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ABSTRACT
Introductory programming courses often emphasize mastering syn-
tax and basic constructs before progressing to more complex and
interesting programs. This bottom-up approach can be frustrat-
ing for novices, shifting the focus away from problem solving and
potentially making computing less appealing to a broad range of stu-
dents. The rise of generative AI for code production could partially
address these issues by fostering new skills via interaction with AI
models, including constructing high-level prompts and evaluating
code that is automatically generated. In this experience report, we
explore the inclusion of two prompt-focused activities in an intro-
ductory course, implemented across four labs in a six-week module.
The first requires students to solve computational problems by writ-
ing natural language prompts, emphasizing problem-solving over
syntax. The second involves students crafting prompts to generate
code equivalent to provided fragments, to foster an understanding
of the relationship between prompts and code. Most of the students
in the course had reported finding programming difficult to learn,
often citing frustrations with syntax and debugging. We found that
self-reported difficulty with learning programming had a strong
inverse relationship with performance on traditional programming
assessments such as tests and projects, as expected. However, per-
formance on the natural language tasks was less strongly related to
self-reported difficulty, suggesting they may target different skills.
Learning how to communicate with AI coding models is becom-
ing an important skill, and natural language prompting tasks may
appeal to a broad range of students.
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1 INTRODUCTION
Introductory programming courses traditionally focus on teach-
ing students to write code in a bottom-up fashion, starting with
mastering syntax and basic constructs, and gradually progressing
to building more complex and interesting programs. Problem solv-
ing is often considered the most engaging aspect of programming,
but the difficulties novices face with syntax, errors, and low-level
code-layout issues can detract from this focus and cause frustration
making computing courses less appealing to a diverse range of
students [3]. Moreover, the widespread use of generative AI for
producing code raises questions about when and how these tools
should be introduced in introductory courses [23].

Large language models (LLMs) have shown impressive capabil-
ities for solving computational tasks when provided with appro-
priate natural language prompts [6, 11, 24]. Thus, there are two
emerging skills that students need to develop in this generative AI
era. The first is being able to construct clear, unambiguous prompts
to express desired solutions to computational tasks, and the sec-
ond is understanding and evaluating the code generated by these
models, to verify that it is indeed solving the intended tasks. While
students may now be developing these skills independently of the
curriculum, there is value in explicitly teaching students how to
construct effective prompts [9].

In this experience report we describe the inclusion of two kinds
of prompt-focused tasks alongside traditional activities in an intro-
ductory programming course. Both kinds of tasks involve students
writing only natural language prompts for an LLM. The first task
involves students solving computational tasks by writing prompts
to generate code. This is a very authentic activity in today’s land-
scape, with a focus on problem-solving rather than on code syntax.
The second task involves showing students a code fragment and
asking them to demonstrate their understanding of the code by
crafting a prompt that generates equivalent code. The two tasks
are complementary, as the first allows students to explore the rela-
tionship between computational problems and high-level prompts,
and the second allows students to explore the relationship between
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high-level prompts and code. We are interested in understanding if
the skills needed to solve these prompting tasks are distinct from
those needed to be successful with traditional programming tasks.

We collected self-reported data from students on how difficult
they found learning programming and why they found it difficult.
We categorize students based on self-reported difficulty and then
compare their performance on traditional programming assess-
ments with their performance on the natural language prompting
tasks. We also explore their perceptions of seeing these tasks inte-
grated alongside more traditional tasks and present examples of
some of the prompts that students created. Our evaluation is guided
by the following overarching question: How successful are students
at natural language prompting tasks compared to more traditional
programming assessments, and how does this vary by self-reported
difficulty of learning to program?

2 RELATEDWORK
Developing the ability to comprehend and communicate the be-
haviour of code, though always considered an important set of skills
for novice programmers to develop [1, 30], is necessary to work
effectively with LLMs [10, 24, 27, 28]. This requires 1) the ability
to describe the requirements of a problem with sufficient detail
for it to be implemented in code and 2) the ability to understand
the purpose of code. The former is needed as poorly constructed
prompts are less likely to generate desired solutions [6] and the
latter is needed to evaluate the code that is generated [5, 24].

2.1 Teaching Prompting
To develop student skills in expressing problems effectively, in-
structors have explored various tasks to provide students practice
with prompting in formative contexts. Denny et al. [7] introduced
“Prompt Problems”, an activity where students are shown visual
representations that illustrate specific instances of a task, asked
to infer the general problem from the specific cases shown, and
then provide a prompt that generates code that performs the task.
The generated code is then graded based on an instructor-defined
suite of test cases to determine if the generated code is functionally
correct [7]. Nguyen et al. [22] evaluated similar activities where stu-
dents were shown input-output pairs, asked to infer the task being
performed, create a prompt that generates code with that func-
tionality, and then evaluate if the generated code is correct. Their
findings highlight that many students struggle to form successful
prompts, understand generated code, and have poor mental mod-
els of generative AI, which hinders their ability to form effective
prompting strategies [22].

2.2 Explain in Plain English Questions
Prompting an LLM to generate code has some similarity to the
‘Explain in plain English’ (EiPE) task, which is commonly used
to assess student comprehension of code [21]. In these activities,
students are given a code sample and asked to describe the pur-
pose of the code [30]. EiPE activities are designed to focus on the
code’s high-level (abstract) purpose rather than the details of im-
plementation (i.e., the mechanics of how it achieves the purpose).
Unfortunately, novice programmers often struggle to describe the
purpose of code in this way [4] suggesting greater emphasis should
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Figure 1: Natural language prompting tasks requiring the
learner to enter a prompt in response to either a code frag-
ment (EiPE) or a visual problem specification (Prompt Prob-
lem). The prompt is sent to an LLM, and the resulting code is
programmatically evaluated. The EiPE and Prompt Problems
were interleaved across Labs 8, 9, 10 and 12.

be placed on comprehension tasks in CS1. However, due to the
difficulty of developing rubrics [13] and autograders for such ques-
tions [1, 2, 12, 14, 19], their adoption for use in formative settings
has been limited.

Responses to both Prompt Problems and EiPE questions require
a natural language problem specification. In the case of EiPE, this
takes the form of students inferring the purpose of the code by read-
ing it, in effect, reverse engineering the prompt that could be used
to generate the given code. Using the grading approach of Smith
and Zilles [28], the success of a student’s prompt can be judged
based on whether or not an LLM can successfully generate the
desired code. Additionally, this approach both eases the difficulty of
developing autograded EiPE questions and provides students with
feedback via the generated code and test cases [10].

3 APPROACH
In this paper, we incorporated two kinds of natural-language
prompting tasks (see Figure 1) into a course covering traditional
CS1 topics and explored student perceptions and success with these
tasks in comparison to more traditional programming-focused as-
sessments (both invigilated and non-invigilated). The course was
taught over a 12-week semester, althoughwe focused on integrating
these new tasks during the second half of the course (weeks 7–12).
This timing allowed students to reflect on their progress throughout
the first half of the course (weeks 1–6), including reporting how
difficult they found programming to learn, before any exposure to
the natural-language tasks.

3.1 Course Context
The course, {Anon}, is taught at {Institution Anonymized} which is a
large research university in {Country Anonymized}. The course is
designed for engineering students and is structured into two mod-
ules, each spanning 6 weeks. The first module covers typical CS1
topics, including variables, arithmetic, arrays (vectors), functions,
control flow, and basic algorithms using MATLAB. The second
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Table 1: List of questions and their descriptions from the four labs.

Activity Lab Question Task Description
EiPE 8 1 FindSumBetween calculates the sum between a ‘low’ and ‘high’ value

2 CountEvensInArray counts the number of even values in an array
3 LastZero finds the position of the last occurrence of zero in an array
4 SumPositiveValues calculates the sum of all positive values in an array

Prompt Problems 9 1 Average replaces each value in an array with the average of those values
2 Sum calculates the sum of all of the even numbers in an array
3 Find finds the index position of the last occurrence of zero in an array

EiPE 10 1 ReverseString reverses a string in place
2 FindSumOfGivenRow calculates the sum of all values on a row in a 2D array
3 DoesStringContainVowel checks if a string contains a vowel
4 DoesStringContainSubstring checks if a string contains a substring

Prompt Problems 12 1 TwoQueens determines if two queens attack each other on a chessboard
2 FullQueens determines if eight queens are placed without attacking each other
3 LeafEater calculates how many leaves a bug eats as it moves along a branch

module introduces the C programming language and reinforces the
concepts covered in the first half of the course.

3.1.1 Student Participants. Following approval by the university’s
human ethics committee, data was collected from 861 students
enrolled in the course. Most students have no formal programming
experience, but some enter with prior experience based on their
choices from high school.

3.2 Assessments and Reflection
There are three large, invigilated assessments in the course (one test
for eachmodule and a final exam), which account for 56% of the final
grade in the course. The course also includes weekly programming-
focused lab sessions (24% weighting) and one project (10% each) for
each of the two modules, all of which are non-invigilated.

After the first module covering MATLAB, students were asked
to reflect on their experience learning programming and respond
with the extent to which they agree with the statement:

• I find programming difficult.
Responses were collected using a standard 5-step Likert-response

scale from “Strongly disagree” (SD) to “Strongly agree” (SA).
In addition to this question at the beginning of the secondmodule

in the course, each lab session included an optional post-lab survey
that invited students to comment on any aspect of the lab.

3.3 Natural Language Tasks
We incorporated two kinds of natural language tasks across four of
the six weekly lab sessions in the second half of the course. Eight
‘Explain in Plain English’ (EiPE) tasks were included in Labs 8 and
10, and six Prompt Problem tasks were included in Labs 9 and 12.
Table 1 summarises these 14 problems.

3.3.1 Explain in Plain English (EiPE) Questions. In the tradition of
EiPE questions [13, 21], for each task, students were presented with
a single function and instructions indicating that they should de-
scribe the function in plain English (see Figure 2). To prevent giving
away the code’s purpose, the variables were replaced with generic
names and each function was named foo. Tasks were delivered

using PrairieLearn, an open-source online assessment platform [29].
After the student description was submitted, a prompt to gener-
ate a solution meeting the description was passed to GPT-3.5. The
code was evaluated against a set of test cases and then displayed to
students with the results of the tests.

3.3.2 Prompt Problems. A Prompt Problem consists of a visual
presentation of a computational task, to which a student must craft
an LLM prompt to generate code that solves the task. In our course,
we used a custom tool similar to the ones described by Denny et
al. [7] and by Nguyen et al. [22]. When viewing a Prompt Problem
in our tool (see Figure 3), the student sees a visual representation
of the problem and enters their prompt as plain text. When their
prompt is submitted, the verbatim text is sent to an LLM along with
some additional prompting to guide the model to produce only code
and no additional explanatory text. The generated code is executed
automatically, and the test case output is shown.

4 FINDINGS
We organize the findings using students’ self-reported answers to
the survey question “I find programming difficult” collected at the
end of Lab 7 since this provides an intuitive grouping of like-minded
and potentially like-skilled students. We started with 861 students,
and removed any who did not complete each of the required labs
(8, 9, and 10), or who missed any of the course exams or projects,
which resulted in 726 students for analysis.

4.1 Summary of Difficulty Data
A common performance pattern emerged in the course based on
students’ reported difficulty with programming. As shown in Table
2, students who did not report programming as difficult (Disagree or
Strongly disagree) on average scored the highest on all exams and
projects. In contrast, students who reported that programming was
difficult (Agreed or Strongly agreed) scored the lowest on average
on all exams and projects.
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Table 2: LLM task attempts and success by student group. EiPE (Labs 8 & 10), Prompt Problems (Lab 9*). Difficult (Diff.) was
self-reported by students during Lab 7 via a 5-point Likert scale question asking if they agreed that programming was difficult.
Tries are the average number of attempts for each group. First indicates the percentage of students who completed a task on
the first attempt, and Final is the percentage of students who completed the task after one or more attempts. The Projects
column lists the combined averages for each groups’ uninvigilated MATLAB and C programming projects.

EiPE Problems Prompt Problems* Invigilated Exams Projects

Diff. N Tries First Final Tries First Final MATLAB C Final MATLAB+C

D/SD** 68 1.68 67.5% 99.6% 3.26 55.9% 100.0% 72.1% 82.4% 87.0% 93.8%

N 208 1.82 63.0% 99.7% 3.61 53.7% 100.0% 57.2% 77.0% 83.9% 92.4%

A 311 1.88 60.0% 99.4% 3.68 52.5% 100.0% 48.0% 69.8% 78.3% 87.3%

SA 139 1.89 59.9% 98.7% 4.32 45.8% 99.8% 42.8% 66.0% 73.1% 82.8%
* Unlike Labs 8, 9, and 10, Lab 12 was excluded because it was optional and less than 9% of students participated.
** Only 13 students selected Strongly disagree, so they were merged with the Disagree students to create D/SD.

Figure 2: An example EiPE problem. The ability to highlight
and copy the code is disabled to dissuade students from copy-
ing it into ChatGPT.

4.2 Student Attempt Success
For both the EiPE and Prompt Problems, we calculated the suc-
cess of each student’s first attempt to solve the problem (First) as
well as whether they eventually were successful for each question,
along with the number of attempts (Tries in Table 2). The first-
attempt calculations were viewed as similar to how students would
engage with problems during exams, so we compared the two to
see whether students performed similarly on each or not. The fi-
nal attempt (Final in Table 2) was calculated for whether students
completed the tasks, similar to the course projects. The number
of attempts for each type of task was calculated to determine how
many attempts each of the different difficulty groups spent on the
two types of problems. As detailed in Table 2, all student groups

Write me a C function called LeafEater that takes three integer 
inputs: jump, leaf and branch.  The function should calculate 
how many leaves a bug would eat as it jumps along a branch of 
length “branch”, where leaves are equally spaced…

Enter your prompt

Figure 3: Interface layout for a Prompt Problem showing the
LeafEater task (Lab 12, Question 3).

were much closer in performance on the LLM problems (Figure 5)
than they were in their invigilated exam performance (Figure 4).
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Figure 4: A comparison of student exam score averages for
three invigilated exams grouped by difficulty.

Figure 5: A comparison of students’ average success rate on
their first attempt to solve the LLM-related questions. The
optional Lab 12 was excluded due to low participation.

4.3 Examples of Code Explanations
The code descriptions shown in Table 3 were provided by students
during Lab 10 in response to code that reversed a string (ReverseS-
tring). Students provided varied prompts, but interestingly, students
at both ends of the difficulty scale provided similar prompts (e.g.,
students 19 and 1). Additionally, some students relied on direct
citation of the code as they saw it, as shown by student 105. Also
of interest is that student 77 used the term “backwards” which did
not result in the LLM successfully generating functionally equiv-
alent code; in contrast to how a human might understand and
interpret their meaning. However, student 13’s response also used
“backwards”, but incorrectly. The implications are that a human
reviewer might be able to understand the nuanced use of the term
“backwards”, but in this specific situation, the LLM could not.

4.4 Student Comments on Programming
At the end of Lab 7, students were asked to complete a feedback
survey about the course. One question asked students what they
enjoyed most and found most frustrating about programming. The
most common enjoyment was problem-solving, and the most com-
mon frustration was debugging. As shown in Figure 6, problem-
solvingwas themost common enjoyment for students who reported

Table 3: Student EiPE explanation examples for Lab 10’s “Re-
verseString” question, and whether they passed test cases.

Diff. Pass Code Explanation (Student No.)

D/SD Yes “reverses a string” (19)

N Yes

“takes one string as input and loops till length
of the string - 1 and replaces str i with str of j
and replaces str of j with str of i which is
called a char temp, and increases i and

decreases j index" (105)
A Yes “reverses the input string array” (1)

D/SD No “takes a string and turns it backwards” (77)

N No “writes words in a sentence backwards” (13)

SA No “converts a character input array to an
output array of its ascii values” (106)

Figure 6: Percentage of students in each difficulty group who
reported ‘problem-solving’ for enjoyment and ‘debugging’
for frustration.

that they enjoyed programming (D/SD; 22%) and the least reported
enjoyment for students who reported that programming was dif-
ficult (SA; 9%). Additionally, debugging was reported as the most
common source of frustration. Unexpectedly, students who reported
the least difficulty (D/SD & N) reported it the most frequently (31%),
although the other groups still reported it 20% of the time.

4.5 Student Perceptions
At the end of each LLM-related lab, students were asked to provide
their thoughts on the lab and the activities. Several students pro-
vided feedback after the EiPE questions at the end of Labs 8 and 10,
shown below. Overall, students were predominantly positive about
the experience, with a single student calling the task “gimmicky”
and less effective at assessing their performance than traditional
code-writing tasks.

• Positive: “I thought the code comprehension task was good,
because it encourages understanding of code logic without
the pressure of having to write code or debug. It also helps to
improve my ability to communicate what a piece of code does
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by forcing me to write clear and concise explanations of code
that can be easily understood.” (402, Strongly Agree; Difficult)

• Positive: “I found the starting of the code comprehension task
really difficult. This was because as I was doing it I was over
complicating it each time. However with more attempts and
practice it became easier. I really liked this task as it helped
me on how to understand and condense my understanding
with basic concepts in coding.” (329, Agree; Difficult)

• Positive: “[EiPE problems] also enlightened me on the different
solutions that could be available to solve a specific task” (510,
Neutral)

• Negative: “Dislike the [EiPE] tasks. Feels gimmicky. It’s to me
as if I saw this new AI-powered tool, and I’m using it just
because I learnt about it [rather than for the tool’s merits]. I
don’t think it proves any student performance, and the code-
writing based lab tasks prove our understanding much more.”
(350, Disagree/Strongly disagree; Easy)

5 DISCUSSION AND TAKEAWAYS
As noted by Porter & Zingaro [23], the introduction of LLMs
suggests re-evaluating how we teach introductory programming
courses. Additionally, with increased class sizes, the need to au-
tomate learning at scale highlights the importance of identifying
techniques and tools that can help students assess and improve their
code comprehension abilities. However, they also note that LLMs
do not replace the need to understand what the code does when
generated, nor does it remove the need for being able to explain the
problem sufficiently to produce the desired results. The tasks we
have analyzed in this work – Prompt Problems and EiPE questions
– aim to teach students these skills explicitly via generative AI, and
provide automated feedback that can support their use at scale.

Recent work has shown that the introduction of generative AI
into computing classrooms is negatively impacting student pro-
gramming skills like code writing and debugging. Jost et al. found a
significant negative correlation between increased use of LLMs for
coding tasks and lower critical thinking skills as well as a decrease
in final grades [15]. Prather et al. found that generative AI code
completion tools like Copilot and ChatGPT can benefit some stu-
dents who are already confident in their programming abilities, but
that it can be directly harmful to the programming problem solving
ability of students who are not [26]. Students who already have
difficulty with programming, like many of the ones we examined
in this study, seem to be the most poised to over-rely on generative
AI [20] and its harms could be compounded upon them.

Our findings suggest that natural language tasks could ‘bridge
the gap’ between students who struggle with traditional assess-
ments and those who do not, which could engage a broader range
of students and possibly address the harmful impacts of generative
AI on this group. Additionally, most students found the natural
language programming tasks positive, indicating it is not useless
for those who do not struggle. Most students required multiple
attempts to craft a prompt that correctly solved their given task,
similar to prior work [7, 22], which provides additional support for
explicitly teaching students ‘prompt engineering.’ Previous work
has found that this kind of iterative learning while solving Prompt
Problems could support the development of metacognitive skills in

novice programmers [25], which is possibly why these tasks can
help address the potential negative impacts of generative AI.

There are many possible explanations for the students’ perfor-
mance being more similar on the natural language tasks than tra-
ditional code writing tasks. One is that success on the natural
language tasks does not rely on mastery of low-level syntax, which
can be hard for novices to get right [8, 18]. Another is that the
natural language tasks are simply easier, and therefore less likely to
differentiate between students who are more or less confident with
programming. However, typical success rates on the first attempts
at both problem types (usually in the 50% to 60% range) suggest that
the tasks are not trivial to solve. Finally, a further possible explana-
tion is that these tasks target different skills altogether compared to
traditional assessments. In traditional code writing tasks, students
can, for example, tinker their way to a solution [16], unable to ex-
plain the code they have written [17], which signals that they do
not understand it. In the natural language tasks, the student’s goal
is at a higher level of abstraction – they do not need to think about
how to write the code to solve the problem but instead describe how
the code works at a high level (EiPE), or describe the functionality
of the code in natural language (Prompt Problems).

The finding that most students found the natural language tasks
positive is similar to findings in prior work. Nguyen et al. [22] found
that most students would use a natural language programming tool
again if it were available, and Denny et al. [7] reported that most
students found similar tasks educational.

6 CONCLUSION
In this work, we describe our experience including two kinds of
natural language prompting tasks alongside traditional assessments
in an introductory programming course. We observed a weak rela-
tionship between performance on these tasks and more traditional
programming assessments, suggesting that these new tasks may as-
sess a different set of competencies. We also collected self-reported
data from students on the difficulty they experienced learning pro-
gramming. Interestingly, self-reported difficulty was very strongly
related to performance on tests, exams, and programming projects,
as would be expected, but this was not the case for the natural
language tasks. In other words, students with less prior experience
or those who find traditional programming challenging appear to
perform relatively well on these tasks, potentially reducing the
advantage experienced students typically have. We also found that
students appreciated these types of tasks and recognized the im-
portance of learning about AI and its applications in programming.
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