina Cosma and Mike Joy. 2008. Towards a definition of source-code plagia-
rism. IEEE Trans. on Ed. 51, 2 (2008), 195–200.

Detecting ChatGPT-Generated Code Submissions in a CS1 Course Using Machine Learning Models SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

[7] Seife Dendir and R Stockton Maxwell. 2020. Cheating in online courses: Evidence
from online proctoring. Computers in Human Behavior Reports 2 (2020), 100033.

[8] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring prompt engineering for solving CS1 problems using natural language.
In SIGCSE. 1136–1142.

[9] Paul Denny, James Prather, Brett A Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2023. Computing Education in the Era of Generative AI. arXiv
preprint arXiv:2306.02608 (2023).

[10] Paul Denny, Sami Sarsa, Arto Hellas, and Juho Leinonen. 2022. Robosourcing
Educational Resources–Leveraging Large Language Models for Learnersourcing.
arXiv preprint arXiv:2211.04715 (2022).

[11] Martin Dick, Judy Sheard, Cathy Bareiss, Janet Carter, Donald Joyce, Trevor
Harding, and Cary Laxer. 2002. Addressing student cheating: definitions and
solutions. SIGCSE 35, 2 (2002), 172–184.

[12] Steve Engels, Vivek Lakshmanan, and Michelle Craig. 2007. Plagiarism detection
using feature-based neural networks. In SIGCSE. 34–38.

[13] Akhil Eppa and Anirudh Murali. 2022. Source Code Plagiarism Detection: A
Machine Intelligence Approach. In ICAECC. 1–7.

[14] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020.
Functional code clone detection with syntax and semantics fusion learning. In
SIGSOFT. 516–527.

[15] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The robots are coming: Exploring the implications of openai
codex on introductory programming. In ACE. 10–19.

[16] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A Becker. 2023. My AI Wants to Know if This Will Be
on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In ACEC.
97–104.

[17] Manuel A Fokam and Ritesh Ajoodha. 2021. Influence of Contrastive Learning
on Source Code Plagiarism Detection through Recursive Neural Networks. In
IMITEC. 1–6.

[18] Arto Hellas, Juho Leinonen, and Petri Ihantola. 2017. Plagiarism in take-home
exams: help-seeking, collaboration, and systematic cheating. In ITiCSE. 238–243.

[19] Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää, and
Juha Sorva. 2023. Exploring the Responses of Large Language Models to Beginner
Programmers’ Help Requests. In ICER.

[20] Kenneth Holstein, Bruce M McLaren, and Vincent Aleven. 2018. Student learning
benefits of a mixed-reality teacher awareness tool in AI-enhanced classrooms. In
AIED. 154–168.

[21] Muntasir Hoq, Peter Brusilovsky, and Bita Akram. 2022. SANN: A Subtree-based
Attention Neural Network Model for Student Success Prediction Through Source
Code Analysis. In 6th CSEDM Workshop.

[22] Muntasir Hoq, Peter Brusilovsky, and Bita Akram. 2023. Analysis of an Explain-
able Student Performance Prediction Model in an Introductory Programming
Course. In EDM. 79–90.

[23] Muntasir Hoq, Sushanth Reddy Chilla, Melika Ahmadi Ranjbar, Peter Brusilovsky,
and Bita Akram. 2023. SANN: Programming Code Representation UsingAttention
Neural Network with Optimized Subtree Extraction. In CIKM. 783–792.

[24] Muntasir Hoq, Yang Shi, Juho Leinonen, Damilola Babalola, Collin Lynch, and
Bita Akram. 2023. Detecting ChatGPT-Generated Code in a CS1 Course. In AIED
LLM Workshop.

[25] Qiubo Huang, Guozheng Fang, and Keyuan Jiang. 2019. An Approach of Sus-
pected Code Plagiarism Detection Based on XGBoost Incremental Learning. In
CNCI.

[26] Meena Jha, Sander JJ Leemans, Regina Berretta, Ayse Aysin Bilgin, Lakmali
Jayarathna, and Judy Sheard. 2022. Online Assessment and COVID: Opportunities
and Challenges. In ACEC. 27–35.

[27] Mike Joy, Georgina Cosma, Jane Yin-Kim Yau, and Jane Sinclair. 2010. Source
code plagiarism—a student perspective. IEEE Trans. on Ed. 54, 1 (2010), 125–132.

[28] MS Joy, JE Sinclair, Russell Boyatt, JY-K Yau, and Georgina Cosma. 2013. Student
perspectives on source-code plagiarism. Int. J. for Educational Integrity (2013).

[29] Oscar Karnalim, Simon, William Chivers, and Billy Susanto Panca. 2022. Educat-
ing students about programming plagiarism and collusion via formative feedback.
TOCE 22, 3 (2022), 1–31.

[30] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In CHI. 1–23.

[31] Wang Kechao, Wang Tiantian, Zong Mingkui, Wang Zhifei, and Ren Xiang-
min. 2012. Detection of plagiarism in students’ programs using a data mining
algorithm. In 2nd Int. Conf. on Comp. Sc. and Network Tech. 1318–1321.

[32] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. In NeurIPS.

[33] SeolHwa Lee, Andrew Matteson, Danial Hooshyar, SongHyun Kim, JaeBum Jung,
GiChun Nam, and HeuiSeok Lim. 2016. Comparing programming language
comprehension between novice and expert programmers using eeg analysis. In
BIBE. 350–355.

[34] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing code explanations created
by students and large language models. In ITiCSE.

[35] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using large language models to enhance programming
error messages. In SIGCSE. 563–569.

[36] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in a web software development
e-book. In SIGCSE. 931–937.

[37] Ye Mao, Yang Shi, Samiha Marwan, ThomasW Price, Tiffany Barnes, and Min Chi.
2021. Knowing both when and where: Temporal-ASTNN for Early Prediction of
Student Success in Novice Programming Tasks. In EDM.

[38] Samiha Marwan, Joseph Jay Williams, and Thomas Price. 2019. An evaluation of
the impact of automated programming hints on performance and learning. In
ICER. 61–70.

[39] Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and
Chelsea Finn. 2023. DetectGPT: Zero-Shot Machine-Generated Text Detection
using Probability Curvature. arXiv preprint arXiv:2301.11305 (2023).

[40] Sharon Nelson-Le Gall. 1981. Help-seeking: An understudied problem-solving
skill in children. Developmental Review 1, 3 (1981), 224–246.

[41] Richard S Newman. 2002. How self-regulated learners cope with academic
difficulty: The role of adaptive help seeking. Theory into practice 41, 2 (2002),
132–138.

[42] Michael Sheinman Orenstrakh, Oscar Karnalim, Carlos Anibal Suarez, and
Michael Liut. 2023. Detecting LLM-Generated Text in Computing Education: A
Comparative Study for ChatGPT Cases. arXiv preprint arXiv:2307.07411 (2023).

[43] James Prather, Paul Denny, Juho Leinonen, Brett A Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N Reeves, and
Jaromir Savelka. 2023. The Robots Are Here: The Generative AI Revolution in
Computing Education. Working Group Reports on Innovation and Technology in
Computer Science Education (2023).

[44] James Prather, Brent N Reeves, Paul Denny, Brett A Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. "It’s Weird That it Knows What I Want": Usability and Interactions
with Copilot for Novice Programmers. TOCHI (2023).

[45] Lutz Prechelt, Guido Malpohl, Michael Philippsen, et al. 2002. Finding plagiarisms
among a set of programs with JPlag. J. Univ. Comput. Sci. 8, 11 (2002), 1016.

[46] Greg Rosalsky and Emma Peaslee. 2023. This 22-year-old is trying to save us
from ChatGPT before it changes writing forever. NPR 18 (2023).

[47] Allison M Ryan and Sungok Serena Shim. 2012. Changes in help seeking from
peers during early adolescence: Associations with changes in achievement and
perceptions of teachers. J. of Educational Psychology 104, 4 (2012), 1122.

[48] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In ICER. 27–43.

[49] Sami Sarsa, Juho Leinonen, and Arto Hellas. 2022. Empirical Evaluation of Deep
Learning Models for Knowledge Tracing: Of Hyperparameters and Metrics on
Performance and Replicability. J. of EDM 14, 2 (2022).

[50] Judy Sheard, Martin Dick, Selby Markham, Ian Macdonald, and Meaghan Walsh.
2002. Cheating and plagiarism: Perceptions and practices of first year IT students.
In ITiCSE. 183–187.

[51] Judy Sheard, Selby Markham, and Martin Dick. 2003. Investigating differences in
cheating behaviours of IT undergraduate and graduate students: The maturity
and motivation factors. Higher Ed. Research & Development 22 (2003), 91–108.

[52] Yang Shi. 2023. Interpretable Code-Informed Learning Analytics for CS Education.
In LAK. 180–187.

[53] Yang Shi, Min Chi, Tiffany Barnes, and Thomas Price. 2022. Code-DKT: A Code-
based Knowledge Tracing Model for Programming Tasks. In EDM. 50–61.

[54] Yang Shi, Ye Mao, Tiffany Barnes, Min Chi, and ThomasW Price. 2021. More with
less: Exploring how to use deep learning effectively through semi-supervised
learning for automatic bug detection in student code.. In EDM. 446–453.

[55] Yang Shi, Robin Schmucker, Min Chi, Tiffany Barnes, and Thomas Price. 2023.
KC-Finder: Automated Knowledge Component Discovery for Programming Prob-
lems.. In EDM.

[56] Yang Shi, Krupal Shah, Wengran Wang, Samiha Marwan, Poorvaja Penmetsa,
and Thomas Price. 2021. Toward semi-automatic misconception discovery using
code embeddings. In LAK. 606–612.

[57] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting code clones
with graph neural network and flow-augmented abstract syntax tree. In SANER.

[58] Susan Wiedenbeck, Vikki Fix, and Jean Scholtz. 1993. Characteristics of the
mental representations of novice and expert programmers: an empirical study.
Int. J. of Man-Machine Studies 39, 5 (1993), 793–812.

[59] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In ICSE. 783–794.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Dataset
	3.2 ChatGPT-Generated Code
	3.3 Automatically Distinguishing ChatGPT and Student Code

	4 Experiments
	5 Results
	5.1 Code Source Identification
	5.2 Varying ChatGPT Prompts

	6 Discussion
	7 Conclusion
	References

