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ABSTRACT
Educational researchers have long sought to increase student reten-
tion. One stream of research focusing on this seeks to automatically
identify students who are at risk of dropping out. Studies tend to
agree that earlier identification of at-risk students is better, pro-
viding more room for targeted interventions. We looked at the
interplay of data and predictive power of machine learning models
used to identify at-risk students. We critically examine the often
used approach where data collected from weeks 1, 2, ..., n is used
to predict whether a student becomes inactive in the subsequent
weeks𝑤 ,𝑤 ≥ 𝑛+1, pointing out issues with this approach that may
inflate models’ predictive power. Specifically, our empirical analysis
highlights that including students who have become inactive on
week n or before, where n > 1, to the data used to identify students
who are inactive on the following weeks is a significant cause of
bias. Including students who dropped out during the first week
makes the problem significantly easier, since they have no data in
the subsequent weeks. Based on our results, we recommend includ-
ing only active students until week n when building and evaluating
models for predicting dropouts in subsequent weeks and evaluating
and reporting the particularities of the respective course contexts.
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1 INTRODUCTION
Predicting academic performance of a student is a relatively popular
research topic [20, 29, 45, 54].Within computing education research,
such studies use a variety of data that includes demographic fac-
tors [12, 16], surveys and questionnaires [16, 58, 61], data collected
from course activities such as clicker data from lectures [25, 42, 52],
log data from course materials [38], and submission data or log
data from course assignments [1, 6, 9, 24, 33, 36, 58]. One common
aspect in early work in the topic is including all the available data
when building predictive models – this has been the norm for de-
mographic data, collected survey and background data, and other
type of data that is relatively static and does not by itself indicate
activity or lack of it.

However, with the recent increase in collecting and using log
data from courses, e.g. different types of snapshot and submission
data from programming courses [1, 6, 9, 24, 33, 36, 58], using all
the available data when building predictive models can lead to bias
when informed decisions on what data is included or excluded are
not made. As an example, building models for identifying students
who have dropped out at the final week of a course using log data
from all but the final week of the course can lead to accurate but un-
informative models. The accuracy and lack of valuable information
both stem from the same root cause: many students have already
dropped out at the final week and thus the log data shows little to
no activity for them on e.g. the week prior to the final week of a
course, which is a relatively good indicator of a dropout. Another
issue with such use of data is that it may mask away other more
valuable information, such as information about assignments that
students struggle with. For examples of studies that have used data
in this way, see e.g. [3, 38, 44].

The above example highlights the methodological issue that we
discuss in this article. Our overarching theme is exploring to what
extent including students who have likely already dropped out into
the data used to train predictive models inflate the predictive perfor-
mance of those models. To achieve this, we study four datasets from
three courses, and compare the performance of two approaches
for building models for predicting who are likely to drop out. The
first approach includes all past data (including already dropped
out students), while the second approach includes only data from
students who have been active up to the current point. While there
exists a wide variety of works focusing on predicting at risk stu-
dents [20], the closest matches to our work are articles addressing
methodological aspects of such work (e.g. [60]).

https://doi.org/10.1145/3511861.3511873
https://doi.org/10.1145/3511861.3511873


This article is organized as follows. Next, in Section 2, we outline
related work in predicting course dropouts, followed by Section 3
outlining our study methodology, including the context, data, and
research questions. Section 4 presents our results, which are dis-
cussed in Section 5. Finally, in Section 6, we summarize our findings
and outline future research directions.

2 BACKGROUND
The ability to identify students who are at risk of dropping out of
studies [53], or simply under-performing [20], provides institutions
and instructors with an opportunity to act to remedy the issue.
Indeed, significant efforts have been invested into building early
warning systems that analyze collected data and highlight students
who might benefit from an intervention [4, 28, 43]. These interven-
tions can be manual, e.g. providing counseling or coaching [7], but
they can also be automated, e.g. the use of visualizations [23] or
other automated feedback mechanisms [13]. As an example, even
feedback on projected grade may change students’ behavior [5].

The key issue in these systems is the functionality that is used
to identify students who are performing poorly in their studies.
Due to the complexity of the topic, there exist several intertwin-
ing research streams; some being very domain-specific such as
identifying students’ performance using log data collected from a
programming environment [19, 21, 63], down to the level of uti-
lizing keystrokes students take while programming [14, 32, 36],
while other research streams may be domain-generic such as using
past grades, completed courses or consistency of work to predict
future performance [2, 31, 59]. Yet, even with the ability of identify
students in need of assistance, it might be that the interventions
themselves do not work [51], or only work for a subset of the
students [23].

As with all predictions, like predicting weather or predicting the
outcome of a cricket match, prediction results need to come suffi-
ciently early, as having a system warn about upcoming rain is not
useful if one already looks like a drowned rat. In the same vein, an
early warning system that highlights already dropped out students
is unlikely to be useful. The notion of earliness has been highlighted
in research into predicting academic performance; although earli-
ness between studies varies, it often indicates predicting academic
performance using data from only a part of the course such as the
first course weeks (see e.g. [1, 10, 17, 41]). However, approaches for
predicting academic performance are often evaluated over multiple
datasets, where each dataset has data from a particular period from
a course or a set of courses (see e.g. [10, 30, 37, 57]).

Herein also lies the possibility for a methodological misstep that
our present article discusses. Knowing that many students who drop
out of courses drop out early, it is possible that – if not enough care
is taken when choosing what data to use – data used to train and
evaluate predictive models also includes data of students who have
already dropped out. As an example, a dataset that is used to create
a model for predicting who will drop out during the fourth week
of a course might – if not carefully constructed – include students
who have already dropped out after the first week, and thus no
longer are active during the second and third week. This leads to
a situation where – during training and evaluation of predictive
models – the predictive models have information that they would

not have in a realistic situation, or at least that would not be useful
to those in the end using such models. If the models are not taken
into use there is little harm however; including students who might
already have become inactive likely will just inflate the performance
of the models (see e.g. [3, 38, 44]).

Note that although our focus here is on weeks, the same phe-
nomenon could be also observed within weeks. That is, if a student
drops out in the middle of the week, completing just a few of the
assignments, then the subsequent assignments that are left undone
could be a good indicator of students’ performance. This has been
highlighted, e.g., in the analysis by Ahadi et al [1], who noted that
the last assignments of a week were good predictors of future per-
formance, although to their merit they also analyzed what students
did in those particular assignments. Similarly, the phenomenon
exists also on a higher abstraction level – as an example, one could
seek to build a model that predicts dropouts from a degree program
using e.g. enrollment data that would effectively already encode
students’ engagement.

3 METHODOLOGY
3.1 Context and Data
For the purposes of our study, we obtained log data from three
courses held at a university in a Nordic country. All of the courses
had different instructors. We refer to these courses as CS0-Web,
CS1, andWD. CS0-Web & CS1 had deadlines after each round while
WD only had a single deadline at the end of the course. The courses
and their context are as follows.

CS0-Web is a 3 ECTS course intended for life-long learners
to learn the basics of programming and web development with
JavaScript. The course is taken by approximately 100 students annu-
ally and is realized as an interactive ebook with embedded exercises
that are automatically graded. The course is focused on learning
basics of HTML, CSS, and JavaScript as well as learn to manipulate
DOM1 with JavaScript. The latter half of the course focuses on
simple server-side development.

CS1 is a 5 ECTS fully online2 introductory programming course
which teaches programming fundamentals, using the Scala lan-
guage, and emphasizes both the object-oriented and functional
paradigms. It is taken by approximately one thousand students
annually, most of whom are from the university, though some life-
long learners also take it. The course is given through an open
online interactive textbook which integrates both the activities
(assignments, exercises, multiple-choice questionnaires) and the
theoretical side. Each week, students have to solve and submit a set
of assignments integrated within the textbook.

WD is a 5 ECTS university course typically taken during the
second year of studies. It is taken by a few hundred students annu-
ally, and it introduces students to the lifecycle of web applications,
ranging from conceptualization and building of web applications
to security testing and maintenance. Topics in the course are ap-
proached in a hands-on manner, where students learn to develop
and test web applications using JavaScript, as well as to deploy,
maintain, and monitor them in cloud environments.

1Document Object Model
2Due to the COVID-19 pandemic.



Table 1: Data summary.

Course Students Data
CS0-Web 75 6,382 code submissions
CS1-S 1,056 628,363 code submissions
CS1-B 1,407 Browsing activity
WD 175 60,195 code submissions

The course contents are usually offered in rounds, where the
duration of a round is typically a week. During a round, each course
introduces a specific set of related concepts and students solve a
given number of assignments related to these concepts. For instance,
in the CS1 and WD course, a round corresponds to a week. In CS0-
Web rounds 1 & 8 last a week, but rounds 2 to 7 last two weeks. In
the rest of the article, we will refer to the course rounds to abstract
and unify the granularity in which the courses are conducted.

For the present analysis, the data includes code submissions
(for CS0-Web, CS1, and WD) collected from their learning manage-
ment systems and browsing behavior (for CS1) collected using a
JavaScript plugin similar to the one described in [27, 38, 39]. For CS1,
we use two separate datasets with separate anonymized student
identifiers; thus, the course is described as two separate datasets
from hereafter. The data used in this analysis is summarized in
Table 1.

3.2 Research Questions and Approach
We adopted the same approach for all courses studied. Our research
questions for this study are the following:

RQ1 What performance differences do we observe in predic-
tive models when we include versus exclude data from stu-
dents who have already dropped out?

RQ2 What features are most predictive of students dropping
out when including versus excluding data from students who
have already dropped out?

RQ3 How does the course context influence the performance
of the predictive models?

There is no general consensus on when or how a student should
be considered as having dropped out, which can even be affected by
institutional policies [55]. We defined dropping out using student
activity. We say that a student 𝑠 has dropped out at round 𝑦 if the
student 𝑠 is inactive at that round 𝑦 and all the following rounds.
Our definition of activity varies depending on the type of data
collected. For submission data, we say that a student is inactive at a
given round 𝑦 if the student did not submit any assignments during
that round. For browsing data, we say that a student is inactive at a
given round 𝑦 if the student has no browsing activity during that
round (i.e., the student did not access/interact with the materials).

The including approach seeks to identify students who dropped
out by a given round𝑦 using data from all students from all previous
rounds. Studies using the including approach tend to include stu-
dents in the data who have become inactive in the rounds preceding
the target round. In excluding approach, when identifying students
who are likely to drop out by a given round𝑦, only students who did
not drop out during the preceding rounds are included (i.e. students

who already have dropped out are excluded). Compared to the in-
cluding approach, the data from already dropped out students is not
included, which creates a more realistic picture of the performance
of the models.

To answer RQ1, we compare the prediction performance of the
including approach and the excluding approach when predicting
which students are likely to drop out. To answer RQ2, we analyze
the features from the data that both of the approaches use for the
predictive models, and to what extent they differ. Finally, to answer
RQ3, we draw insights from the models’ features and performance,
and relate that with the differences in the courses and data.

In the analyses, where applicable, for the including approach, we
predict which students are at risk of dropping out by each round
of the courses, from round 2 to round 73, using iterative subsets
of data from the previous rounds (1, 1-2, etc.). For predicting e.g.
dropouts by round 7, we iteratively use data from: round 1, rounds
1-2, rounds 1-3, rounds 1-4, rounds 1-5, and rounds 1-6. In each
subtask, we include all the student population. In our excluding
approach, the task is the same, but we adjust the data to only include
the students who did not dropout in one of the rounds beforehand.

3.3 Features Used
For the prediction tasks, we collected the following features:

Submission data We include the following features for each
assignment per round:
• Attempt count ∈ N: the number of times the student at-
tempted the assignment

• Correctness ∈ [0, 1]: the percentage of maximum points
student received for the assignment

Browsing data We include the following features for each
round:
• Study session count ∈ N: The number of study sessions
• Study session length ∈ R : The average length of a study
session (in minutes)

• Total time ∈ R: The total time spent online (in minutes)
• Per page time ∈ R: Time spent reading each chapter of
the material pages corresponding to the given round

Overall, the features that we used for submission data are com-
monly used in the literature [22]. We opted for assignment specific
features because for the courses selected, the assignments given
do not have the same difficulty, and as such, we would lose in-
formation if we aggregated features over the rounds. Concerning
browsing data, we computed per round study sessions statistics,
but, in order to have features with close level of granularity across
datasets, we also computed the time students spent reading on
each page of the rounds included as data. This time spent per page
approximates very roughly the time each student spent on (sets)
of assignments – i.e. time-on-task, which is known to be a crucial
part in learning [15, 18, 34, 35].

3.4 Models
Following the methodology employed by studies predicting stu-
dents at risk, we used machine learning models for our task of
predicting dropouts. As our machine learning models, we employ
3Round 1 is excluded, as there are no previous rounds to use as input data, and early
rounds have a high dropout rate due to students sampling courses.



Random Forest classifier and Logistic Regression, which have also
been previously used in the literature [20]. These models are both
widely used in machine learning, often performant and are also
interpretable in the sense that feature importance can be extracted
for the trained models.

In addition to the two machine learning models, we use two
baseline models to show the effectiveness of the machine learning
models, i.e. that the models are able to generate useful non-trivial
predictions. Our first baseline model is Majority Vote aka Zero Rate
(ZeroR) model, which is a model that predicts all values as the most
common prediction value in given data. As such it has no predictive
value. As our second baseline model, we use a Naive Bayes classifier,
which operates on the (unrealistic) assumption that each feature
used to predict a class is independent of each other.

3.5 Procedure
For each subtask, we trained our machine learning models, random
forest and logistic classifiers using the scikit-learn framework [48].
The approach here is similar to the approaches that have previously
been applied in research on predicting academic performance (see
e.g. [1]).

For model hyperparameter tuning and performance evaluation,
we employ nested cross-validation using 5 folds for outer loop,
and 3 folds for inner loop. We use PR-AUC (Precision-Recall Area
Under Curve) as the metric to pick the best model hyperparame-
ters. We report the performance of our models on the following
commonly used performance metrics to vary the descriptiveness
of our performance results: accuracy (intuitive metric with simple
interpretation), RMSE (Root Mean Squared Error, a raw error metric
for reliability), ROC-AUC (Receiving Operator Characteristic Area
Under Curve a decision threshold independent metric that is unaf-
fected by data skew), and F1-score (the harmonic mean of precision
and recall which are both intuitive metrics for the problem).

We perform two preprocessing steps before feeding the data to
our models: standardization and feature selection. Standardization
balances the a priori importance of each feature, since different
types of features have different magnitudes. We standardize each
feature individually to have zero mean unit variance. Afterwards,
we perform a feature selection step. We used Analysis of variance
(ANOVA) to determine the

√
𝑀 most relevant features as model

inputs, where 𝑀 is the total number of features. We also experi-
mented with no feature selection at all, to rule out the possibility
that feature selection removes important features.

In order to assess which features are most useful for dropout
prediction, we examine the learned properties of the final models
that are selected by the nested cross-validation process. We obtain
the best subset of features from the final random forest model
by looking at the accumulation of the impurity decrease within
each tree of the model. We obtain the best subset of features from
the final logistic regression model by looking at the (normalized)
coefficients of the model.

Table 2: Statistics of student activity and inactivity for each
round in our data. Prefix R in the header indicates Round.
Returning students are students who have been active pre-
viously and have since been inactive until the given round.

Dataset R1 R2 R3 R4 R5 R6 R7

CS0-Web All 73 73 73 73 73 73 73
Active 73 68 68 48 36 33 26
Inactive 0 5 5 25 37 40 47
Returning 0 0 1 0 0 1 0

CS1-B All 1196 1262 1305 1327 1360 1378 1407
Active 1196 966 896 860 849 823 815
Inactive 0 296 409 467 511 555 592
Returning 0 0 26 37 26 21 30

CS1-S All 1034 1044 1045 1047 1051 1053 1056
Active 1034 847 787 790 776 755 746
Inactive 0 197 258 257 275 298 310
Returning 0 0 4 13 5 6 10

WD All 169 174 174 174 174 175
Active 169 166 143 140 134 120
Inactive 0 8 31 34 40 55
Returning 0 0 0 1 0 0

3.6 Implementation
The code used in this work is available at Aalto Version Control
System4 with the full configuration of the trained models and eval-
uation pipeline. Unfortunately, we cannot publish the data used
due to privacy concerns.

3.7 Descriptive Statistics
Descriptive statistics of the data, including active students, inactive
students, and returning students for each course for each round
is shown in Table 2. The total number of students is increasing in
most of the datasets, indicating that it is common for the courses to
include a few students who start late. The overall student count is
also higher in CS1-B than in CS1-S, indicating that students browse
the course materials without submitting anything, especially when
joining late.

Additionally, besides the variance between the dropout statistics,
returning students, i.e. students who become inactive on some
round but are active again on a later round, are scarce within the
data – as an example, for WD, there is only one returning student
out of all the students who become inactive in the course. When
considering CS1-S and CS1-B, the number of returning students is
higher in the browsing data than in the submission data, possibly
due to students being more likely to inspect the upcoming course
material for reference than doing assignments when unsure of
continuing on a course.

4 RESULTS
4.1 RQ1. Differences in Predictive Power
Students returning on a coming round after a break is rare as is
shown in Table 2. Thus, intuitively, the inclusion of previous weeks’
dropouts for predicting all future dropouts in the including ap-
proach helps models perform better as it should be easy for models

4https://version.aalto.fi/gitlab/sarsas2/methodological-considerations-for-
predicting-at-risk-students
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to pick up on the trend that previously inactive students remain in-
active. On the other hand, the excluding approach cannot leverage
such information and should therefore perform worse. The model
performance comparison over different rounds to predict, in Figure
1, suggests that the later the round we are trying predict, the larger
the difference between the two approaches becomes. This effect
can be confirmed by inspecting the plot in Figure 2 which shows
a comparison of random forest models and majority vote baseline
scores for different metrics with different feature sets for predicting
round 7 or the last round available. In the plot, we see that apart
from a few outliers, the random forest scores are clearly higher for
the including approach than the excluding approach.

Also, in the including approach the scores are improving mostly
monotonically asmore rounds (i.e. features) are introduced, whereas
in the excluding approach this trend is not present. Instead, in the
excluding approach, predicting dropouts appears at times harder as
more rounds are introduced, which is evident especially in the F1-
score, although the drastic difference for the F1-metric can be partly
explained by a smaller number of positive examples (dropouts) in
the data. Moreover, the model performance comparison over differ-
ent rounds to predict, in Figure 1, shows that the later the round
we are trying predict, the larger the difference between the two
approaches becomes.

Also in Figure 2, in contrast to the F1-score results, differences
in accuracy are rather small. The excluding approach even achieves
better accuracy than the including approach for the CS1-B dataset
when using features from all rounds that precede the prediction
round. Achieving high accuracy, however, is increasingly easier
for the excluding approach, since the proportion of dropouts de-
creases the further we are in a given course. Unlike in the including
approach, the excluding approach random forest model accuracy
scores are not much higher than those of the majority vote baseline
and logistic regression fairs even worse. A similar pattern can be
seen for RMSE score. Furthermore, when inspecting e.g. random
forest model’s F1-Score for feature rounds 1-6 and dataset CS1-S
in the excluding approach, it is extremely poor, and similarly, ac-
curacy is below that of the majority vote. Even though ROC-AUC
scores are relatively high for both approaches, the overall results
still show that the models may have major difficulties in reliably
identifying future dropouts, a result which is not evident when
using the including approach.

4.2 RQ2. Discriminative Features
We ranked the features given the importance given by each final
model for each prediction task, and we selected the top 10 features.
Figure 3 shows the percentage (from these top 10 features) of fea-
tures of each type presented in subsection 3.3, for each type of
dataset, averaged over all the weeks. The first thing that we observe
is that both approaches rank the types of features rather similarly
(within a given course). There are only variations in the magnitude
of the importance while the feature ranking is the same between the
two approaches. For the submission data, we see that the including
approach has a tendency to give more importance to the correct-
ness variable. Concerning browsing data, both the including and
the excluding approach favor time spent as the most discriminating
feature. However, this is also likely due to the higher proportion
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ROC-AUC, Excluding ROC-AUC, Including

2 3 4 5 6 7
Round to predict

0.6

0.8

Accuracy, Excluding

2 3 4 5 6 7
Round to predict

Accuracy, Including

Logistic Regression
Random Forest
Naive Bayes
Majority Vote

Figure 1: Performance of the models for accuracy and ROC-
AUC metrics for each round to predict. Scores are aver-
aged over all previous round feature sets over all evaluated
datasets.

of time related features than study session related features. With
that factor taken into account, it seems that the including approach
makes equal use of study session statistics, while the excluding
approach favors slightly more the study session length than the
number of study sessions.

We show as illustration the top 10 submission features used by
the RandomForest algorithm to discriminate dropouts from non
dropouts at the 6th round, using data from all previous rounds, for
the CS1 course (Table 3) and the CS0-Web course (Table 4). Figure
4 gives the distribution of the rounds from which these features
come from. We observe that there are no major differences in terms
of the type of feature used by both approaches in that scenario. For
the CS1 course, there are also no differences in between approaches
concerning the distribution of features with respect to rounds, as
both approaches focus on assignments from the fifth round (Table
3). However, for the CS0-Web course, we observe that while the ex-
cluding approach leverages features from all rounds, the including
approach only leverages features from the third and the fifth round
(Table 4).

Nevertheless, we must be careful of over-interpreting these re-
sults as the ranking is prone to variance. For instance, simply choos-
ing another number of top features to examine, restricting the
selection to a specific round to predict or applying shuffling in
cross-validation would show a slightly different picture.

4.3 RQ3. Effects of The Course Context
Overall, the performance of the models vary across the courses and
across the rounds (Figure 2). While the performance seems to stay
relatively similar across courses when using the including approach
(same trend), the trend of the performance of the model under the
excluding approach tends to be dissimilar (for accuracy and RMSE,
dissimilar in relation tomajority vote). One of the possible causes for
this is the data – as discussed in descriptive statistics (Section 3.7),
while many students drop out early on in the courses, there are
fewer students dropping out later in the courses.

The bottom plot of Figure 3 highlights the difference and sim-
ilarities in the top submission features when taking into account
the course context. We can make a few observations about simi-
larities and differences across courses. For the CS0-Web and the
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Figure 2: The difference of scores using including versus excluding approach for each dataset and metric when using features
sets 1, 1-2, ... and 1-6 to predict dropouts on round 7. For WD course feature sets up to 1-5 are used to predict round 6 since it
doesn’t contain round 7.
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Figure 3: Percentage of type of features used in both ap-
proaches. On the top left (resp right), the percentage aver-
aged over all prediction tasks and all submission (resp the
browsing) datasets. On the bottom, the percentage individu-
alized for each submission dataset. The percentage is com-
puted as the average of using the top 10 features over each
model and each subtask.

WD courses, the differences in the chosen features are not large
between the excluding and the including approaches, while CS1-S
shows a bigger difference; namely, that the including approach
favors correctness over attempt count compared to the excluding
approach. In practice, this suggests the need for course-specific pre-
dictive models, or the use of approaches such as transfer learning,
as discussed in [30].

Table 3: Top 10 features used by the RandomForest model
for predicting students dropping out at round 6 using data
from all previous rounds with the excluding approach (top)
and the including approach (bottom) for the CS1-S dataset.

importance name round feature type

1 0.080577 Assignment 26 (For 1) 5 Attempt count
2 0.080284 Assignment 35 (Flappybug 16) 5 Attempt count
3 0.048048 Assignment 28 (For 2) 5 Attempt count
4 0.044888 Assignment 30 (For 4) 5 Correctness
5 0.041555 Assignment 37 (For 7) 5 Attempt count
6 0.037730 Assignment 29 (For 3) 5 Attempt count
7 0.031279 Assignment 35 (Flappybug 16) 5 Correctness
8 0.026363 Assignment 24 (Purchases of) 5 Correctness
9 0.024191 Assignment 29 (For 3) 5 Correctness
10 0.022359 Assignment 26 (For 1) 5 Correctness

importance name round feature type

1 0.169364 Assignment 26 (For 1) 5 Correctness
2 0.129253 Assignment 28 (For 2) 5 Correctness
3 0.109589 Assignment 6 (Fixed price) 5 Correctness
4 0.079372 Assignment 29 (For 3) 5 Correctness
5 0.069453 Assignment 17 (Tempo) 5 Correctness
6 0.069156 Assignment 30 (For 4) 5 Correctness
7 0.049497 Assignment 23 (Number of Open Items) 5 Correctness
8 0.049484 Assignment 27 5 Correctness
9 0.049389 Assignment 24 (Purchases of) 5 Correctness
10 0.039598 Assignment 33 (District 1) 5 Correctness



Table 4: Top 10 features used by theRandomForestmodel for
predicting students dropping out at round 6 using data from
all previous rounds with the excluding approach (top) and
the including approach (bottom) for the CS0-Web dataset.
The data did not include assignment names but only data-
base IDs for the assignments, which are shown in the name
column in the table.

importance name round feature type

1 0.026288 476 3 Attempt count
2 0.021747 445 2 Attempt count
3 0.021477 441 2 Attempt count
4 0.020963 496 3 Attempt count
5 0.018968 444 2 Attempt count
6 0.018469 532 4 Attempt count
7 0.017219 472 3 Attempt count
8 0.015007 554 5 Attempt count
9 0.014855 570 5 Correctness
10 0.014628 331 1 Attempt count

importance name round feature type

1 0.058946 566 5 Attempt count
2 0.055328 566 5 Correctness
3 0.049541 573 5 Attempt count
4 0.044551 567 5 Correctness
5 0.038696 560 5 Attempt count
6 0.037591 561 5 Attempt count
7 0.037280 563 5 Attempt count
8 0.035821 562 5 Attempt count
9 0.030171 567 5 Attempt count
10 0.028314 474 3 Attempt count

Figure 4: Percentage of the top 10 features of previous
rounds used by the RandomForest classifier when predict-
ing dropouts at round 6 using data from all previous rounds,
for the CS1-course (left) and the CS0-Web course (right).

5 DISCUSSION
Overall, using two types of data from three separate courses, our
results highlight two important intertwined aspects. First, the fur-
ther into a course we go, the fewer students are actually dropping
out, and second, predictive models that include all the data until the
round to predict, i.e. the including approach, perform better than
the predictive models that include only students who have been ac-
tive at least until the previous round of the round to predict, i.e. the
excluding approach. As an example, in the CS1-S data, there were
only 20 dropouts from round 4 to round 5; the excluding approach
seeks to identify these, while the including approach seeks to iden-
tify those in addition to the students who have already dropped
out, which creates a target that is at least ten times larger. This
effectively highlights a data imbalance issue, where one group to
predict is larger than the other, which in turn makes the prediction
task more difficult [62]. Approaches, such as sampling, can alleviate

the issue to some extent [56], although we did not explore it in the
present work.

The problem of students dropping out is especially important
in the context of massive open online courses [8, 47], where the
majority of the participants may drop out before the end of the
course. Although one might argue that students might come back
later though, as our data (Table 2) shows, this is fairly rare in our
context. In practice, the relative number of students who drop out
of courses tends to decrease the further we go into the course [47],
although our data showed that there are differences in how this
manifests. Building a predictive model that includes data from
students who have already dropped out may lead to the models
using features in data that are not useful in practice. This might
hamper efforts where data from one course is used to predict the
outcomes in another course, although in such cases one might
also explore techniques such as transfer learning (see e.g. [30]).
Although we identified studies that evaluate predictive models with
data that likely includes students who have already dropped out,
we typically did not observe evidence of the same models being
taken into use as, e.g., early warning systems.

When considering the metrics that we used for studying the
performance of the built models, we observed considerable differ-
ences between the excluding and including approach in most of
the metrics in most of the courses (shown in Figure 2). While accu-
racy tended to be a poor metric in general due to the imbalanced
dataset, the ROC-AUC masked performance differences for CS1-B
and CS0-Web. On the other hand, these differences were clearly vis-
ible e.g. when studying the F1 score. This effectively highlights that
when reporting results of such analyses, multiple metrics should
be included.

When considering the problem of students dropping out in gen-
eral, we acknowledge that there are a multitude of issues that are
at play. While losing interest or preferring other work, highlighted
e.g. in [26, 50], might be something that cannot be addressed, other
factors – also highlighted in [26, 50] – such as plagiarism or exces-
sively relying on others could be alleviated through interventions.
It is a good question, however, what sorts of features should be
used to identify factors such as confusion and the actions taken in
such situations, as discussed in [40].

This study does not come without limitations, either. First, we
defined dropout through inactivity, but students who drop out late
might still get a passing grade. Second, despite our data showing
that very few students become active after becoming inactive, this
is still a possibility and a corner case, which the including approach
could handle – despite its flaws – better. Third, as in many evalua-
tions of predicting dropouts, we used data from the same course,
which itself could lead to bias in the data. Finally, we also did not
look into demographics or more fine-grained features and thus,
cannot state how the two approaches would compare in those situ-
ations. Furthermore, our feature analysis is rather limited.

6 CONCLUSION
We have examined the differences in two approaches for identifying
students who are likely to drop out. We observed that the including
approach which includes also students who have already dropped
out does not match the objective of most research, which typically



tries to assess the usability of data collected for developing real-
time warning applications for educational teams. Importantly, we
do not claim that everyone does this wrong, but rather, that there
is a risk of bias that needs to be acknowledged and recognized. To
summarize, our research questions and the answers are as follows.

RQ1: What performance differences do we observe in predictive
models when we include versus exclude data from students who have
already dropped out? First, we observed differences in the perfor-
mance of the evaluated machine learning models; out of the ex-
plored models, random forest had the highest performance, which
could be due to its behavior in identifying outliers. We also ob-
served considerable differences between the excluding and includ-
ing approaches, the latter including the students who have already
dropped out in the data. In practice, due to the decreased number
of dropouts over the weeks, the performance of the excluding ap-
proach tends to generally decline, while the opposite is true for the
including approach. We did not, however, evaluate sampling (see
e.g. [49]) or other approaches often used to alleviate the problem.

RQ2: What features are most predictive of students dropping out
when including versus excluding data from students who have already
dropped out? Comparing the features that the predictive models
used between the two approaches, we observed slightly different
emphases. However, contrary to our expectations, the differences
are hardly evident enough to conclude the types of features used
between the two approaches are inherently different. We did not,
however, look into the individual features used by the models.

RQ3: How does the course context influence the performance of
the predictive models? When comparing the performance of the
predictive models between the courses, we observed significant
differences. It is evident that the context and thus the data affects
the results significantly. This further highlights the problem of
using models developed in one context in other contexts, and also
emphasizes the meaningfulness of reanalyses and replications of
similar work in the future.

Effectively, our work highlights the importance of paying at-
tention to the data in addition to the models. While research on
predicting at-risk students inherently strives for high performance,
focusing only on model evaluations and not paying sufficient atten-
tion to what data is being used can lead to wrong conclusions. An
interesting question arises from our observations: how can we take
into account the information about dropped out students in previ-
ous weeks to increase the performances of the models which try
to detect which students drop out in the following weeks without
risking unrealistic performance inflation? An option might be to
revisit methodologies on transfer learning — shifting our focus from
course to course behavior to learning about the dropout patterns
within a specific course.

Finally, we need to consider the demographics of students in
our courses and approaches. Dropouts, and other at-risk behavior,
is also likely to stem from factors other than the differences in
the course organization and the course materials used. Predictive
models should be developed with care and consideration in order
to achieve true fairness, and to avoid projecting our own biases
into them in our attempts at improving the learning process for
all [46]. As Corbett-Davies & Goel [11] so eloquently put it: “Algo-
rithms can avoid many of the implicit and explicit biases of human

decisions makers, but they can also exacerbate historical inequities if
not developed with care.”
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