Evaluating LLM-generated Worked Examples in an Introductory
Programming Course

Breanna Jury
University of Auckland
Auckland, New Zealand

bjur781@aucklanduni.ac.nz

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

ABSTRACT

Worked examples, which illustrate the process for solving a problem
step-by-step, are a well-established pedagogical technique that has
been widely studied in computing classrooms. However, creating
high-quality worked examples is very time-intensive for educators,
and thus learners tend not to have access to a broad range of such
examples. The recent emergence of powerful large language models
(LLMs), which appear capable of generating high-quality human-
like content, may offer a solution. Separate strands of recent work
have shown that LLMs can accurately generate code suitable for
a novice audience, and that they can generate high-quality expla-
nations of code. Therefore, LLMs may be well suited to creating
a broad range of worked examples, overcoming the bottleneck of
manual effort that is currently required. In this work, we present a
novel tool, ‘WorkedGen’, which uses an LLM to generate interac-
tive worked examples. We evaluate this tool with both an expert
assessment of the content, and a user study involving students in
a first-year Python programming course (n = ~400). We find that
prompt chaining and one-shot learning are useful strategies for op-
timising the output of an LLM when producing worked examples.
Our expert analysis suggests that LLMs generate clear explana-
tions, and our classroom deployment revealed that students find
the LLM-generated worked examples useful for their learning. We
propose several avenues for future work, including investigating
WorkedGen’s value in a range of programming languages, and with
more complex questions suitable for more advanced courses.

CCS CONCEPTS

« Software and its engineering — Programming by exam-
ple; - Social and professional topics — Software engineering
education.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1619-5/24/01...$15.00
https://doi.org/10.1145/3636243.3636252

Angela Lorusso
University of Auckland
Auckland, New Zealand

alor903@aucklanduni.ac.nz

Juho Leinonen
University of Auckland
Auckland, New Zealand

juho.leinonen@auckland.ac.nz

Andrew Luxton-Reilly
University of Auckland
Auckland, New Zealand

andrew@cs.auckland.ac.nz

KEYWORDS

LLM, large language models, chat-GPT, GPT-3.5, computing educa-
tion, worked examples, CS1

ACM Reference Format:

Breanna Jury, Angela Lorusso, Juho Leinonen, Paul Denny, and Andrew
Luxton-Reilly. 2024. Evaluating LLM-generated Worked Examples in an
Introductory Programming Course. In Australian Computing Education
Conference (ACE 2024), January 29-February 2, 2024, Sydney, NSW, Australia.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3636243.3636252

1 INTRODUCTION

Worked examples are a well-established method of improving stu-
dent learning by reducing cognitive load [13, 15, 23, 31]. In brief,
a worked example is a resource given to students where a course-
related question is answered, and the individual steps in the problem-
solving process are illustrated step-by-step. Learning via worked
examples helps students to build new connections and aids in the
storage and retrieval of key concepts [32]. Worked examples are
time and effort-intensive to create, and therefore instructors tend
to only create a few examples for students to learn from.

Large Language Models (LLMs) are a form of Artificial Intelli-
gence (AlI) and result from training neural networks on enormous
quantities of textual data [4]. LLMs are able to rapidly generate
novel human-like outputs, including source code. This capability
has sparked great interest in the computing education commu-
nity [6, 9, 27], and popular public-access LLMs such as OpenAI’s
ChatGPT have raised the profile of LLMs to a general audience.

There is a wealth of literature on worked examples and their
efficacy in the specific domain of programming [34, 37]. Due to the
relatively recent emergence of LLMs, although they are beginning to
be evaluated and integrated into a range of learning tools [16, 20, 33],
to our knowledge, they have not been applied to the problem of
automatically generating worked examples. Given the documented
capabilities of LLMs for generating code [10] and associated code
explanations [18], we see strong potential for LLMs to be used for
this purpose. The generation and evaluation of a wide range of
worked examples, on demand, has the potential to greatly improve
student learning.

This research progresses in two stages. Firstly, to identify effec-
tive approaches for generating high-quality worked examples, we
evaluate the quality of worked examples generated via a range of

https://orcid.org/0009-0008-9760-4623
https://orcid.org/0009-0003-5741-8547
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0001-8269-2909
https://doi.org/10.1145/3636243.3636252
https://doi.org/10.1145/3636243.3636252

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

prompting strategies. This first stage of the research is guided by
the following two research questions:

RQ1: How well can LLMs generate clear explanations in a
specific knowledge domain?

RQ2: How effectively can LLMs decompose a worked example
into well-defined steps?

Secondly, using our best generation strategy, we deploy LLM-
generated worked examples to students in an introductory pro-
gramming course using a bespoke tool. Our web-based application,
named ‘WorkedGen’, provides a front-end user interface to generate
and view worked examples. WorkedGen allows the user to enter a
programming language and a question for which a worked example
is generated. Users can then view the example step-by-step, and
interact with the LLM by asking questions or clicking on keywords
and lines of code. We use WorkedGen to further evaluate the use-
fulness of LLM-generated worked examples with the following two
research questions:

RQ3: How do novices perceive the usefulness of on-demand
LLM-generated worked examples?

RQ4: How do novices interact with worked examples, and how
do they perceive the usefulness of these interactions?

2 RELATED WORK
2.1 Worked Examples

Worked examples are an effective way for learners to understand
complex ideas. They are shown to decrease learners’ cognitive load
and therefore aid in the retrieval and storage of concepts [32]. Stu-
dents benefit from an opportunity to view concepts before having
to put them into practice [12].

2.1.1 Worked Examples and Cognitive Load. Cognitive load theory
defines three types of load: intrinsic, which relates to the difficulty
of content; extraneous, the processing of unproductive information;
and germane, the load imposed by the learning process [13]. If
a person’s cognitive load is exceeded, their learning will be hin-
dered [15, 23]. Kalyuga et al. [15] showed that using worked exam-
ples effectively increases student learning by reducing the extrane-
ous load and optimizing the germane load.

2.1.2 Ways of Optimizing Worked Examples. Several ways of op-
timizing worked examples have been proposed. Schwonke et al. [30]

investigated worked examples enriched with fading. This is a method
where parts of the example are hidden and only become revealed as

the learner progresses. They determined that students required less

time to complete problem-solving activities after being exposed to

these worked examples, and in some cases developed a deeper con-
ceptual understanding. Margulieux et al. [22] used a similar method

of creating questions with subgoals and again found that learners

performed better than with non-optimized worked examples. Muld-
ner et al. [24] supported the use of fading and also speculated on the

helpfulness of forced self-explanation by learners. Worked exam-
ples are a time-intensive resource to produce, and as such, learners

tend to have access to only a small number of worked examples.
Some work has been done on the concept of isomorphic questions

to reduce the effort needed to produce worked examples [25, 38].
This shows promise but still requires significant manual effort.

Breanna Jury, Angela Lorusso, Juho Leinonen, Paul Denny, and Andrew Luxton-Reilly

2.1.3 Constructing Worked Examples. Atkinson et al. [2] proposed
that worked examples should be constructed using the following
steps: they should be divided into three to ten subsections in order
to reduce the extraneous cognitive load; several examples should
be used with increasing complexity to increase germane learning;
and, contexts should vary so that the learner does not falsely link
the context with the concept.

2.1.4 Worked Examples and Programming. In the context of pro-
gramming education, the beneficial effects of worked examples
align with the effects reported in other disciplines [31]. Both Zhi
et al. [37] and Vieira et al. [34] demonstrate, through the use of
A/B testing with an experimental and control group, how worked
examples increase learning, especially in novice programmers.

2.2 Large Language Models

Large Language Models are a category of Artificial Intelligence in
the field of Natural Language Processing (NLP). In recent years,
LLMs have revolutionized the field by achieving high performance
across a range of language tasks. These models are trained on large
amounts of data and can generate high-quality human-like out-
put. In this section, we briefly examine the performance of LLMs
in generating both natural language output and source code and
describe the prompting patterns that have been developed to opti-
mize LLM performance. Although there are myriad opportunities
offered by the application LLMs, researchers have also called for
increased focus on the ethics of their usage, particularly when used
in educational settings [3, 27].

2.2.1 Generating Natural Language. MacNeil et al. [21] investi-
gated GPT-3 and found that it can generate code explanations at
multiple difficulty levels. Leinonen et al. [19] found that error mes-
sages generated by Codex can be helpful, although they are inac-
curate in some cases and should not be taken as a source of truth.
More recently, MacNeil et al. [20] generated three types of expla-
nations with GPT-3 and Codex: line-by-line explanations; lists of
important concepts; and high-level summaries. They summarized
two key findings: GPT-3 is more effective at generating code expla-
nations than Codex; and, students found the high-level summaries
most helpful. They also raised the possibility that future work could
investigate personalizing the outputs to each student. Korinik [17]
found that GPT-3 was highly useful in brainstorming, synthesiz-
ing text, and extracting data from text. This was measured by the
quality of the generated text, the relevance, and the amount of
real information it produced. They reported that GPT-3 frequently
hallucinated when asked to produce reviews of literature, and it
required large amounts of human oversight in such tasks.

2.2.2 Generating Code. Codex by OpenAl was one of the first pop-
ular open-access LLMs for code generation. Chen et al. [5] found
that Codex created successful functions for 28.8% of problems, and
72% when repeated sampling was used. Ross et al. [28] concluded
that Codex was accurate (i.e., that it generated a valid solution)
in 80% of cases. However, Vaithilingam et al. [33] noted that care
must be taken to validate all generated code. In computing edu-
cation, Finnie-Ansley et al. [10, 11] found that the performance
of Codex fell within the top quartile of students in both CS1 and
CS2 programming courses when asked to solve exam questions.

Evaluating LLM-generated Worked Examples in an Introductory Programming Course

In a study conducted by Kazemitabaar et al. [16], students given
access to Codex performed better than students without access and
reported less stress in the learning environment. Denny et al. [7],
Jonsson and Tholander [14], and Sarsa et al. [29] concluded that
the accuracy and usefulness of code generated was dependent on
the prompts given to the LLM, so attention to prompting strategy
is valuable.

2.2.3 Optimization of Prompts. One technique used to improve
LLM outputs is few-shot learning. This is the process of giving the
LLM examples of inputs and corresponding desired outputs to guide
it toward similar generation behaviour. Ahmed and Devanbu [1]
found that Codex trained on ten few-shot examples outperformed
all fine-tuned models. Poesia et al. [26] also noted the positive
effects of few-shot training. Wu et al. [36] proposed a novel method
of prompting called chaining, through which prompts are fed step-
by-step, with each output being used as part of the next input. This
method saw better outcomes than one-step prompts 82% of the time.
White et al. [35] catalogued several methods of prompt engineering
which ask the LLM to produce output in a given pattern. Some
notable patterns are the Persona pattern, where the LLM acts as a
type of person or role, Question Refinement, where the LLM will
generate better versions of the input, and Context Manager, where
the LLM is instructed to ignore certain scopes. These patterns create
a framework to leverage the power of an LLM. To teach students
how to use LLM prompts more effectively for code generation,
Denny et al. [8] created a novel tool ‘Promptly’ which was well-
received by students.

2.3 Gaps and Opportunities

Despite the recent interest in LLMs in computing education, there is
currently no work directly exploring the use of LLMs for generating
and deploying on-demand worked examples to students learning
programming. Furthermore, there is a scarcity of user studies, par-
ticularly at a large scale, that evaluate student interactions with
LLM-generated content.

In this work, we explore a novel system that uses an LLM to gen-
erate worked examples for students in early programming courses.
Leveraging the power of an LLM allows for the creation of an almost
unlimited number of examples without manual effort. Access to a
large and varied repository of worked examples may be beneficial
to students.

3 METHODS
3.1 Design

We designed WorkedGen as a tool for the user-friendly generation
of and interaction with LLM-generated worked examples. Informed
by the literature on worked example design, the tool was built to
display each worked example in discrete steps (three to ten) [2].
For the purposes of our user study, a set of pre-defined questions
relevant to the course context was included as a ‘question bank’
to allow participants to generate a worked example on-demand
simply by selecting an existing question. In addition, users had the
option to input their own questions and programming language,
allowing for the generation of worked examples on arbitrary topics.
Figure 1 shows these features on the WorkedGen home screen.

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

Welcome!

Programming language selection via drop-down menu

What language are you using?

Enter your own question @

= \ Free question entry option ‘
Or choose a question

COMPSCI101 - COMPSCI101 -
Separate odds and Count Consonants
evens Python

Write a program that a...

Python
Write a program that
reads in a string
containing integer
numbers separated by
commas. The program
should print out all the
odd numbers present in

Figure 1: WorkedGen home screen, which contains the user
input choices and provided question bank

The selected question would then be passed to the LLM to gener-
ate a worked example. Each step would be displayed on a separate
page, following the principle of fading. The first step would be a
general overview, with no specific steps or code shown, to prompt
the user to think more deeply about the question. Each step would
have code and accompanying explanations, as shown in Figure 2.
Finally, the last step would be a review of the full code and an over-
arching explanation of the question. The exact prompting method
is detailed in the next section.

WorkedGen was designed to allow for user interaction. This
leverages the power of an LLM over traditional static worked ex-
amples, as the user can receive additional explanations as they
need. Three kinds of LLM interaction exist in each worked example:
keywords, lines of code, and questions. In each explanation, the
LLM would be prompted to generate keywords for the text. These
keywords would then be shown in bold and would be clickable.
Each line of code can be clicked, and there is a free input box where
the user can ask questions. All of these interactions are passed to
the LLM along with the original context, and a short explanation is
generated and displayed to the user. This is shown in Figure 2.

3.2 Prompt Development

3.2.1 Model Selection. Several general-purpose LLMs have been
developed and made available for public use in recent years. Codex
(OpenAl) was released in 2021 and was specifically designed for
code generation [5]. It is less capable than other more recent mod-
els for generating natural language and thus is less suitable for
generating worked examples. Access to Codex was also deprecated

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

Your Question: Step 3=

Write a program that
reads in a string
containing integer
numbers separated by
commas. The program
should print out all the
odd numbers present in
the input, and then all the

Y'Step-by-step
breakdown

Overview

Create empty lists for odd and even numbers

odd_numbers = []

even_numbers

Iterate through the list of numbers

for number in numbers_list
Convert the number from string to integer
number - int(number)

Step 1 # Check if the number is odd or even

if number

Step 2 even_numbers .append (number)

Step 3 o0dd_numbers . append (number)

what does % do?

Clicked line of code 1 if number % 2 == 0:

Clicked keyword §- iterate

Clickable lines of code

Breanna Jury, Angela Lorusso, Juho Leinonen, Paul Denny, and Andrew Luxton-Reilly

Clickable keywords

We will then iterate through the list of numbers and separate them into two lists - one for odd numbers and one for even numbers.

/Free question entry

| LLM-generated explanations

~

The % symbol in this code snippet is the modulus operator. It calculates the remainder when the number on the left is divided by the number on the right. In this £ase, it is used to determine if a number
is odd or even. If the remainder is 0 when a number is divided by 2, it means the number is even. Otherwise, it is odd

This line checks if the number is divisible by 2 without any remainder, which means it is an even number.

In this context, the word "iterate” means to repeat a process or action multiple times. It refers to the act of going through each item in the list of numbers one by one and performing the necessary
operations to separate them into two different lists based on their odd or even nature

Figure 2: WorkedGen step screen with additional explanations from user interaction with WorkedGen - questions, code lines

and keywords

by OpenAl in early 2023, although some limited access has been
retained for research purposes. Bard! (Google) is proficient at gener-
ating both code and natural language, and was released in response
to OpenAD’s release of ChatGPT in late 2022. Hugging Face? is
a collection of free and open-source models, however, these are
generally less powerful compared to the larger closed models, and
require compute resources to run. GPT-3.5 Turbo (OpenAl) is a
model that generates both code and natural language. It is rela-
tively inexpensive, widely used, and one of the most well-studied
and documented LLMs [4]. GPT-43 is an upgraded version of GPT-
3.5, however, it is far more expensive (by a factor of roughly 20
at the time of writing). For the development and deployment of
WorkedGen, we utilise the GPT-3.5 model from OpenAl. It has
a well-documented API, and initial testing generated promising
results for its usage in generating worked examples.

3.22 Prompts. WorkedGen has five points of interaction with the
LLM. The first and most important point is the worked example gen-
eration. Sections of this worked example would be passed back into
the LLM for the purpose of generating keywords. Three additional
prompts were used to facilitate the extra explanations available
when a user clicked a keyword or a line of code, or asked a question.
Table 1 shows these five prompts.

!https://bard.google.com/
Zhttps://huggingface.co/
3https://openai.com/gpt-4

We found that chaining the worked example and keyword prompts
greatly improved the quality of the keywords. Attempting to gener-
ate both in the same prompt led to inconsistent outputs, but passing
sections of the worked example back into the LLM as context along
with the prompt shown in Table 1 generated consistently useful
keywords. We used chaining again in the three user interaction
prompts, which are used when the user clicks on keywords or lines
of code or asks a question.

The generation of the worked example was the most complex
prompt and was extremely important to the overall quality of
WorkedGen. This prompt was developed over several iterations
in order to improve the consistency of the output and the quality
of the worked example. Two experts, with more than three years
of experience in a range of languages including Python and Java
and some experience in teaching, independently evaluated four-
teen generated worked examples using the rubric shown in Table 2.
This rubric was designed using key features of previous worked
example research, including Atkinson et al. [2] and Skudder and
Luxton-Reilly [31]. Any disagreements in the evaluation were dis-
cussed and resolved. Keywords such as ‘worked example’, ‘novice’
and ‘written explanation and code’ were used to direct the LLM
to generate a high-quality worked example. Semantic features of
the prompt such as ‘START_OF_CODE’, were used to generate
consistent output to be processed for visualisation in WorkedGen.

The second part of the prompt involves one-shot learning, sign-
posted with ‘here is an example output to mimic’. Initially, a zero-
shot approach was used, but this led to inconsistencies in the way

Evaluating LLM-generated Worked Examples in an Introductory Programming Course

Function Prompt
Write a worked example for the given question in {language}.
Mark the start of any code with ‘START_OF_CODE’.
Mark the end of any code with ‘END_OF_CODE’.
Clearly mark each step with the heading ‘STEP X".
Each step must contain both written explanation and code,
and be separable from the other content.
There should be minimum 3 and maximum 10 steps.
Also include an overview at the beginning, with no code.
Do not include steps in the overview.
Include a review at the end with the complete code.
Worked Example The oytput should be suitable fgr a novice programmer.
Here is an example output to mimic:
Overview: Overview Explanation
STEP 1: Step 1 Explanation
START_OF_CODE Step 1 Code END_OF_CODE
STEP 2: Step 2 Explanation
START_OF_CODE Step 2 Code END_OF_CODE
STEP 3: Step 3 Explanation
START_OF_CODE Step 3 Code END_OF_CODE
Review: Review Explanation
START_OF_CODE Review Code END_OF_CODE
The question is: ### {question} ###
Keywords Give me keywords for this paragraph: {paragraph}
. Given this paragraph: {paragraph}.
Keyword explanation Explain thils) wo%d III)I col:ltexi {lfeyword}.
. Given this code snippet: {snippet}.
Code explanation What does this linepcrl)o: {codeplf:ne}.
Given this paragraph: {paragraph}.
User question And this code snippet: {snippet}.
Answer this question: {userQuestion}.

Table 1: Prompts used in WorkedGen — the purpose of the
prompt and the text used as input to the LLM

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

results and thus was not used due to additional cost and complex-
ity. The final version of the worked example prompt, as shown
in Table 1, generated consistent and high-quality output. Table 3
shows the output generated from the worked example prompt on a
beginner Python question. Note that the review section has been
excluded from the table, as it simply displays the full code shown
across all the steps.

Metric Description

Does each step contain both code and a written
explanation, and are these well connected?

Code and explanations?

Clear explanations? Is each part of the code explained, and does
the worked example flow in a clear and linear

manner?

Code compiles? Is the code able to compile and run?

Correct code? Does the code generate the correct output?

Readable? Does the code make sense, and does it

use meaningful variable names?

Well commented code? | Are there valuable and meaningful comments

in the code?

Meaningful steps? Is each step an appropriate length, and tackles
a discrete portion of the question?

Are there between 3-10 steps?

Understandable? Is the explanation understandable for a novice

e.g. does not rely on prior knowledge?

Table 2: Rubric to evaluate worked examples - each metric
and what is used to quantify it as met

the worked example was structured, which made it difficult to parse
and display in WorkedGen. A one-shot learning approach was as-
sessed in two different forms: using general and specific examples.
The final prompt uses a general example, where the LLM is provided
with the format of the output only. When using a specific worked
example as a one-shot prompt, the LLM would often perform poorly
and would not break the worked example down into distinct steps.
Although we also explored few-shot learning, in which several ex-
amples are included in the prompt, this did not tend to yield better

Question

Write a program that reads in a string containing integer num-
bers separated by commas. The program should print out all the
odd numbers present in the input, and then all the even numbers.

Overview

This program will read in a string containing integer numbers
separated by commas. It will then print out all the odd numbers
present in the input, followed by all the even numbers.

Step 1

We will start by asking the user to input a string of numbers
separated by commas.
Ask the user to input a string of numbers
separated by commas
numbers_string = input(
"Enter a string of numbers separated by
commas: ")

Step 2

Next, we will split the input string into a list of individual num-
bers.

Split the input string into a list of

individual numbers

numbers_list = numbers_string.split(",")

Step 3

We will then iterate through the list of numbers and separate
them into two lists - one for odd numbers and one for even
numbers.

Create empty lists for odd and even numbers
odd_numbers = []
even_numbers = []

Iterate through the list of numbers
for number in numbers_list:
Convert the number from string to integer
number = int(number)
Check if the number is odd or even
if number % 2 ==
even_numbers. append(number)
else:
odd_numbers. append(number)

Step 4

Finally, we will print out the odd numbers followed by the even
numbers.

Print out the odd numbers

print("0dd numbers:", odd_numbers)

Print out the even numbers

print("Even numbers:", even_numbers)

Table 3: Worked Example generated by WorkedGen and the
question input - shows the explanation and code for each
step if applicable

3.3 User Study

The evaluation of WorkedGen is guided by research questions 3 and
4, with the goal of understanding students’ perspectives on the tool
and the LLM-generated worked examples. The study was conducted
in August 2023, with users from a large (~400 students) first-year

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

1. This tool was useful and helpful

2.1 would use this tool again

3. This tool was error-free and easy to use

4. The explanations were clear and easy to understand

. The problem was divided into logical steps

6.1 found it helpful to see code and explanations in the same step
7. The code was functionally correct and readable

8.1 found the ability to go back to previous steps helpful
9. I found the ability to click on keywords helpful

10. I found the ability to click on lines of code helpful
11. I found the ability to ask questions helpful

o

Table 4: List of survey questions

computer science course. Students were asked to use WorkedGen
as part of their compulsory laboratory activities. Students were
given a link to WorkedGen with instructions to test a question from
the question bank, and to generate their own question. We received
337 pieces of written feedback, and the tool was used 787 times.
This indicates that some students used the tool two to three times
and that some students who used the tool did not submit written
feedback.

Data from users was gathered in three ways. The first was
through their interactions with WorkedGen. The questions they
asked, the language they wanted outputted, and the number of
steps the LLM generated for the worked example were recorded.
There were three key ways that the user could interact with the
tool: by clicking on a keyword, clicking on a line of code, or asking a
question. The frequency and content of these clicks were recorded.
At the end of each question, there was an optional survey that
students could complete voluntarily. The survey consisted of 11
Likert scale questions to record the users’ perspectives of the tool,
as shown in Table 4. All questions were phrased so that ‘strongly
agree’ would indicate a positive experience with WorkedGen.

Finally, a text entry section was included with the prompt ‘In the
text area below, please comment on the explanations with reference
to what you have learned in the course so far (i.e., are the explana-
tions helpful for revising or consolidating your knowledge)’. This
allowed for qualitative data to be gathered on the users’ experience.

4 RESULTS

4.1 How well can LLMs generate clear
explanations in a specific knowledge
domain?

Fourteen worked examples were generated using the final prompt

in a range of languages and evaluated in various categories. Figure 3

shows an overview of the evaluation. The categories were chosen

based on a review of important features of programming worked
examples, such as functional correctness and understandable ex-
planations. Additionally, the explanations should be suitable for
novices as the target users of this study. The full rubric used can be
seen in Table 2.

Breanna Jury, Angela Lorusso, Juho Leinonen, Paul Denny, and Andrew Luxton-Reilly

o
100% || mNo
80% Moderately
HYes
60%
40%
20%
0%
Q. a2,
N ¥

& o ¢ & S S
< & ¥ P €>7§ S (_},@9 &
& & & & > N o
& & &
32 3@ <& ¢ & < <
<)) >N & O
< & & Q &
S & RS
b@@ ¥ \(Jo D L)§V
D
& R

Figure 3: Expert evaluation of LLM-generated worked exam-
ples assessed against each metric

A common weakness of the worked examples was the lack of
well-commented code. However, all code was readable with mean-
ingful variable names. Only one worked example had incorrect code.
This example also did not have clear explanations. The question
submitted by a student was ‘Write a script in bash that renames
all files with a specific extension in a given directory. For example,
change all “txt” files to have a “bak” extension. The key weakness
was that it did not give any context or instruction on inputting
the parameters, so the code was very difficult to use. This might
be particularly harmful for novice users who do not have a strong
understanding of the Bash language. Another common weakness
of the explanations was their tendency to assume knowledge that
novices may not have, such as inheritance in object-oriented pro-
gramming.

4.2 How effectively can LLMs decompose a
worked example into well-defined steps?

From an analysis of past work, it was determined that worked
examples tend to have between three to ten steps, depending on
the complexity of the question [2]. This metric was included in the
prompt to generate worked examples using an LLM. Considering
both the worked examples used in the expert evaluation and the
user study, it was determined that most worked examples were
generated with four steps, as seen in Figure 4. All but one example
was generated with a number of steps in the ideal range.

The length and complexity of these steps varied depending on
the question. Some steps were so short as to be almost meaningless,
such as merely adding an import statement to the code. In a few
occurrences, almost the entirety of the code was written in a single
step. However, both of these issues were uncommon, and even
when they occurred, the worked example was still readable and
useful. The expert evaluation determined that 71% of the generated
examples had a meaningful step decomposition. Additionally, 87%
of novice users reported that the worked example they used was
divided into logical steps.

Evaluating LLM-generated Worked Examples in an Introductory Programming Course

140
119

120

100

80

60

37
30
1 3
o — m H =
4 5 6 7

Number of Steps Generated

Number of Examples Generated

Figure 4: Frequency of the number of steps in worked exam-
ples generated by WorkedGen

4.3 How do novices perceive the usefulness of
on-demand LLM-generated worked
examples?

The user study recorded and analysed novices’ attitudes towards
the worked examples. This data came from questions 1-8 of the
survey as shown in Table 4 and from the open-response questions.
Figure 5 shows the survey responses to these questions. Overall,
the response was positive. There was one outlier in the data who
answered ‘strongly disagree’ to all survey questions, however, they
did not include written feedback, so it is not possible to understand
the reason for their negative experience. Students responded posi-
tively to having code and explanations shown at the same step and
found the worked examples easy to understand.

100% ——— o = o = = —
90%
80%
70%
60%
50%

40%

30%

20%

10%

0%
ql g2 a3 a4 a5 a6 a7 a8

Figure 5: User results for questions 1-8 of our survey (survey
questions as shown in Table 4)

M Strongly Disagree
Disagree
Neutral
Agree

M Strongly Agree

The written feedback by students was also generally positive.
All feedback was categorised into positive, neutral, or negative
sentiment related to the experience overall, the step-by-step presen-
tation, the code explanations, or the user interface (see Figure 6).

Only one user did not like the step-by-step nature of WorkedGen,
“..Ido not think that the layout of the site is designed best for revision,
as all information is not presented at once.” Other users found it
very helpful for understanding complex questions: “If I was asked
to complete this question I would have been very confused where to
begin, but after seeing each step, it clearly explains to me what needs
to be done and in what order it should be in, especially the for...in

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

100%

- . W Negative
80% Neutral
M Positive

60%
40%
20%

0%

Overall Step-by-step Explanations ul Interactions

Figure 6: Sentiment analysis of written user feedback related
to WorkedGen

loop.” One user noted how the steps being broken down helped to
prompt self-explanation, “..the way they were structured gave you
the opportunity to figure out the next step before it came up so you
could almost come up with the steps at the same time as you flick
through the steps and double check that you got it right.”

The explanations were generally well received, with comments
such as “Tthink the explanation of ‘WorkedGen’ is very good, it is effec-
tive and concise.” However, some users wanted more background on
the question and to explain the rationale of certain coding choices
more in-depth, “The explanations are useful for explaining what each
step of the program does (at the least, providing an understanding
of how the code functions). However, it doesn’t help explain how to
approach the problem-solving to DERIVE the steps initially. L.e. How
do we break down this problem? What information have we been
given? What tools do we have at our disposal? How can we apply
them?” This sentiment was echoed with some feedback on the code,
with the LLM using concepts that they had not learnt in class. “Al-
though I've constantly seen a trend where Al seems to favour using
def functions to solve problems. Whereas often we’re solving problems
where we can’t use them since we haven’t learned them yet.” Users
found the code comments especially helpful in their understanding,
with one user stating that they “..found the explanations easy to
understand in the two codes that were provided in the WorkedGen,
especially because there were comments that explained what job each
section of the code does.”

A feature that received a lot of comments but is not strictly
related to the research of LLM-generated worked examples is the
user interface of WorkedGen. Some users found it unintuitive to
use, ‘It took me a while to realise that each line of the code is clickable
and is accompanied by explanations — this feature has the potential to
be very useful, but wasn’t immediately obvious.” WorkedGen wasn’t
suitable for mobile devices and sometimes conflicted with a user’s
colour settings, “The dark mode in Safari was a bit hard to read as
black text was used.” However, some users commented on positive
aspects of the user interface, saying that “The UI is interactive and
engaging”, and that it helped their understanding of the examples:
‘T also quite like the colors of text and how key words are bold and
easy to read.”

Most students used the provided questions to use WorkedGen,
however, there were 192 uses of the custom generation tool. Some
questions were conventional questions used for a worked example,

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

such as “Write a Python function that takes a list as input and returns
the average of all even numbers in the list.” However, some questions
were more general, such as ‘T don’t know when it is preferred using
for loop or while loop”. This was an interesting use case, and while it
was not what WorkedGen was designed for, the LLM still handled it
well by giving an example of where each would be preferred. Users
of this feature generally rated the tool highly, as seen in Figure 7.

100% _ W Strongly Disagree
90%
: Disagree
80%
Neutral

70%
60% Agree
50% | Strongly Agree
40%
30%
20%
10%

0%

This tool was useful and helpful | would use this tool again

Figure 7: Two survey question responses of users who used
the custom question generation tool

4.4 How do users interact with worked
examples, and how do they perceive the
usefulness of these interactions?

The interaction of users was recorded by tracking the clicks that
they made on WorkedGen, and through questions in the survey
and open-response questions. There were three key points of inter-
action: clicking on keywords, clicking on lines of code (LOC), or
asking questions throughout the worked example. Table 5 shows
the occurrences of clicks. Of the 787 uses of WorkedGen, only 201
uses recorded any clicks. This indicates that the click feature may
not have been intuitive, or that many users did not require addi-
tional explanations. If the no-click uses are omitted, then there was
an average of two clicks per use.

Keywords | LOC | Questions | Total
Count 77 176 | 165 418
Mean 0.10 0.22 | 0.21 0.53
Modified Mean | 0.38 0.88 | 0.82 2.08

Table 5: Click data from user interactions with WorkedGen
— Modified mean excludes users who did not interact with
WorkedGen

The survey results indicate that users found this interaction
helpful, with the ability to ask questions rated the most positively. In
general, a user’s overall rating of the tool rose alongside the number
of times they interacted with the tool, as shown in Figure 8. Negative
responses were often due to the user interface of WorkedGen, with
one user commenting ‘T didn’t realise I could click on keywords, click
on lines of code, and ... didn’t know what the questions were for."

Users found it helpful to receive more explanations on sections
that they found tricky. ‘T think the explanations were wonderful

Breanna Jury, Angela Lorusso, Juho Leinonen, Paul Denny, and Andrew Luxton-Reilly

4.4

Average Survey Response Score

Number of Interactive Clicks

Figure 8: Average Likert survey score of users with different
numbers of interactions with WorkedGen

as it helps me a lot with understanding the purpose of each code,
for example the for loop was nicely explained when I clicked on the
highlighted word ‘for loop’” Users also liked the user interface of the
keywords in the large explanations, as “the use of boldened words
in the descriptions of steps and problems makes the text much easier
to comprehend.” Users liked how the LLM could be prompted to
explain each line of code in more depth ‘T also liked the feature that
allowed us to click on individual lines of code for explanations as I
found some terms unfamiliar.”

The ability to ask questions was generally well received. Some
negative comments made were that the question input area was
‘confusing” and that “the explanations only really worked in the
context of the predetermined key words and weren’t very helpful
for other questions such as asking why the code used a particular
technique as opposed to a different one.” Despite these flaws, most
users found it very helpful and “..enjoyed that you can ask specific
questions about the code to help weed out any issue I have while
wrapping my head around new topics.” One user commented that
they appreciated having the opportunity to learn more about the
question in the overview section before any code was shown: ‘T
liked how there was a section to ask about the question before even
starting to attempt the actual code.” Of all the users who asked
meaningful questions, only one user did not find it helpful.

5 DISCUSSION

5.1 How well can LLMs generate clear
explanations in a specific knowledge
domain?

The worked examples generated by LLMs were generally of a high
quality. Under expert evaluation, 93% of generated examples on a
range of novice to intermediate programming questions were seen
to have clear explanations. The explanations were readable and
succinct, and the code was written using good practices such as
meaningful variable naming.

The key area where LLM-generated worked examples fell short
of human-generated worked examples was in the reliance on prior
knowledge. The LLM-generated explanations often relied on prior
knowledge of programming concepts such as object-oriented pro-
gramming (OOP), with which novice programmers are often not
familiar. Multiple participants in the user study noted that they

Evaluating LLM-generated Worked Examples in an Introductory Programming Course

wanted the explanations to delve deeper into the decision-making
process of programming, for example, in the selection between
different forms of loops. Some of this can be remediated via the
question-answer feature of WorkedGen, however, this feature was
not built to model a chatbot, and did not allow for a sustained
back-and-forth conversation.

These two weaknesses suggest that the worked examples would
be of a higher quality if they contained more in-depth explana-
tions. Future work could continue to explore effective prompting
strategies, such as constraining the features used in the examples.
WorkedGen was built to use a general, all-purpose prompt that
would suit a wide range of questions and users. The disadvantage
of the generality is that it does not account for the variety of back-
ground knowledge of the users.

5.2 How effectively can LLMs decompose a
worked example into well-defined steps?

The prompt used to generate the worked example appeared to work
well for decomposing steps. The LLM did not require a large amount
of explanation on how to divide the steps, and almost all generated
examples had between three to ten steps as instructed, following
the method of constructing worked examples proposed by Atkinson
et al. [2]. However, having a good number of steps does not always
mean that the content is divided well. Some steps were so small
as to be insignificant, which made the worked examples tedious
to work through, especially as in WorkedGen, each step would be
shown on a separate page. There were also cases where almost all
code would be written in a single step. This can be overwhelming
for users, and it means that users cannot benefit from fading, which
has a studied effect on the users’ cognitive load.

Overall, 71% of the generated worked examples were seen to
have meaningful steps. These worked examples were all generated
for use by novices, and so it would be an interesting area of further
research to test more complex examples.

5.3 How do novices perceive the usefulness of
on-demand LLM-generated worked
examples?

The responses from the user study were generally positive. 77% of
users found WorkedGen helpful, and 72% said that they would use
the tool again. One student commented ‘T will be using WorkedGen to
help in my weekly lab exercises as well as a study tool for assignments
and exams,” and another said “It was helpful for consolidating my
knowledge so I will be able to use it for my revision and also when
I'm stuck on a coding problem.” This aligns with previous research
where students found LLM generated code explanations helpful for
their learning [20, 28].

The main negative comments that WorkedGen received were
that the explanations were sometimes too complex for novices.
Worked examples are most effective when used to further a user’s
understanding of a concept that they are already familiar with [2].
For example, a worked example would be helpful to see how and
when to use inheritance in an OOP course, but the students should
first learn the theoretical basics of OOP. While LLMs are a helpful
and powerful tool, they cannot replace the value of teachers and

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

tutors. WorkedGen is best used to supplement content learned in
class, not as a complete teaching tool.

5.4 How do users interact with worked
examples, and how do they perceive the
usefulness of these interactions?

The majority of interaction was with lines of code and by asking
questions. The lack of clicks on keywords suggests that the ex-
planations alone were in-depth enough for most users. The large
number of clicks on LOCs is expected with novice users. Most ques-
tions asked were related to parts of the code, such as while loops.
This makes sense as the users have not had a lot of programming
experience, and so loops are still quite unfamiliar to them. This
supports a previous finding, that the explanation should go more
in-depth about the features of the code and any data structures that
it uses. However, the LLM interaction allowed for these questions
to be answered for the users. Users responded positively to this
interaction, and Figure 8 shows that these interactions improved
their overall experience of WorkedGen.

5.5 Limitations

There were a few limitations in this research. First, although Worked-
Gen was built to be used in any language, the vast majority of its
uses were in Python. While the language should not have a large
impact on its usefulness, it would still be interesting to test it in
a range of languages. The user study was unsupervised. This was
chosen to encourage more uses as it was easier for users to test
WorkedGen in their own time, and it allowed for authentic data
to be gathered. However, some students found the UI confusing
and did not use WorkedGen to its full capabilities, so not as much
interaction was observed in the study as there might have been
with a supervised study.

6 CONCLUSION

This paper presents a novel tool, ‘WorkedGen’, purpose-built to
employ a large language model to generate worked examples for
novice programmers. This combats the high manual workload of
creating worked examples and allows students to generate worked
examples on-demand and interact with them for further expla-
nations. WorkedGen uses the model GPT-3.5 Turbo and employs
prompting strategies, including chaining and one-shot training to
optimise the output of the LLM.

We make two primary contributions in this paper: the develop-
ment of WorkedGen, and an empirical evaluation of the worked
examples it generates through a user study in a first-year Python
programming course and expert evaluation. This has shown that
students find LLM-generated worked examples valuable, and addi-
tional interactive components allowed through an LLM are found
to be especially useful. It also shows that LLMs can be used to gen-
erate effective and high-quality worked examples. WorkedGen can
be improved through an updated and more intuitive user interface,
and through prompt refinement to better explain coding principles
with which novices may not be familiar. We propose that future
work should be done to more thoroughly evaluate WorkedGen with
a range of programming languages and more complex questions.

ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia

REFERENCES

(1]

[2

—

(3]

8

=

=
X0

[1

[12]

[13

[14]

=
i)

[16]

[17]

(18]

Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot training LLMs for
project-specific code-summarization. arXiv preprint arXiv:2207.04237 (2022).
Robert K Atkinson, Sharon J Derry, Alexander Renkl, and Donald Wortham. 2000.
Learning from examples: Instructional principles from the worked examples
research. Review of educational research 70, 2 (2000), 181-214.

Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2022. Programming Is Hard-Or at Least It
Used to Be: Educational Opportunities And Challenges of AI Code Generation.
arXiv preprint arXiv:2212.01020 (2022).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 1877-1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

Paul Denny, Brett A Becker, Juho Leinonen, and James Prather. 2023. Chat Over-
flow: Artificially Intelligent Models for Computing Education-renAlssance or
apocAlypse?. In Proceedings of the 2023 Conference on Innovation and Technology
in Computer Science Education V. 1. 3-4.

Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with copilot:
Exploring prompt engineering for solving cs1 problems using natural language. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1.1136-1142.

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A Becker, and Brent N Reeves. 2023. Promptly: Using Prompt
Problems to Teach Learners How to Effectively Utilize Al Code Generators. arXiv
preprint arXiv:2307.16364 (2023).

Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio San-
tos, and Sami Sarsa. 2023. Computing Education in the Era of Generative AL
arXiv:2306.02608 [cs.CY]

James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The robots are coming: Exploring the implications of
openai codex on introductory programming. In Australasian Computing Education
Conference. 10-19.

James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A. Becker. 2023. My AI Wants to Know If This Will
Be on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In
Proceedings of the 25th Australasian Computing Education Conference (Melbourne,
VIC, Australia) (ACE °23). Association for Computing Machinery, New York, NY,
USA, 97-104. https://doi.org/10.1145/3576123.3576134

Mark Guzdial. 2015. What'’s the best way to teach computer science to beginners?
Commun. ACM 58, 2 (2015), 12-13.

Noor Hisham Jalani and Lai Chee Sern. 2015. The example-problem-based
learning model: applying cognitive load theory. Procedia-Social and Behavioral
Sciences 195 (2015), 872-880.

Martin Jonsson and Jakob Tholander. 2022. Cracking the code: Co-coding with
Al in creative programming education. In Creativity and Cognition. 5-14.

Slava Kalyuga, Paul Chandler, Juhani Tuovinen, and John Sweller. 2001. When
problem solving is superior to studying worked examples. Journal of educational
psychology 93, 3 (2001), 579.

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara] Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. arXiv preprint
arXiv:2302.07427 (2023).

Anton Korinek. 2023. Language models and cognitive automation for economic
research. Technical Report. National Bureau of Economic Research.

Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (Turku, Fin-
land) (ITiCSE 2023). Association for Computing Machinery, New York, NY, USA,

Breanna Jury, Angela Lorusso, Juho Leinonen, Paul Denny, and Andrew Luxton-Reilly

[19]

[20

[21

[22

~
=

[24

[25

[26

[28

[29]

[30

w
—

(32]

[33

(34]

(35]

[36

[37

[38

124-130. https://doi.org/10.1145/3587102.3588785
Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2022. Using Large Language Models to Enhance Programming

Error Messages. arXiv preprint arXiv:2210.11630 (2022).
Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul

Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in a web software development
e-book. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1. 931-937.

Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and Ziheng
Huang. 2022. Generating diverse code explanations using the gpt-3 large language
model. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 2. 37-39.

Lauren E Margulieux, Briana B Morrison, and Adrienne Decker. 2020. Reducing
withdrawal and failure rates in introductory programming with subgoal labeled
worked examples. International Journal of STEM Education 7 (2020), 1-16.
Roxana Moreno. 2006. When worked examples don’t work: Is cognitive load
theory at an impasse? Learning and Instruction 16, 2 (2006), 170-181.

Kasia Muldner, Jay Jennings, and Veronica Chiarelli. 2022. A Review of Worked
Examples in Programming Activities. ACM Transactions on Computing Education
23,1 (2022), 1-35.

Miranda C Parker, Leiny Garcia, Yvonne S Kao, Diana Franklin, Susan Krause, and
Mark Warschauer. 2022. A Pair of ACES: An Analysis of Isomorphic Questions on
an Elementary Computing Assessment. In Proceedings of the 2022 ACM Conference
on International Computing Education Research-Volume 1. 2-14.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christo-
pher Meek, and Sumit Gulwani. 2022. Synchromesh: Reliable code generation
from pre-trained language models. arXiv preprint arXiv:2201.11227 (2022).
James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, Stephen MacNeil, Andrew Peterson, Raymond Pettit, Brent N. Reeves,
and Jaromir Savelka. 2023. The Robots are Here: Navigating the Generative Al
Revolution in Computing Education. arXiv:2310.00658 [cs.CY]

Steven I Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D
Weisz. 2023. The programmer’s assistant: Conversational interaction with a large
language model for software development. In Proceedings of the 28th International
Conference on Intelligent User Interfaces. 491-514.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 1. 27-43.

Rolf Schwonke, Alexander Renkl, Carmen Krieg, Jorg Wittwer, Vincent Aleven,
and Ron Salden. 2009. The worked-example effect: Not an artefact of lousy
control conditions. Computers in human behavior 25, 2 (2009), 258-266.

Ben Skudder and Andrew Luxton-Reilly. 2014. Worked Examples in Computer
Science. In Proceedings of the Sixteenth Australasian Computing Education Con-
ference - Volume 148 (Auckland, New Zealand) (ACE ’14). Australian Computer
Society, Inc., AUS, 59-64.

John Sweller. 2006. The worked example effect and human cognition. Learning
and instruction (2006).

Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems
extended abstracts. 1-7.

Camilo Vieira, Junchao Yan, and Alejandra] Magana. 2015. Exploring design
characteristics of worked examples to support programming and algorithm
design. Journal of Computational Science Education 6, 1 (2015), 2-15.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. A prompt
pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382 (2023).

Tongshuang Wu, Michael Terry, and Carrie Jun Cai. 2022. Ai chains: Transparent
and controllable human-ai interaction by chaining large language model prompts.
In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1-22.

Rui Zhi, Thomas W Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes,
and Min Chi. 2019. Exploring the impact of worked examples in a novice pro-
gramming environment. In Proceedings of the 50th acm technical symposium on
computer science education. 98—-104.

Daniel Zingaro and Leo Porter. 2015. Tracking student learning from class
to exam using isomorphic questions. In Proceedings of the 46th acm technical
symposium on computer science education. 356-361.

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2306.02608
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3587102.3588785
https://arxiv.org/abs/2310.00658

	Abstract
	1 Introduction
	2 Related Work
	2.1 Worked Examples
	2.2 Large Language Models
	2.3 Gaps and Opportunities

	3 Methods
	3.1 Design
	3.2 Prompt Development
	3.3 User Study

	4 Results
	4.1 How well can LLMs generate clear explanations in a specific knowledge domain?
	4.2 How effectively can LLMs decompose a worked example into well-defined steps?
	4.3 How do novices perceive the usefulness of on-demand LLM-generated worked examples?
	4.4 How do users interact with worked examples, and how do they perceive the usefulness of these interactions?

	5 Discussion
	5.1 How well can LLMs generate clear explanations in a specific knowledge domain?
	5.2 How effectively can LLMs decompose a worked example into well-defined steps?
	5.3 How do novices perceive the usefulness of on-demand LLM-generated worked examples?
	5.4 How do users interact with worked examples, and how do they perceive the usefulness of these interactions?
	5.5 Limitations

	6 Conclusion
	References

