
Automated Program Repair Using Generative
Models for Code Infilling

Charles Koutcheme1[0000−0002−2272−2763], Sami Sarsa1[0000−0002−7277−9282],
Juho Leinonen2[0000−0001−6829−9449], Arto Hellas1[0000−0001−6502−209X], and

Paul Denny2[0000−0002−5150−9806]

1 Aalto University, Espoo, Finland
{charles.koutcheme, sami.sarsa, arto.hellas}@aalto.fi

2 The University of Auckland, Auckland, New Zealand
{juho.leinonen, p.denny}@auckland.ac.nz

Abstract. In educational settings, automated program repair techniques
serve as a feedback mechanism to guide students working on their pro-
gramming assignments. Recent work has investigated using large lan-
guage models (LLMs) for program repair. In this area, most of the at-
tention has been focused on using proprietary systems accessible through
APIs. However, the limited access and control over these systems remain
a block to their adoption and usage in education. The present work
studies the repairing capabilities of open large language models. In par-
ticular, we focus on a recent family of generative models, which, on top of
standard left-to-right program synthesis, can also predict missing spans
of code at any position in a program. We experiment with one of these
models on four programming datasets and show that we can obtain good
repair performance even without additional training.

Keywords: Program repair · Large Language Models · Computer Sci-
ence Education

1 Introduction

Novice programmers will eventually have bugs in their programs which require
debugging [14,9]. One possible stream of research for providing support in de-
bugging is the use of large language models (LLMs) [3,4]. Contrary to the use
of proprietary LLMs through an API at a cost, we explore open large language
models that are freely accessible and that can be run locally.

For the present work, we focus on Generative Models for Code Infilling
(GMCI) [8] which can be used to fill in missing sections within a given in-
put. Our overarching research goal is to explore the applicability of GMCI for
repairing novice programs. We address the following two research questions with
respect to GMCI-based program repair techniques: (RQ1) How do GMCIs per-
form in fixing programs with a single bug?; (RQ2) with multiple problems and
more diverse issues? In answering the research questions, we also discuss the ef-
fect of including metadata information in the prompt and fine-tuning the model
on educational data.

2 C. Koutcheme et al.

2 Background

Automated program repair (APR) research seeks to find ways to automatically
fix bugs in programs. Traditional approaches to program repair have utilised test
suites to identify defects to fix, followed by the generation of candidate patches
that are then validated against the test suite (see e.g. [11,13]). An example in this
category is the work of Hu et al. [10], whose tool – Refactory – generates code by
refactoring existing solutions to a problem. Then, given an incorrect program,
its control flow structure is analysed to find a closely matching solution which
is then used to isolate the buggy components of the program.

A variety of machine learning-based methods for program repair exist [5,19],
and the recent emergence of LLMs has led to suggestions on using them to local-
ize and fix bugs [15]. In an educational context, Zhang et al. [20] leveraged Codex
to fix bugs in Python programming assignments, using correct solutions, test
cases, and assignment descriptions for prompting. They evaluate their method
on 286 Python programs produced by novices and show that their approach can
repair up to 96.5% of the programs, and with a smaller edit distance compared
to other automated program repair approaches [10].

One challenge of the recent proprietary LLMs [18,20] is that the underlying
models are opaque and their access is only available through APIs and at a
cost. A recent advance that is intuitively applicable for code repair is Generative
Models for Code Infilling (GMCI) [2,8] that extend LLMs with infilling capa-
bilities that allow completion within text. This provides an intuitive approach
for fixing bugs in place. Such models have been explored and evaluated recently
in the context of program repair, where Xia et al [18] showed that LLM-based
approaches outperform traditional APR tools.

3 Methodology

In our work, we study GMCIs for program repair in an educational context using
the InCoder model [8] available on HuggingFace. The preprocessed data and code
for our experiments are released online3. In this section, we introduce our data
and present the experiments performed to answer our research questions.

Data. We use the QuixBugs dataset [12] and three datasets of student solutions
to programming assignments written in Python: (1) Dublin City University data
(DB) [1]; (2) University of New Caledonia data (NC) [6]; and (3) National Univer-
sity of Singapore data [10]. We scope our evaluation to assignments that require
writing a single function that takes fixed inputs and produces one output and
use a subset of assignments to balance diversity and complexity. Additionally,
we remove duplicate solutions that could bias evaluation by comparing ASTs.

3 https://github.com/KoutchemeCharles/aied2023

https://github.com/KoutchemeCharles/aied2023

Automated Program Repair Using Generative Models for Code Infilling 3

Experiments. To answer our first research question, we use our model for
repairing programs on the QuixBugs dataset, where each code contains a single
function with a unique bug on a single line. Although this dataset is not strictly
a dataset of student programs, many of the bugs present, such as “incorrect
assignment operator” and “missing condition”, are typical mistakes that students
make. We report the number of programs that we can repair, and compare our
performance against the work of Prenner and Robbes [15] who used OpenAI
Codex with the same data.

To answer our second research question, we evaluate our program repair
strategy using InCoder on our student datasets. We report our performance in
terms of success rate (i.e. the ratio of the number of programs that we can
repair for each assignment in each dataset), and we contrast our results against
the Refactory automated program repair tool [10].

Technical details. To repair a given buggy program, we adapt the multi-line
infilling strategy of Fried et al. [8]. Given a function with N lines, our method
systematically selects a span of n (n ≤ N) consecutive lines and asks the model
to complete the code with the missing lines. When completing a program, we
generate ten candidate completions using top-p nucleus sampling with p = 0.95
and a fixed temperature of 0.6 [4]. A program is considered to be repaired if one
of the model-generated solutions passes all automated tests associated with the
buggy program. We evaluate up to 50 different spans to find a repair [16]. We
refer the reader to the implementation for details of the algorithm.

To allow the model to better understand the buggy program’s intended func-
tionality, we add a docstring and we expose the test cases that need to be passed.
Figure 1 illustrate our approach. The QuixBugs dataset contains properly for-
matted docstrings, whereas the Dublin and New Caledonia datasets do not con-
tain docstrings. In these cases, we add single-line docstrings which summarize
briefly what the code is supposed to do. For the Singapore dataset, we format
the original assignment description as a docstring.

4 Results

Repairing programs with a single bug. Table 1 shows a comparison of
InCoder [8] and Codex [15] on the QuixBugs dataset [12]. Our model managed
to repair 13 out of the 28 programs. In contrast, Codex performs better with 23
bugs repaired in total.

Repairing student programs. Table 2 breaks down our results per assign-
ment, for a subset of selected assignments, when repairing programs in our stu-
dent datasets. Overall, although performance varies greatly between different
assignments, our results are competitive with the Refactory repair tool (RF),
both in terms of the number of repairs found and in terms of distance to the
original buggy program.

4 C. Koutcheme et al.

 def mean(arr):
 """Compute the mean of an array."""
 if len(arr) == 0:
 return None
 sum = 0
 for i in range(0, len(arr)-1):
 sum = sum + arr[i]
 avg = sum / len(arr)
 return avg

 if __name__ == "__main__":
 assert mean([2, 4]) == 3
 assert mean([]) == None

Original incorrect student code with one error

 def mean(arr):
 """Compute the mean of an array."""
 if len(arr) == 0:
 return None
 sum = 0
 for i in range(0, len(arr)):
 sum = sum + arr[i]
 avg = sum / len(arr)
 return avg

 if __name__ == "__main__":
 assert mean([2, 4]) == 3
 assert mean([]) == None

Completed student code (after inference)

Fig. 1. Prompting our GMCI for repairing student programs. We add a short descrip-
tion of the program functionality as docstring as well as example test cases. We remove
part of the buggy code (in orange) and prompt the model to complete the code (in
green).

Table 1. Incoder vs Codex on QuixBugs. ✓(resp. ✗) marks bugs which could be suc-
cessfully (resp. unsuccessfully) repaired. We highlight in gray the results for the assign-
ments which we found were typical in CS1 courses.

Codex InCoder

bitcount ✓ ✓

bucketsort ✓ ✓

find-first-in-sorted ✓ ✓

flatten ✓ ✗

gcd ✓ ✓

get_factors ✓ ✓

hanoi ✓ ✗

is_valid_parenthes. ✓ ✓

kheapsort ✓ ✗

knapsack ✓ ✗

Codex InCoder

kth ✓ ✓

lcs_length ✓ ✗

levenshtein ✓ ✗

lis ✗ ✗

long_com_subseq ✓ ✗

max_sublist_sum ✓ ✓

next_palindrome ✗ ✗

next_permutation ✓ ✓

pascal ✗ ✓

Codex InCoder

possible_change ✓ ✓

powerset ✓ ✗

quicksort ✓ ✓

shunting_yard ✗ ✓

sieve ✓ ✗

sqrt ✓ ✗

subsequences ✗ ✗

to_base ✓ ✗

wrap ✓ ✗

Table 2. Comparing program repair performance between our language model (GMCI)
and Refactory (RF) in terms of success rate (SR) and average sequence distance (SD).

dataset assignment_id RF_SR GMCI_SR RF_SD GMCI_SD

DB append2list 1.00 0.93 11.43 15.19
DB fibonacci_iter 1.00 0.94 56.03 33.81
DB fibonacci_recur 1.00 0.95 16.79 25.41
DB index_iter 1.00 0.93 21.36 23.83
DB index_recur 0.98 0.52 26.11 23.66
DB maximum 0.96 1.00 26.60 33.19
DB merge_lists 1.00 0.28 52.45 27.51
DB minimum 1.00 0.97 24.78 25.56
DB reverse_iter 1.00 0.88 17.29 14.86
DB reverse_recur 1.00 0.90 15.79 16.92
DB search_iter 0.91 0.82 19.65 27.67
DB search_recur 1.00 0.91 17.41 23.26

dataset assignment_id RF_SR GMCI_SR RF_SD GMCI_SD

NC decreasing_list 1.00 0.68 26.63 31.68
NC is_palindrome 1.00 1.00 43.32 25.97
NC maximum 0.40 0.96 22.24 26.35
NC mean 0.77 0.99 33.29 20.61
NC minimum 0.43 0.96 17.13 22.56
NC sum 1.00 1.00 11.56 8.53
NC sum_even_numbers 1.00 0.48 23.14 15.86
NC sum_n_first_even 1.00 0.96 26.96 17.96
NC symetrical_list 1.00 0.96 32.70 18.09

SP remove_extras 1.00 0.42 44.77 32.69
SP search 0.99 0.81 25.79 24.13
SP sort_age 0.99 0.67 82.48 40.49
SP top_k 1.00 0.91 51.30 30.39

Automated Program Repair Using Generative Models for Code Infilling 5

5 Discussion and Conclusion

It seems that generative models for code infilling offer good potential for sup-
porting novice programmers and using open large language models straight out
of the box performs relatively well for fixing buggy programs. We notice in gen-
eral that the model’s performance depends heavily on the program’s complexity,
its functionality, and the type of issue(s) encountered in it. Our results are in
line with similar work evaluating LLMs for program repair [18,20]. We do not
obtain state-of-the-art results, so there is still much room for improvement.

Practical tips. In our preliminary experiments, we experimented with the
effect of adding a docstring. Overall, we found that adding a docstring does im-
prove performance. In particular, the more precise the description of the code
functionality, the better the results. We also experimented with finetuning the
InCoder model on programming data from a previous semester for one of our
datasets. Although we notice minor performance improvements on some assign-
ments, we see a degradation in overall performance across all datasets. Instead
of fine-tuning, selecting the right generation parameters for the specific dataset
can be a better strategy to improve the model performance [8].

Limitations, and future work. One limitation of our work is that we did
not compare closed-source state-of-the-art LLMs against InCoder on the stu-
dent solutions. However, because of the closed nature of these, such a large-scale
evaluation is costly. We are also working on developing repair algorithms more
adapted for GMCIs, using, for instance, better enumeration strategies [16]. In
the spirit of developing more sustainable models, we will also investigate how
to create smaller, but perhaps even more efficient, LLMs for program repair.
We believe that with a better pre-training strategy, combined with more so-
phisticated repair algorithms, we can obtain improved performance sufficient
for practical use. In the long term, we see great potential in deploying these
models in the classroom to address long-standing debugging challenges faced by
novices. Indeed, between working on our article in late 2022 and preparing the
final submission in May 2023, there has been a growing emphasis on the use and
availability of open large language models (e.g. [17,7]).

References

1. Azcona, D., Smeaton, A.: +5 Million Python & Bash Programming Submissions
for 5 Courses & Grades for Computer-Based Exams over 3 academic years. (2020).
https://doi.org/10.6084/m9.figshare.12610958.v1

2. Bavarian, M., Jun, H., Tezak, N., Schulman, J., McLeavey, C., Tworek, J., Chen,
M.: Efficient training of language models to fill in the middle (2022). https://doi.
org/10.48550/ARXIV.2207.14255

3. Bommasani, R., et al.: On the opportunities and risks of foundation models (2021).
https://doi.org/10.48550/ARXIV.2108.07258

https://doi.org/10.6084/m9.figshare.12610958.v1
https://doi.org/10.6084/m9.figshare.12610958.v1
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2108.07258
https://doi.org/10.48550/ARXIV.2108.07258

6 C. Koutcheme et al.

4. Chen, M., et al.: Evaluating large language models trained on code (2021). https:
//doi.org/10.48550/ARXIV.2107.03374

5. Chen, Z., Kommrusch, S., Tufano, M., Pouchet, L., Poshyvanyk, D., Monper-
rus, M.: SequenceR: Sequence-to-sequence learning for end-to-end program repair.
IEEE Transactions on Software Engineering 47(09), 1943–1959 (2021). https:
//doi.org/10.1109/TSE.2019.2940179

6. Cleuziou, G., Flouvat, F.: Learning student program embeddings using abstract
execution traces. In: 14th Int. Conf. on Educ. Data Mining. pp. 252–262 (2021)

7. Dey, N., Gosal, G., Khachane, H., Marshall, W., Pathria, R., Tom, M., Hestness,
J., et al.: Cerebras-gpt: Open compute-optimal language models trained on the
cerebras wafer-scale cluster. arXiv preprint arXiv:2304.03208 (2023)

8. Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E., Shi, F., Zhong, R., Yih,
W.t., Zettlemoyer, L., Lewis, M.: Incoder: A generative model for code infilling
and synthesis (2022). https://doi.org/10.48550/ARXIV.2204.05999

9. Hirsch, T., Hofer, B.: A systematic literature review on benchmarks for evaluat-
ing debugging approaches. Journal of Systems and Software 192, 111423 (2022).
https://doi.org/https://doi.org/10.1016/j.jss.2022.111423

10. Hu, Y., Ahmed, U.Z., Mechtaev, S., Leong, B., Roychoudhury, A.: Re-factoring
based program repair applied to programming assignments. In: 2019 34th
IEEE/ACM Int. Conf. on Automated Software Engineering (ASE) (2019)

11. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: A generic method
for automatic software repair. IEEE Transactions on Software Engineering 38(1),
54–72 (2012). https://doi.org/10.1109/TSE.2011.104

12. Lin, D., Koppel, J., Chen, A., Solar-Lezama, A.: Quixbugs: A multi-lingual pro-
gram repair benchmark set based on the quixey challenge. In: Proceedings Compan-
ion of the 2017 ACM SIGPLAN International Conference on Systems, Program-
ming, Languages, and Applications: Software for Humanity. p. 55–56. SPLASH
Companion 2017, ACM (2017). https://doi.org/10.1145/3135932.3135941

13. Long, F., Rinard, M.: Automatic patch generation by learning correct code. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. p. 298–312. POPL ’16, ACM (2016)

14. McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L.,
Zander, C.: Debugging: a review of the literature from an educational perspective.
Computer Science Education 18(2), 67–92 (2008)

15. Prenner, J.A., Babii, H., Robbes, R.: Can openai’s codex fix bugs? an evaluation
on quixbugs. In: Proc. of the Third Int. Workshop on Automated Program Repair.
pp. 69–75 (2022)

16. Pu, Y., Narasimhan, K., Solar-Lezama, A., Barzilay, R.: Sk_p: A neural program
corrector for moocs. In: Companion Proc. of the 2016 ACM SIGPLAN Int. Conf.
on Systems, Programming, Languages and Applications: Software for Humanity.
p. 39–40. ACM (2016). https://doi.org/10.1145/2984043.2989222

17. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971 (2023)

18. Xia, C.S., Wei, Y., Zhang, L.: Practical program repair in the era of large pre-
trained language models (2022). https://doi.org/10.48550/ARXIV.2210.14179

19. Yasunaga, M., Liang, P.: Graph-based, self-supervised program repair from diag-
nostic feedback (2020). https://doi.org/10.48550/ARXIV.2005.10636

20. Zhang, J., Cambronero, J., Gulwani, S., Le, V., Piskac, R., Soares, G., Verbruggen,
G.: Repairing bugs in python assignments using large language models (2022).
https://doi.org/10.48550/ARXIV.2209.14876

https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.48550/ARXIV.2204.05999
https://doi.org/10.48550/ARXIV.2204.05999
https://doi.org/https://doi.org/10.1016/j.jss.2022.111423
https://doi.org/https://doi.org/10.1016/j.jss.2022.111423
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/2984043.2989222
https://doi.org/10.1145/2984043.2989222
https://doi.org/10.48550/ARXIV.2210.14179
https://doi.org/10.48550/ARXIV.2210.14179
https://doi.org/10.48550/ARXIV.2005.10636
https://doi.org/10.48550/ARXIV.2005.10636
https://doi.org/10.48550/ARXIV.2209.14876
https://doi.org/10.48550/ARXIV.2209.14876

	Automated Program Repair Using Generative Models for Code Infilling

