
Evaluating Distance Measures for Program Repair
Charles Koutcheme

charles.koutcheme@aalto.fi
Aalto University
Espoo, Finland

Sami Sarsa
sami.sarsa@aalto.fi
Aalto University
Espoo, Finland

Juho Leinonen
juho.leinonen@auckland.ac.nz
The University of Auckland
Auckland, New Zealand

Lassi Haaranen
lassi.haaranen@aalto.fi

Aalto University
Espoo, Finland

Arto Hellas
arto.hellas@aalto.fi
Aalto University
Espoo, Finland

ABSTRACT
Background and Context: Struggling with programming assign-
ments while learning to program is a common phenomenon in
programming courses around the world. Supporting struggling
students is a common theme in Computing Education Research
(CER), where a wide variety of support methods have been cre-
ated and evaluated. An important stream of research here focuses
on program repair, where methods for automatically fixing erro-
neous code are used for supporting students as they debug their
code. Work in this area has so far assessed the performance of the
methods by evaluating the closeness of the proposed fixes to the
original erroneous code. The evaluations have mainly relied on the
use of edit distance measures such as the sequence edit distance
and there is a lack of research on which distance measure is the
most appropriate.
Objectives: Provide insight into measures for quantifying the dis-
tance between erroneous code written by a student and a proposed
change.We conduct the evaluation in an introductory programming
context, where insight into the distance measures can provide help
in choosing a suitable metric that can inform which fixes should be
suggested to novices.
Method: A team of five experts annotated a subset of the Dublin
dataset, creating solutions for over a thousand erroneous programs
written by students. We evaluated how the prominent edit distance
measures from the CER literature compare against measures used in
Natural Language Processing (NLP) tasks for retrieving the experts’
solutions from a pool of proposed solutions. We also evaluated
how the expert-generated solutions compare against the solutions
proposed by common program repair algorithms. The annotated
dataset and the evaluation code are published as part of the work.
Findings: Our results highlight that the ROUGE score, classically
used for evaluating the performance of machine summarization
tasks, performs well as an evaluation and selection metric for pro-
gram repair. We also highlight the practical utility of NLP metrics,

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9976-0/23/08.
https://doi.org/10.1145/3568813.3600130

which allow an easier interpretation and comparison of the perfor-
mance of repair techniques when compared to the classic methods
used in the CER literature.
Implications: Our study highlights the variety of distance metrics
used for comparing source codes. We find issues with the classically
used distance measures that can be combated by using NLP metrics.
Based on our findings, we recommend including NLP metrics, and
in particular, the ROUGE metric, in evaluations when considering
new program repair methodologies. We also suggest incorporating
NLP metrics into other areas where source codes are compared,
including plagiarism detection.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Software and its engineering → Software testing and debug-
ging; • Computing methodologies → Natural language process-
ing.

KEYWORDS
program repair, automated program repair, automatic program
repair, distance measures, distance metrics, ROUGE, BLEU, dataset,
bug fixing, feedback, natural language processing, educational data
mining, computing education

ACM Reference Format:
Charles Koutcheme, Sami Sarsa, Juho Leinonen, Lassi Haaranen, and Arto
Hellas. 2023. Evaluating Distance Measures for Program Repair. In Pro-
ceedings of the 2023 ACM Conference on International Computing Education
Research V.1 (ICER ’23 V1), August 07–11, 2023, Chicago, IL, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3568813.3600130

1 INTRODUCTION
Learning to program is associated with a wide variety of chal-
lenges [47]. When learning to program, one needs to become fa-
miliar with the notation of the programming language and its syn-
tax [16, 42], and to learn how to work with the tools of a program-
mer, often including a programming environment. Although plenty
of time can be invested in understanding “trivial mechanics” [66],
a particular aspect that students struggle with are errors that oc-
cur during the programming process. Syntax errors in particular
have received plenty of attention in CER, where researchers have
observed that solving common errors takes a similar amount of
time for both high-performing and low-performing students [12]

495

https://orcid.org/0000-0002-2272-2763
https://orcid.org/0000-0002-7277-9282
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0002-6500-6425
https://orcid.org/0000-0001-6502-209X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3568813.3600130
https://doi.org/10.1145/3568813.3600130
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3568813.3600130&domain=pdf&date_stamp=2023-09-10

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Charles Koutcheme, Sami Sarsa, Juho Leinonen, Lassi Haaranen, and Arto Hellas

and that some errors can take substantially more time to fix than
others [3, 12].

Ideally, we would see teachers and teaching assistants individu-
ally guide students as they are learning – and fixing mistakes in the
learning process. This is not feasible in practice in large courses,
and thus, a large body of CER literature has focused on automat-
ing assessment [2, 15, 31, 56] and on improving the efficiency of
providing feedback [14, 19, 26, 38, 40, 43, 53]. Feedback quality,
in particular, is a crucial part of the learning process [25]; good
feedback can improve learning and poor feedback may hinder it.
Feedback in programming can take many forms and can be applied
during or at the end of the programming process [38]. For instance,
feedback can take the form of hints to help students arrive at a final
solution [59, 63–65, 77] and can supplement automated graders
with details on the submitted solutions [30].

One stream of research in the area is focused on helping stu-
dents debug their code. Debugging and fixing issues is particularly
challenging and time-consuming for novice programmers [3, 12]
and thus plenty of effort has been invested in improving program-
ming error messages [6, 44]. While the early work in this area has
focused on augmenting error messages with additional details, a
recent research stream has also looked into developing and apply-
ing automated program repair techniques for supporting students
(Fig. 1 outlines the general idea). Examples of this include helping
students with syntactic issues [1, 7, 22], semantic issues [21, 29, 78],
and both [82]. Given the emergence of tools and techniques for
program repair in education, there is a need to critically evaluate
the performance of these techniques, since most of them do not
rely on human supervision. In particular, most, if not all, studies on
program repair in education have used classic edit distance metrics
such as tree edit distance for choosing program repair candidates,
based on which the feedback is constructed. This intuitively makes
sense; a minimum amount of suggested changes should not cause
significant cognitive load when contrasted with a large body of sug-
gestions that effectively would lead to a full rewrite of the program.
There seems to be a lack of empirical evaluation of the distance
metrics, however.

There is a risk that choosing the traditional distance
measures for selecting a program repair candidatemight
favour options that are further away from a student’s
intent than other repairs, due to some intrinsic aspects
of the distance measure and its representation.

In this article, we empirically evaluate the use of distance mea-
sures for comparing and selecting candidate repairs. Our overall
research theme is: How do different measures perform for evaluating
program repair candidates for programming feedback? Given the
usage of edit distance measures and the recent trend of increasingly
using natural language processing (NLP) and machine learning
techniques in CER, there is a need to answer the following research
questions:

RQ1 Which edit distance metrics perform better for evaluating
program repair candidates?

RQ2 How do Natural Language Processing scoring metrics
compare against edit distance metrics for selecting candidate
repaired programs?

To answer the research questions, we annotated a dataset of
programming solutions with expert evaluations on what the right
repair to faulty programming submissions should be. We report
on three experiments comparing distance and scoring measures
and report which of these measures performs the best for our task.
Our results show that a distance metric based on the ROUGE score
is the best at evaluating closeness to the goal. As an additional
contribution, on top of answering the related research questions, we
release the first educational dataset (to the best of our knowledge)
composed of students’ buggy programs and expert annotations on
their closest corrections.

This article is organized as follows. We begin by reviewing stud-
ies on novice programmer mistakes, followed by reviewing work
conducted in program repair in CER. In the method section, we
present the dataset used in this study, howwe annotated the dataset,
and which experiments we conducted to answer our research ques-
tions. The results are outlined after the method, and after outlining
the results, we discuss the impact of our findings and highlight
methodological considerations for using various distance and scor-
ing measures for program repair in CER.

2 BACKGROUND
2.1 Studying novice programmer mistakes
Studying novice programmer mistakes provides insight into the
issues that students are facing while learning to program [75]. Al-
though researchers have pointed out that the way some students
solve programming problems can seem random to the extent that
it is almost as if they are “programming by incident” [27], some
mistakes are more frequent than others [75] and some mistakes
also take more time to fix than others [9, 12, 52, 71]. Having data
on student mistakes can be useful, as teachers might otherwise rely
on intuition on what aspects to emphasize, which might not match
reality. Indeed, as pointed out by Brown and Altadmri [9], educa-
tors’ beliefs on the frequency of mistakes risk not matching the
data (or the beliefs of other educators). Classically, the analysis of
novice programmer mistakes focused on specific problems, perhaps
in part due to the focus on those by specific research groups. An
example of this is the Rainfall problem, which was initially intro-
duced as a looping problem in the early 1980s [35, 73, 74] and has
since received plenty of attention in the research literature [68].
One particular stream of research has focused on studying source
code snapshots and submissions [32] collected from learning en-
vironments, such as BlueJ [41]. This research stream has included
quantifying and studying syntax errors that students face while
programming [12, 17, 33, 51, 76] and led to the emergence of a fam-
ily of methods used for detecting at-risk students based on errors
observed in the programming process [5, 34, 80]. When consider-
ing the errors that students face, only some of them are syntax
errors [3, 18] that can be directly identified using a compiler. The
errors can also reside in the application logic where the errors have
been broadly categorized into algorithmic errors (flawed approach),
misinterpretation (misinterpreting the question), and misconcep-
tion (flaws in programming knowledge) [18]. Access to errors also
depends on the used programming language and the compiler [39],
which in turn can also influence the type of feedback that can be
given to the students.

496

Evaluating Distance Measures for Program Repair ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

Feedback loop

Buggy solution
Struggling student

Distance measure

Ranking (worst to best)
Feedback Selected repair

Pool of candidate repairs
Automated Repair Tools

Figure 1: General idea of feedback based on automated program repair. A struggling student submits their buggy solution to a
feedback system that uses one or more automated repair tools. Under the hood, the feedback system uses automated repair
technique(s) to obtain potential fixes to the buggy solution. Out of the pool of candidate fixes, the system selects one fix based
on comparing how far each candidate repair is from the original buggy solution, using a distance measure such as string edit
distance.

Researchers have looked into enhancing feedback related to the
compiler error messages [6, 17, 44] in part as the error messages do
not always match the underlying cause [51]. This is still an ongoing
research area [6], where one promising direction is focusing on
improving the readability of the error messages [6, 13]. Improved
error messages could help in the debugging process and even im-
prove code comprehension, which has been highlighted as one of
the issues with novice programmers [81].

Two key aspects of good error messages for novices are suc-
cinctness and clarity [13]. When considering that only some of
the errors that students face are syntax errors [3, 18], additional
ways to reach clear and succinct messages are needed. Here, one
possibility is utilizing automated program repair methods for fixing
the students’ code [21, 29, 58, 78], which we discuss next.

2.2 Automated student program repair
Techniques from the field of automated program repair are also
useful in educational contexts. While some work focuses exclu-
sively on correcting syntactic or compilation mistakes in students’
programs [1, 7, 22, 24, 67], we focus our attention on those primar-
ily aiming at correcting semantic mistakes [21, 29, 70, 78, 82]. Our
work complements prior work in hint-generation for programming
that looks into providing the next step that a student could use to
proceed (see e.g. [49, 50, 60, 65]) by exploring the changes needed
to reach a final working solution. That is, we focus on producing a
useful correct solution from an incorrect one, where the correction
has a minimal amount of modifications to the original code. The con-
straint on the minimum number of changes has been emphasized
algorithmically in various ways.

While the existing approaches differ in multiple aspects in the
strategy used to solve the problem, all of them rely in one way or
another on the availability of candidate solutions. We argue that
educators are the most reliable source of corrections to students’
buggy solutions. However, we also acknowledge that due to time

and resource constraints, there is little possibility to primarily rely
on teachers for supporting students. One approach would be to ask
for a small number of annotations from the teachers and propa-
gate those to clusters of incorrect solutions [36, 40]. The idea of
clustering buggy code and propagating teachers’ annotations has
in general been popular for providing students with all forms of
feedback [11, 19, 26, 30, 37, 40, 53, 79]. In a program repair context,
teachers’ work can be further minimized if we rely solely on one
of the reference solutions [70].

Instead of depending exclusively on teachers’ annota-
tions, most automated repair systems also leverage cor-
rect solutions submitted by other students, and previous
data kept by educational systems.

Classically, program repair tools rely on rule-based systems used
for constructing working solutions from existing data. This ap-
proach consists broadly speaking of two main steps: (1) searching
for a small set of candidate correct solutions that match the buggy
program, and (2) modifying the buggy solution to arrive at a version
that matches the candidate code structure. While the algorithms
vary in how they implement each step, they all heavily emphasize
the constraint that the found repaired program (modified buggy
code) preserves as much as possible of its original syntax. To en-
force this constraint, generally, the algorithmic pipeline involves
the comparison of control flow graphs [21, 29, 78] to match each
buggy program with the selected set of correct candidates. For in-
stance, Clara [21], SarfGen [78], and Refactory [29] match each
buggy program with the selected correct candidates based on the
code’s control flow graph. While SarfGen uses a custom embedding
distance, Clara and Refactory use tree edit distance. In order to
reduce the number of comparisons to evaluate, some work pro-
poses reducing the search for candidates by clustering matching
correct solutions together, and only comparing the buggy program
against cluster centers [21]. This strategy augments the cluster
and feedback approach discussed in CER literature (c.f. [19, 40]),

497

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Charles Koutcheme, Sami Sarsa, Juho Leinonen, Lassi Haaranen, and Arto Hellas

without relying on teacher annotations. Instead of minimizing the
number of connections, other works find better utility in comparing
the buggy program against all available correct solutions and aug-
mented versions. For instance, Refactory [29] augments the original
set of correct programs to search for by refactoring programs into
multiple semantically similar versions.

While most of these traditional methods rely mainly on using
rule-based systems to construct working solutions from existing
data, there is a transition towards the adoption of machine learning
approaches. In that area, previous work has employed available
data with sequence-to-sequence machine learning models for re-
pairing programs. For instance, Pu et al. [61] trained a Recurrent
Neural Network -based sequence to sequence model on students’
correct solutions. The authors use their model with an enumerative
repair strategy to repair buggy programs. In the last years, work
has also started to leverage large pre-trained language models. For
instance, Zhang et al. [82] introduced MMAPR, an automated re-
pair technique for introductory Python programming assignments.
Their approach uses correct solutions, test cases, and assignment
descriptions to prompt OpenAI Codex. They evaluate their method
on 286 Python programs produced by novices and show that their
approach can repair up to 96.5% of the programs, with a smaller se-
quence edit distance compared to Refactory [29]. Similarly, Phung
et al. [58] developed PyFiXV which is powered by Codex to auto-
matically repair student programs.

Across time, automated repair techniques consistently reported
their quantitative performance results in terms of the number of
programs that could be effectively repaired [61] (i.e., the percent-
age of fixes found) as well as the average or median time to find a
fix [21, 78]. Still, in the educational context, beyond the ability of a
technique to find a repair, there remains the question and the need
to ensure that the found fixes remain understandable for the student
who wrote the code. This aspect is necessary to compare how well
different techniques compare. For instance, one could consider the
reference solution as always being a valid fix to a buggy program,
but not always an understandable fix due to e.g. using a different
approach [54]. Although the constraint on “understandable by stu-
dent” has often been explicitly enforced in the algorithmic part by
minimizing a notion of distance (classically, tree edit distance), it
has not always been thoroughly examined in the evaluation of the
techniques. When this necessary aspect has been reported, using
a measure of distance to the original buggy program, classically,
the sequence edit distance [29, 82] has been used. While there has
been much work in developing automated repair techniques and
adapting distances for that purpose, we found no empirical evidence
for which distance measure should be adapted for evaluating and
comparing these techniques in terms of the quality of the found
repairs.

3 METHOD
In this section, we review ourmethodological procedure.We start by
describing the source of our data and our annotation process. Then,
we describe the experiments conducted and present the distance
measures evaluated to answer our two research questions. Our

annotated dataset and the code for conducting the experiments are
publicly available on GitHub1.

3.1 Data and annotation
For our experiments, we annotated a subset of a publicly avail-
able dataset comprising students’ solutions to programming as-
signments. We refer to this dataset as “The Dublin data” since
it contains data collected at Dublin City University. The original
dataset released by Azcona et al. [4] contains more than half a
million programming submissions (591,707) by 666 students from
five Python programming courses over three academic years. The
assignments vary in difficulty levels ranging from basic printing to
more complex sorting algorithms. We note that the released dataset
contained neither original assignment descriptions nor the original
test cases. In this work, we use the version processed by Cleuziou
et al. [11], who enriched the dataset semi-automatically by creating
test cases for 42,487 programs.

Dataset preprocessing. We selected a subset of the assignments
to annotate from this base dataset. We were interested in exercises
where students had to write a single function taking one or multiple
arguments as input and returning a single output. We selected
assignments with an average level of complexity (i.e. involving
looping or recursion and one or multiple conditional statements,
excluding sorting algorithms). In total, we annotated submissions
for 10 distinct assignments. Due to missing problem descriptions,
we inferred the objectives of the problems based on the function
name and a manual analysis of the correct and buggy submissions.

Annotation strategy. To avoid annotating similar solutions mul-
tiple times, we normalized variable names and grouped programs
based on an exact matching in their Abstract Syntax Tree (AST)
structure. For each group, we selected the solution with the most
common original string representation as a representative, and we
annotated this representative.

We adopted the following strategy for annotation. In order to
keep consistency within assignments, each expert was assigned
one or multiple exercises to annotate. For their exercises, each ex-
pert was tasked to write the repair to the buggy solution that passes
the unit tests while requiring minimal amounts of changes. In other
words, our goal was to keep as much of the student strategy as
possible. We noticed early in the annotation process that we could
not annotate many of these solutions with a repair. We highlight
the following primary type of issues. In multiple cases, the assign-
ments were in too early a stage such that completion of the buggy
code would not be apparent. We marked these particular buggy
programs as “partial” [63]. We also noticed that some students
clearly misunderstood the scope of the assignment, either because
the function definition was wrong or because the student evidently
tried to solve another problem. Lastly, in some situations, we could
not annotate a solution because the student’s strategy was either
incomprehensible or unnecessarily – or even extremely – complex.
In these cases, instructors would generally recommend rewriting
the program solution from scratch. We marked these particular
cases and omitted them in our subsequent experiments. To ensure

1https://github.com/KoutchemeCharles/edmpr

498

https://github.com/KoutchemeCharles/edmpr

Evaluating Distance Measures for Program Repair ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

that our repairs were correct, we re-executed each expert solu-
tion against the example unit tests for the particular program and
re-repaired the ones that failed any of the unit tests.

We then tentatively matched the educators’ annotations to all
other programs having the same structure. We report the results of
our experiments on the final annotated dataset.

3.2 Evaluating distance measures
Before presenting the comparison of the different measures, we
formulate the problem we are trying to solve and present the ex-
periments conducted.

3.2.1 Problem definition. Given an incorrect solution to a program-
ming assignment, we want to find a working solution which best
captures the student’s intention from a pool of candidate solutions
(e.g. one candidate per automated repairing technique). Since in
practice such ideal repair is unknown, we select the candidate repair
which has the minimum distance to the buggy program (according
to a given distance measure). We seek to understand which distance
measure works best for this task, given that we have access to one
ideal repair. Thus, we want to choose the distance measure that,
among a large pool of candidate solutions to select from, ranks
one of the most suitable repairs for the buggy program (here, our
experts’ annotation) as having the smallest distance to the original
buggy code among the candidates. This observation hints to us
that we can consider the evaluation of distance measures as an
information retrieval problem. We pick up on the hint and compare
different distance metrics using the following experiments. Figure
2 illustrates our approach.

3.2.2 Experiment 1. We compare different distance metrics using
the following strategy: for each buggy solution for each assignment
in our dataset, we create a pool of potential repair candidates using
automatic repair tools, and we include our expert annotation in
that pool. Following previous work [23], we include all correct pro-
grams submitted by all students for a particular assignment across
all academic years into the pool. We highlight that this pool might
include the buggy solution’s author’s own written working solu-
tion to the exercise (which may or may not be similar to the buggy
solution). Then, using the selected distance metric, we compute
the distance between the buggy solution and each candidate repair
before ranking each candidate solution from worst to best accord-
ing to how small the distance value is. Finally, we use the position
of the expert annotation in the ranking as an error measure, the
Ranking Error (RE). For example, the expert solution being ranked
first/having the smallest distance has an RE of 0. To account for the
different number of candidate repairs per assignment, we normalize
the error by the total number of candidates. We refer to this per-
formance measure as the Normalized Ranking Error (NRE) for the
single buggy solution. Finally, we report the Average Normalized
Ranking Error (ANRE) for each assignment.

3.2.3 Experiment 2. To validate our results in a more complex
setting, we examine how each distance measure ranks an expert
annotation against a single other high-quality candidate repair
found by a state-of-the-art automated repair technique.

We use the state-of-the-art semantic Automated Repair Tool
(ART) Refactory to find a candidate repair for each incorrect so-
lution in our annotated dataset. To obtain a high-quality repair,
we run the ART giving it access to the same pool of candidate
repairs as used in the first experiment (without the expert solu-
tion). Using this pool of correct programs, Refactory generates a
bigger suite of semantically equivalent code by refactoring all these
available working solutions to a problem. Then, given an incorrect
program, Refactory analyzes its control flow structure to find a
closely matching working program to compare for isolating the
buggy components of the buggy solution. As such, the candidate
repair generated by Refactory should be better or at least as appro-
priate as the best candidates in the original pool (which, once again,
might contain the student’s own correction to the problem).

We repeat the previous experiment using the candidate repair
found for each buggy solution. The main difference with the first
experiment is that we compare the expert annotation/repair against
the single candidate obtained using Refactory. Therefore, the rank-
ing error for each buggy program becomes a binary classification
error. We report the total classification error – the number of times
the ART candidate repair was favored over the expert annotation –
for all metrics.

3.2.4 Edit distances. To answer our first research question, for
each experiment, we use string edit distance [63], sequence edit
distance [82], and tree edit distance [29] between the buggy code
and the candidate repairs. In particular, for the sequence edit dis-
tance (and the tree edit distance respectively), we use the Python
tokenizer to split code into tokens (respectively, the Python built-in
parser to transform code into its AST). We compute each distance
measure using the python_edit_dist package from Paaßen et al. [55].

3.2.5 Normalized edit distances. Previous work has also looked
at normalizing edit distances [21, 29] for evaluation. Clara [21]
introduces the Relative Patch Size (RPS) for evaluating the perfor-
mance of program repair techniques. The RPS is simply the tree
edit distance (𝑇𝐸𝐷) between the buggy program Abstract Syntax
Tree (𝐴𝑆𝑇𝑏) and the proposed corrected version (𝐴𝑆𝑇𝑐) divided by
the size of the buggy program AST:

𝑅𝑃𝑆 =
𝑇𝐸𝐷 (𝐴𝑆𝑇𝑏,𝐴𝑆𝑇𝑐)

𝑆𝑖𝑧𝑒 (𝐴𝑆𝑇𝑏)
where 𝑆𝑖𝑧𝑒 (𝐴𝑆𝑇) is the number of nodes in an abstract syntax
tree. One will notice, however, that for our ranking experiments,
dividing the distance between a proposed repair by the size of
the buggy program AST will not influence our rankings since the
normalization factor is constant across compared fixes. In other
words, using the RPS or TED will yield the same results. Instead
of relying on relative patch sizes, we propose to compare the edit
distances against their bounded normalized versions. If 𝐷𝐼𝑆𝑇 (𝑏, 𝑐)
is the value of an edit distance between buggy code 𝑏 and the
repair 𝑐 , we can find the bounded normalized version of that dis-
tance by dividing the distance value by the maximum size of the
two inputs. 𝐷𝐼𝑆𝑇_𝑁𝑂𝑅𝑀 = 𝐷𝐼𝑆𝑇 (𝑏, 𝑐)/𝑚𝑎𝑥 (𝑠𝑖𝑧𝑒 (𝑏), 𝑠𝑖𝑧𝑒 (𝑐)). For
example, we can obtain the normalized version of the tree edit
distance using:

𝑇𝐸𝐷_𝑁𝑂𝑅𝑀 =
𝑇𝐸𝐷 (𝐴𝑆𝑇𝑏,𝐴𝑆𝑇𝑐)

𝑚𝑎𝑥 (𝑆𝑖𝑧𝑒 (𝐴𝑆𝑇𝑏), 𝑆𝑖𝑧𝑒 (𝐴𝑆𝑇𝑐))

499

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Charles Koutcheme, Sami Sarsa, Juho Leinonen, Lassi Haaranen, and Arto Hellas

Educator

Ranking (worst to best)

Pool of candidate repairs (with ground truth)

Expert solution

ranking error

Our evaluation strategy

(1/4)
4th 3rd 2nd 1st

Automated
Repair
tool(s)

Buggy
solution

Distance measure

Figure 2: Illustrating our approach for evaluating distance measures. We want to quantify how good a distance measure is at
finding suitable repairs. For that, we add to a large pool of potential fixes to a student’s buggy solution our expert annotation
on the best solution to the buggy code. We then rank all candidates from worst to best according to that given distance measure,
and we use the relative position of the expert’s solution as an error measure. In this example, the relative error is 0.25 (expert
ranked at 2nd position out of 4 candidates).

For completeness, we also include the normalized version of the
string and sequence edit distances (where we divide the edit dis-
tance by the maximum between the length of the string, and respec-
tively the number of tokens). Although normalized edit distances
have been used in hint generation systems [63], they have not been
evaluated in program repair.

3.2.6 Natural Language Processing measures. To answer our sec-
ond research question, we also include different variations of the
two most popular performance measures used in natural language
processing (NLP). We use the original BLEU [57] metric, it’s adapted
version for code [62], and two measures from the ROUGE [45] fam-
ily. For brevity, we refer the reader to the original papers to obtain
the description of the equations for computing each measure. Here,
we give intuition behind the measures.

The BLEU (Bilingual Evaluation Understanding) score was orig-
inally introduced for evaluation in machine translation tasks (i.e.
translating text from a source language to a target language). Intu-
itively, BLEU measures the proportion of words (and/or n-grams)
in the machine generated translation (i.e., the candidate) that ap-
pear in the human translation (i.e., the reference). It is a precision-
oriented metric. We include the more recent CodeBLEU scoring
metric, which extends the original BLEU score by encapsulating
code syntax similarity via abstract syntax trees (AST) and code
semantics matching via data flow analysis. We use the classical
implementation of BLEU as presented in the Natural Language
ToolKit (NLTK) package [8] and an open reimplementation of the
CodeBLEU metric [46].

ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
scores are a family of metrics whichwere originally designed in NLP
for summarization tasks. Intuitively, the ROUGE score measures
the proportion of the original text (i.e., the reference) found in the
machine-generated text (i.e., the candidate). We use the classical
ROUGE-1 metric and the ROUGE-LCS metric for our experiments.
The ROUGE-LCS metric is a variation which relies on the longest

common subsequence between the sentences in the source and the
target texts. We used the Google implementations [20].

There are two important aspects to take into account regarding
these NLP measures. First, these evaluation scores are not distances.
Fortunately, their values are bounded between 0 and 1. Thus, for
our experiments, we transform these scores into a distance measure
by simply computing 1 − 𝑆 (𝑏, 𝑐), where S is the scoring metric (e.g.
BLEU), 𝑏 is the buggy code and 𝑐 is a candidate repair. Second, the
order of the operand does matter (𝑆 (𝑏, 𝑐) ≠ 𝑆 (𝑐, 𝑏)). For consistency,
we arbitrarily choose to always consider the buggy program𝑏 as the
reference “sentence” and the proposed correction as the “candidate”.
Since all NLP scoring measures are based on n-grams or words, we
once again use the Python tokenizer to split a code into tokens to
represent “words” in the “sentence”.

4 RESULTS
In this section, we first describe our annotated dataset. Then, we
outline the outcomes of our two experiments. In addition to the
numerical results, we visualize the distributions of the distance
measures.

4.1 Dataset statistics
For the 10 selected assignments, the original dataset before remov-
ing duplicates and annotation contained 6670 submissions, 3719
of which were correct, and 2951 which did not pass all the tests.
After filtering, normalization, annotation of the buggy solutions,
and backpropagation of the annotations, we obtain a dataset com-
posed of 1854 buggy programs and their instructor corrections2.
Table 1 shows the statistics of this dataset. Some assignments are
functionally equivalent but require different implementation styles.
For instance, we annotated two versions (swapping, iteratively) of
an exercise where students had to reverse the elements in an array.

2The results presented in the article include also data from assignments that were only
partially annotated, i.e. the experts did not annotate every buggy program for every
assignment.

500

Evaluating Distance Measures for Program Repair ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

Table 1: Dataset statistics. Legend: #CC: number of submitted correct solutions, #BC: number of submitted buggy solutions,
#AN: number of annotated buggy solutions, #lines: average number of lines in an annotated buggy solution, #STU: number of
students who submitted the annotated buggy solutions.

description #CC #BC #AN #lines #STU

count_letters Return the number of letters in a string. 458 116 116 5.77 36
index_iter Return the position of the letter in str, -1 if it is not there. 197 491 21 8.90 5
maximum Return the maximum element in a non-empty list of numbers. 425 64 64 7.29 37
minimum Return the minimum element in a non-empty list of numbers. 445 236 94 6.32 38

reverse_by_swap Reverse a list of elements by swapping them. 176 571 269 11.20 90
reverse_iter Reverse a list of elements iteratively. 50 75 44 6.44 14
search_iter Return whether a letter is part of a string iteratively. 443 401 372 5.35 54

search_recur Return whether a letter is part of a string recursively. 242 308 260 6.37 29
sumup Return the sum of all integers up to n (the input). 266 103 102 4.51 47

swap_keys_values Swap the keys and values of a dictionary. 542 280 162 5.32 51

total/average 3244 2649 1854 12.19 305

4.2 Evaluating distance measures
Abbreviations. We will use the following abbreviations through-

out this section to discuss and show our results: (N)STR: (nor-
malized) string edit distance, (N)SEQ: (normalized) sequence edit
distance, (N)TED: (normalized) tree edit distance, ROUGE(LCS):
ROUGE (Longest Common Subsequence) based distance.

4.2.1 Experiment 1. Table 2 shows the average normalized ranking
error (ANRE) for each distance measure (lower is better) for each
assignment. We normalized the individual ranking errors by #CC +
1, where #CC is the number of correct submitted solutions for each
assignment – shown in Table 1 (#CC).

From the edit distances, we observe that the tree edit distance
has consistently higher errors than all other metrics. The sequence
and the string edit distances perform very similarly; the best metric
varies from assignment to assignment. Looking at the normalized
version of the edit distances, we can make the same observations
as their non-normalized versions. When comparing both families,
we observe that normalization does not bring significant benefits
in retrieving the expert annotation, and can even be detrimental.
Among the Natural Language Processing (NLP) based distance
measures, we notice that except for the “sumup” assignment, the
ROUGE-based distancemeasures (ROUGE and ROUGELCS) are con-
sistently better at ranking solutions than the BLEU-based distances.
Within the BLEU family, CodeBLEU performs worse than BLEU.
Within the ROUGE family, both metrics perform equally well. Be-
tween edit and NLP-based distances, the reader can notice that the
BLEU-based distance measures do not provide major improvements
compared to the string and sequence edit distances (only BLEU
achieves slightly higher results), but the ROUGE-based measures
perform consistently better than all others across all assignments.

4.2.2 Experiment 2. Let us examine how different distance mea-
sures compare our educators’ annotations against the repairs found
by an automated repair tool (Refactory). As a reminder, we can con-
sider this experiment as determining whether the distance measure
correctly “classified” the expert annotation as being better than the
candidate repair. For this reason, we show the total classification
error across all buggy solutions that Refactory managed to repair,

for each assignment for which there is at least one repair. Table 3
shows our results.

In these results, the tree edit distance this time shows better
results in total than the other edit distance measures. However,
we notice that this result fluctuates heavily between assignments.
Once more, the normalized versions of the edit distances do not
provide meaningful performance improvements. Regarding the
NLP metrics, we notice an inverse trend within the BLEU family:
the BLEU distance measure this time achieves overall comparable
results to the edit distances, while the CodeBLEU distance measure
performs significantly better. On the other hand, the ROUGE score-
based distance measures have the lowest total classification errors
and remain once again the most consistent across assignments.

We acknowledge the inherent bias in this experiment towards
the Automated Repair Tool. Indeed, we gave the tool access to
solutions, which, in a real-life scenario, it would not have access
to. Moreover, we computed the classification errors only for the
buggy programs the tool effectively managed to repair, omitting
the proportion of codes it failed to repair. However, the goal of this
experiment is not to reflect on the tool’s performance in correcting
the program. Instead, our goal is to measure the ability of distance
metrics to distinguish our expert annotation among very high-
quality repairs. As such, we aimed at evaluating the metrics in a
worst-case scenario.

4.2.3 Distances. Figure 3 contrasts the distribution of the distance
between the buggy code and the expert candidate repair against
the distribution of the distances between the buggy solution and
the Refactory candidate repairs for the best distance measure of
each family accross our two experiments (sequence edit distance,
normalized string edit distance, and NLP based distance). From the
histograms, we see candidate solutions getting more zero or near
zero distances than expert solutions for the SEQ and ROUGELCS
metrics. On the other hand, the overall picture, emphasised by
the kernel density estimate (KDE), shows the expected scenario
where expert repairs receive lower distance scores and candidate
repairs receive larger distance scores. We note that looking at the
histograms does not easily emphasize the instances where there is

501

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Charles Koutcheme, Sami Sarsa, Juho Leinonen, Lassi Haaranen, and Arto Hellas

Table 2: Average Normalized Ranking Error (the lower is better) per assignment for each distance measure when searching for
the expert’s annotation. We highlight in bold the best average result for each family.

TED SEQ STR NTED NSEQ NSTR BLEU CodeBLEU ROUGE ROUGELCS

count_letters 0.301 0.076 0.041 0.367 0.095 0.048 0.018 0.049 0.010 0.010
index_iter 0.520 0.000 0.000 0.440 0.000 0.000 0.000 0.000 0.000 0.000
maximum 0.076 0.009 0.018 0.110 0.012 0.021 0.020 0.034 0.011 0.011
minimum 0.114 0.005 0.006 0.250 0.008 0.013 0.012 0.027 0.007 0.007

reverse_by_swap 0.151 0.007 0.007 0.339 0.006 0.006 0.010 0.003 0.005 0.005
reverse_iter 0.139 0.001 0.003 0.220 0.001 0.003 0.000 0.013 0.000 0.000
search_iter 0.021 0.007 0.006 0.040 0.007 0.006 0.005 0.005 0.002 0.002

search_recur 0.131 0.047 0.053 0.146 0.031 0.042 0.030 0.017 0.020 0.020
sumup 0.004 0.002 0.007 0.004 0.000 0.000 0.000 0.000 0.000 0.000

swap_keys_values 0.206 0.022 0.039 0.318 0.013 0.018 0.015 0.020 0.021 0.017

mean 0.166 0.018 0.018 0.223 0.017 0.016 0.011 0.017 0.008 0.007

Table 3: Classification error. Number of times that each distance metric ranked the Refactory candidate repair as being closer
to the buggy student solution than our expert annotations across (#prog) the total number of programs that the tool managed
to repair.

#prog TED SEQ STR NTED NSEQ NSTR BLEU CodeBLEU ROUGE ROUGELCS

count_letters 12 2 0 0 2 0 0 0 0 0 0
maximum 93 2 20 18 2 18 12 12 16 12 12
minimum 131 32 22 18 31 22 18 22 22 16 16

reverse_by_swap 148 10 8 10 10 10 10 8 2 2 2
reverse_iter 38 0 1 1 0 1 1 0 0 0 0
search_iter 141 6 17 15 11 17 15 17 10 13 13

search_recur 62 31 35 37 31 35 36 36 33 33 33
sumup 36 0 2 2 0 0 0 2 0 0 0

swap_keys_values 94 11 14 18 15 14 16 14 10 15 14

total 755 94 119 119 102 117 108 111 93 91 90

a quality difference between the automated repair tool corrections
and experts’ annotations, although the KDE hints that ROUGELCS
is somewhat better at distinguishing differences at lower interme-
diate distances than the other two metrics.

The Empirical Cumulative Distribution Functions (ECDFs) for
our selected distance measures give a more clear picture of the dif-
ferences between the metrics and their portrayal of the relationship
between the expert and candidate repairs. An ECDF plot tells us
the proportion of the observations (i.e., repairs) 𝑦 having a value
(i.e., distance) lower than 𝑥 . In our context, the ECDF tells us the
proportion𝑦 of candidate repairs which retain at least (100− (𝑥 ∗10))
percent of the elements of the original buggy solutions. For instance,
the ROUGELCS ECDF plot tells us that around 82% (respectively
86 %) of the repairs found by the Refactory tool (respectively our
educators) have on average 80% of the words/token in the original
students’ buggy programs. In particular, looking at the ECDFs of
the distance measures, we can quite clearly see how the ROUGE-
based measure can separate expert and candidate repair distances
from buggy solutions across most values while the edit distance
measures do not show much difference for the lower scores (which
are the most common ones as portrayed in the histograms). In the

discussion, we further discuss the usefulness of the ECDF plots for
comparing repairing techniques.

5 DISCUSSION
In this section, we review the answers to our research questions,
discuss the impact of the results on computing education research,
and highlight the limitations of our work.

5.1 Answering research questions
5.1.1 RQ1. Our results highlight that the sequence and the string
edit distances perform equivalently well for selecting a candidate
repair. On the other hand, the poor consistency of the results of
the tree edit distance across assignments suggests that it might
not be the most adequate for selecting similar solutions, as already
suggested in hint generation problems [63].

5.1.2 RQ2. Our results also show that among Natural Language
Processing based distance measures, the ROUGE measure performs
consistently better than edit distances for retrieving expert candi-
date repairs.

502

Evaluating Distance Measures for Program Repair ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

0 20 40 60
value

0

50

100

150

200

Co
un

t
distance_metric = SEQ

expert candidate

0.0 0.2 0.4 0.6 0.8
value

0

25

50

75

100

125

150

175

Co
un

t

distance_metric = STR_NORM

expert candidate

0.0 0.2 0.4 0.6
value

0

25

50

75

100

125

150

175

200

Co
un

t

distance_metric = ROUGELCS

expert candidate

0 20 40 60
value

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

distance_metric = SEQ

expert candidate

0.0 0.2 0.4 0.6 0.8
value

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
distance_metric = STR_NORM

expert candidate

0.0 0.2 0.4 0.6
value

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

distance_metric = ROUGELCS

expert candidate

Figure 3: Visualization of distance distributions. The top row shows histograms and the bottom row the empirical cumulative
distribution functions (ECDF) for the different measures. The measures are SEQ, STR_NORM, and ROUGELCS in the first,
second, and third column respectively. The distances are computed between all the buggy programs and the expert annotations
(in blue) and for candidate repairs (in orange) across all assignments.

5.1.3 Why ROUGE performs better. One might be intrigued by the
results for RQ2. Even though the ROUGE-based measure and the
sequence edit distance share many similarities (especially since
they both use the token representation of code), ROUGE performed
consistently better. The key underlying reason is that edit distances
measure the number of operations needed to transform the buggy
program into the candidate repair, while the ROUGE-based mea-
sure, as defined in our experiments, measures the proportion of
the words/elements in the buggy program that can be found in
the candidate (independently of whether the position of these ele-
ments has changed). As such, this hints to us that (1), the intrinsic
aspect of distance captured in edit distances may be less useful
in comparing repairs to students’ programs as prior researchers
using the metrics may have assumed, and (2) that what matters
the most is that the measure captures the extent to which a cor-
rect solution retains elements from the original program. This later
observation was confirmed by additional ablation experiments3,
where we observed that the BLEU-based scores achieve comparable
results to the ROUGE score when considering the buggy program as
the candidate “sentence” and the candidate repair as the reference
“sentence”.
3The results of all ablation experiments are available as part of the released code.

Still, we see that edit distance-based measures can be useful for
small-scale errors such as fixing an extra semicolon immediately
after an if statement – “if (condition); { ... }” [3] – although
their performance in such cases would be only on par with the
ROUGE-based measures. However, as novice programmers also
have issues in how they structure their code (e.g. the right elements
could be present but in the wrong order), they are bound to make
structural changes including reordering their code. Similarly, stu-
dents might decide, based on feedback, to refactor the code, e.g. by
nesting functionality or by introducing functions and moving parts
of the code into those functions (see e.g. [10, 72]). In such situations,
NLP measures, in particular, the ROUGE-based score as presented,
can be a better choice over the traditional edit distance metrics.

5.2 Methodological considerations
5.2.1 Our results are only valid for evaluation. Our results highlight
the better adequacy of the ROUGE NLP measures for evaluating
candidate repairs. These results might not hold for other aspects
of the feedback pipeline, including constructing repairs. We view
that there is a need for a multi-method approach for the process
of constructing a repair to a buggy code. For small issues such as
minor syntactic adjustments, edit distance metrics could still be a

503

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Charles Koutcheme, Sami Sarsa, Juho Leinonen, Lassi Haaranen, and Arto Hellas

viable option, while ROUGE-based measures could be meaningful if
the repair would require restructuring the code. This would require
additional research in determining an appropriate repair strategy.

In addition, although we observed that the tree edit distance
performs inconsistently for retrieving good candidate repairs, it
has often been used in the process of modifying a buggy program
to match an existing correct solution [29, 48]. When working with
a structured representation of the code (in most cases, the control
flow graph [21, 29, 78]), leveraging distance measures which work
on these same structured representations (i.e. tree edit distance) can
be intuitive. One additional argument in favour of edit distances
comes from their metric properties (i.e. edit/Levenshtein distances
are metric in the mathematical sense), which is more advantageous
for algorithms. Thus, the question of whether NLP measures can
help bootstrap (rule-based) automated repair techniques remains
open. Yet, we also suggest incorporating NLP measures into other
areas where source codes are compared for evaluation, including
plagiarism detection. Although, in the plagiarism detection case,
naturally occurring similar code [69] would need to be kept in mind,
as this might inflate similarity scores.

5.2.2 Choice of distance measure and ECDF. In addition to being
more adequate for comparing individual candidates and selecting
appropriate ones, NLP measures have other advantages as they
carry more meaningful interpretations. We identify a new utility
in looking at the distribution of the NLP-based distances using the
Empirical Cumulative Distribution Functions (ECDF) of the ROUGE-
based distance measure, shown in Figure 3, which highlights the
use of ECDFs with NLP measures for understanding the overall
distribution of the distances. The plots show distances for a given
repair technique (in our experiment: expert annotation or Refactory)
and the proportion of repairs from the technique which hold a given
proportion of the original buggy code. The plots provide evidence of
the number of expert annotations that retain a significantly larger
proportion of the students’ code compared to Refactory repairs. This
allows comparing repairing techniques under a new dimension: one
could interpret the ECDF plot as a success rate against a threshold,
where one could decide to keep only the repairs that retain at
least a given percentage of the original solution. This captures the
risk/trade-off between finding a repair, and whether this repair
is useful (quantity versus quality). In some aspects, this is similar
to how people use precision against recall plots for comparing
classifiers, for instance, for predicting various aspects of academic
performance [28].

5.2.3 Handling special cases, program repair, and hint generation.
During the annotation process, we observed solutions that were in
a stage where finding a repair was impossible or meaningless. The
two main reasons for this were (1) the solution was only partial
and in a too early stage to be annotated (the student strategy to
solve the problem was not clear yet), or (2) the student strategy
was too far off, or the student strategy was not understandable or
too complex. We see that future work should explore including a
classification step to program repair in CER, where the classification
step would decide whether a given program can meaningfully be
repaired or not. In the case of partial programs, a better approach
might be relying on a hint generation system [63] that would guide
the student towards a proper and meaningful solution. In the case

where a student’s strategy is too far off, the approach should also
be different, e.g. having an instructor intervention.

5.2.4 Multiple valid alternatives. We also observed that at times,
multiple annotations or corrections were possible, all being as valid
as the others. Annotators used their judgement to decide which
one to choose, and different annotators might have come up with
different solutions. In other words, although our expert annotations
provide one ideal repair, other alternatives might be equally valid
(and potentially closer to the buggy code). From the practical per-
spective, one possibility would be to provide different alternatives
to students and have them pick one out of them, which would also
provide code reading practice. Still, omitting the creation of multi-
ple expert annotations in the case of multiple possibilities does not
invalidate our existing results. We also note that such alternatives
were present only in relatively few cases.

We note that we also conducted the same two experiments using
students’ corrections as an “expert repair”. We did not show the
results in the present work for conciseness4. The results confirm
the relative performance of the distance measures, but absolute
errors were all higher (meaning that the expert annotations are
closer to the students’ buggy code than the students’ corrections).
This observation is partly expected, as students may begin work-
ing on different parts of the code than where the problem lies, or
completely change their approach to the task if they are not able to
make their original strategy work, whereas expert annotators delib-
erately attempted to transform the original approach to a working
solution while minimizing modifications.

5.2.5 An open annotated dataset of expert program repairs. In ad-
dition to our experiments showing the benefits of ROUGE NLP
for evaluating program repairs, we also release the code and the
annotated dataset on GitHub5. The data contains over one thousand
expert-annotated submissions, where experts have studied students’
buggy code and annotated it with the closest fix that addresses the
bugs. The data will serve the CER community, supporting future
program repair evaluations, and potentially also aid in other future
research streams.

5.3 Limitations
Our work is not free of limitations. First of all, we annotated a
selection of assignments all coming from one source. This means
that the students’ solutions in the data are in part driven by the tools
and the pedagogy of the context in which the data was collected
and that the generalizability of the results should be assessed with
further annotated datasets. Although the stability of the present
results over the assignments suggests that the results would hold
across datasets, as does our interpretation of the underlying causes
of the results, there may be tacit factors that could be revealed by
data from another context. Moreover, we did not cross-validate
the annotations between educators. In effect, individual educator’s
views on the “optimal” strategy for correcting the submission might
be biased.

4The results of all ablation experiments are available as part of the released code.
5https://github.com/KoutchemeCharles/edmpr

504

https://github.com/KoutchemeCharles/edmpr

Evaluating Distance Measures for Program Repair ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

Secondly, when contrasting the automated program repairs with
the expert annotated repairs (Fig. 3), we only conducted a surface-
level manual analysis of the automated repairs, providing us insight
beyond the results and the visualizations and leading us to concur
that the expert repairs were better. We acknowledge that we did not
conduct an in-depth qualitative analysis of the automated program
repairs, which could have highlighted specific cases where the
automated program repairs might have been better. Future research
can look into this using the data that we have released as a part of
this work.

Finally, we only used one automated repair tool (Refactory) in
the analysis for comparing candidate repairs. Although Refactory
is a state-of-the-art (rule-based) Automated Program Repair tool,
there are also non-rule-based techniques that are based for instance
on machine learning models [61] or Natural Language Processing
Techniques (in particular, Large Language Models) [82]. We note
that these models, in general, have not released the source code and
would have to be used over an API. This would require submitting
student programs to external parties, which is not always possible
due to privacy concerns.

6 CONCLUSION
In the present work, we explored distance metrics for evaluating
program repairs. As repairs, we used both expert annotated code
with close (and “ideal”) program repairs as well as repairs generated
using state-of-the-art rule-based program repair methods, which
both built on an existing open dataset of introductory program-
ming student code. We contrasted the commonly used edit distance
metrics with NLP scoring metrics, studying to what extent the
commonly used metrics apply in a context where the data comes
from students who are learning to program. As the commonly used
edit distance metrics, we evaluated string edit distance, sequence
edit distance, tree edit distance, and explored also their bounded
normalized versions. As the NLP scoring metrics, we explored the
BLEU, CodeBLEU, ROUGE, and ROUGE-LCS metrics.

Our results suggest that, especially in the context of introductory
programming where code can change drastically due to reordering
of plans or due to refactoring, the research community should
include the relative performance of proposed repair techniques by
relying (also) on Natural Language Processing scores such as the
ROUGE score. NLP metrics such as ROUGE provide insight into the
proportion of elements present in the repair which can be especially
useful if the repairs are more substantial when contrasted with the
classic metrics that rely on the number of operations needed for
transforming buggy programs to working programs. We further
highlight the utility of ECDF plots for assessing repairs as they
provide a quick visual of repair performance, and can potentially
be used for creating and visualizing a threshold for the amount of
code that should be retained from the original code after repairs.

In part based on the ECDF plots, we highlight the necessity to
consider that not all buggy programs should be repaired. We see
a need to include a new step in program repair methods, which
would include first judging whether a buggy program should be
repaired. Alternative options could be, for example, using a hint
generation system to help the student proceed, and creating teacher
interventions.

Although there is rapid development in automated repair tech-
niques for education, we have unfortunately observed that the
results of proposed repair techniques are often reported without
releasing the dataset (or the code). Although the collection and
storing of student submission data (and more fine-grained data) has
become more common over time [32], privacy concerns have often
limited the possibility of sharing such data with the public. This
makes the comparison, adoption, and importantly deployment of
these automated tools in real-life scenarios more challenging. As an
additional contribution, we release our annotated dataset as a part
of this work, in the hope that the dataset can be used to compare
novel program repair techniques applied in computing education
research.

Future work. As a part of our future work, we are working on an-
notating another dataset comprising students’ buggy solutions [29],
which will provide further evidence of the generalizability of our
results. We are also working on feedback mechanisms based on
program repairs, which in our present work focuses on identifying
the key causes for the failure of the programs. We note that our
released dataset already contains comments on these reasons (i.e.
why the annotated code fails the given tests), and we are currently
working on synthesizing them for the purposes of creating a bug
classification notebook. We note that given that we possess some
notion of ground truth correction to a buggy program, we can inves-
tigate bug localization techniques. While repairs to programs entail
both locating and fixing the problem(s), bug localization techniques
(which are only concerned with location) are also useful forms of
feedback [23].

ACKNOWLEDGMENTS
We are grateful for the grant from the Ulla Tuominen Foundation
to the third author.

REFERENCES
[1] Umair Z Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit

Gulwani. 2018. Compilation error repair: for the student programs, from the
student programs. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering Education and Training. 78–87.

[2] Kirsti M Ala-Mutka. 2005. A survey of automated assessment approaches for
programming assignments. Computer science education 15, 2 (2005), 83–102.

[3] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating
novice programming mistakes in large-scale student data. In Proceedings of the
46th ACM technical symposium on computer science education. 522–527.

[4] David Azcona, Piyush Arora, I-Han Hsiao, and Alan Smeaton. 2019.
user2code2vec: Embeddings for Profiling Students Based on Distributional Rep-
resentations of Source Code. In Proceedings of the 9th International Learning
Analytics & Knowledge Conference (LAK’19). ACM.

[5] Brett A Becker. 2016. A new metric to quantify repeated compiler errors for
novice programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education. 296–301.

[6] Brett A Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, et al. 2019. Compiler error messages considered unhelpful: The landscape
of text-based programming error message research. Proceedings of the working
group reports on innovation and technology in computer science education (2019),
177–210.

[7] Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Errors
in Programming Assignments using Recurrent Neural Networks. ArXiv (2016).

[8] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing
with Python: analyzing text with the natural language toolkit. " O’Reilly Media,
Inc.".

[9] Neil CC Brown and Amjad Altadmri. 2017. Novice Java programming mistakes:
Large-scale data vs. educator beliefs. ACM Transactions on Computing Education
(TOCE) 17, 2 (2017), 1–21.

505

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Charles Koutcheme, Sami Sarsa, Juho Leinonen, Lassi Haaranen, and Arto Hellas

[10] Charis Charitsis, Chris Piech, and John C Mitchell. 2023. Detecting the Reasons
for Program Decomposition in CS1 and Evaluating Their Impact. In Proceedings
of the 54th ACM Technical Symposium on Computer Science Education V. 1. 1014–
1020.

[11] Guillaume Cleuziou and Frédéric Flouvat. 2021. Learning student program
embeddings using abstract execution traces. In Proceedings of the 14th Educational
Data Mining conference. https://educationaldatamining.org/EDM2021/virtual/
poster_paper70.html

[12] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All syntax errors
are not equal. In Proceedings of the 17th ACM annual conference on Innovation
and technology in computer science education. 75–80.

[13] Paul Denny, James Prather, Brett A Becker, Catherine Mooney, John Homer,
Zachary C Albrecht, and Garrett B Powell. 2021. On Designing Programming Er-
ror Messages for Novices: Readability and Its Constituent Factors. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. 1–15.

[14] Paul Denny, Jacqueline Whalley, and Juho Leinonen. 2021. Promoting early en-
gagement with programming assignments using scheduled automated feedback.
In Proceedings of the 23rd Australasian Computing Education Conference. 88–95.

[15] Christopher Douce, David Livingstone, and James Orwell. 2005. Automatic test-
based assessment of programming: A review. Journal on Educational Resources in
Computing (JERIC) 5, 3 (2005), 4–es.

[16] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[17] Thomas Dy andMaMercedes Rodrigo. 2010. A detector for non-literal Java errors.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research. 118–122.

[18] Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. 2018. Common logic
errors made by novice programmers. In Proceedings of the 20th Australasian
Computing Education Conference. 83–89.

[19] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller.
2015. OverCode: Visualizing variation in student solutions to programming
problems at scale. ACM Transactions on Computer-Human Interaction (TOCHI)
22, 2 (2015), 1–35.

[20] Google-Research. [n. d.]. Google-Research/Rouge at master · google-
research/google-research. https://github.com/google-research/google-research/
tree/master/rouge

[21] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. 2018. Automated Clustering
and Program Repair for Introductory Programming Assignments. http://arxiv.
org/abs/1603.03165 arXiv:1603.03165 [cs].

[22] Rahul Gupta, Aditya Kanade, and Shirish Shevade. 2019. Deep Reinforcement
Learning for Syntactic Error Repair in Student Programs. Proceedings of the
AAAI Conference on Artificial Intelligence 33, 01 (July 2019), 930–937. https:
//doi.org/10.1609/aaai.v33i01.3301930 Number: 01.

[23] Rahul Gupta, Aditya Kanade, and Shirish Shevade. 2019. Neural Attribution for
Semantic Bug-Localization in Student Programs. Curran Associates Inc., Red Hook,
NY, USA.

[24] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. Proceedings of the AAAI
Conference on Artificial Intelligence 31, 1 (Feb. 2017). https://ojs.aaai.org/index.
php/AAAI/article/view/10742 Number: 1.

[25] John Hattie and Helen Timperley. 2007. The power of feedback. Review of
educational research 77, 1 (2007), 81–112.

[26] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Björn Hartmann. 2017. Writing reusable code feedback at
scale with mixed-initiative program synthesis. In Proceedings of the Fourth (2017)
ACM Conference on Learning@ Scale. 89–98.

[27] Kenny Heinonen, Kasper Hirvikoski, Matti Luukkainen, and Arto Vihavainen.
2014. Using codebrowser to seek differences between novice programmers. In
Proceedings of the 45th ACM technical symposium on Computer science education.
229–234.

[28] Arto Hellas, Petri Ihantola, Andrew Petersen, Vangel V. Ajanovski, Mirela Gutica,
Timo Hynninen, Antti Knutas, Juho Leinonen, Chris Messom, and Soohyun Nam
Liao. 2018. Predicting Academic Performance: A Systematic Literature Review.
In Proceedings Companion of the 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education (Larnaca, Cyprus) (ITiCSE 2018
Companion). Association for ComputingMachinery, New York, NY, USA, 175–199.
https://doi.org/10.1145/3293881.3295783

[29] Yang Hu, Umair Z. Ahmed, Sergey Mechtaev, Ben Leong, and Abhik Roychoud-
hury. 2019. Re-factoring based Program Repair applied to Programming Assign-
ments. In 2019 34th IEEE/ACM Int. Conf. on Automated Software Engineering (ASE).
IEEE/ACM, 388–398.

[30] JonathanHuang, Chris Piech, AndyNguyen, and Leonidas Guibas. 2013. Syntactic
and functional variability of a million code submissions in a machine learning
MOOC. AIED 2013 Workshops Proceedings Volume 1009 (Jan. 2013), 25.

[31] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of recent systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli calling international conference on computing education
research. 86–93.

[32] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
et al. 2015. Educational data mining and learning analytics in programming:
Literature review and case studies. Proceedings of the 2015 ITiCSE on Working
Group Reports (2015), 41–63.

[33] Matthew C Jadud. 2005. A first look at novice compilation behaviour using BlueJ.
Computer Science Education 15, 1 (2005), 25–40.

[34] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the second international workshop on Computing
education research. 73–84.

[35] W. Lewis Johnson, Elliot Soloway, Benjamin Cutler, and Steven Draper. 1983. Bug
Catalogue: I. Technical Report. Yale University, YaleU/CSD/RR #286.

[36] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gulwani. 2016.
Semi-Supervised Verified Feedback Generation. arXiv:1603.04584 [cs.SE]

[37] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2014. Strategy-based feed-
back in a programming tutor. In Proceedings of the computer science education
research conference. 43–54.

[38] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature
review of automated feedback generation for programming exercises. ACM
Transactions on Computing Education (TOCE) 19, 1 (2018), 1–43.

[39] Tobias Kohn. 2019. The error behind the message: Finding the cause of error
messages in python. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 524–530.

[40] Teemu Koivisto and Arto Hellas. 2022. Evaluating CodeClusters for Effectively
Providing Feedback on Code Submissions. In 2022 IEEE Frontiers in Education
Conference (FIE). IEEE, 1–9.

[41] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg. 2003. The
BlueJ system and its pedagogy. Computer Science Education 13, 4 (2003), 249–268.

[42] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A study of the
difficulties of novice programmers. Acm sigcse bulletin 37, 3 (2005), 14–18.

[43] Juho Leinonen, Paul Denny, and Jacqueline Whalley. 2022. A comparison of
immediate and scheduled feedback in introductory programming projects. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
V. 1. 885–891.

[44] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using large language models to enhance programming
error messages. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 563–569.

[45] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74–81. https://aclanthology.org/W04-1013

[46] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
AMachine Learning Benchmark Dataset for Code Understanding and Generation.
arXiv:2102.04664 [cs.SE]

[47] Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos, Am-
ruth N Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard, and
Claudia Szabo. 2018. Introductory programming: a systematic literature review.
In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. 55–106.

[48] Yana Malysheva and Caitlin Kelleher. 2022. An Algorithm for Generating Ex-
plainable Corrections to Student Code. In Proceedings of the 22nd Koli Calling
International Conference on Computing Education Research (Koli, Finland) (Koli
Calling ’22). Association for Computing Machinery, New York, NY, USA, Article
13, 11 pages. https://doi.org/10.1145/3564721.3564731

[49] Samiha Marwan, Nicholas Lytle, Joseph Jay Williams, and Thomas Price. 2019.
The impact of adding textual explanations to next-step hints in a novice pro-
gramming environment. In Proceedings of the 2019 ACM conference on innovation
and technology in computer science education. 520–526.

[50] Jessica McBroom, Irena Koprinska, and Kalina Yacef. 2021. A survey of automated
programming hint generation: The hints framework. ACM Computing Surveys
(CSUR) 54, 8 (2021), 1–27.

[51] DavinMcCall andMichael Kölling. 2014. Meaningful categorisation of novice pro-
grammer errors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings.
IEEE, 1–8.

[52] Davin McCall and Michael Kölling. 2019. A new look at novice programmer
errors. ACM Transactions on Computing Education (TOCE) 19, 4 (2019), 1–30.

[53] Andy Nguyen, Christopher Piech, Jonathan Huang, and Leonidas Guibas. 2014.
Codewebs: scalable homework search for massive open online programming
courses. In Proceedings of the 23rd international conference on World wide web.
491–502.

[54] Henrik Nygren, Juho Leinonen, and Arto Hellas. 2019. Non-restricted Access to
Model Solutions: A Good Idea?. In Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education. 44–50.

[55] Benjamin Paaßen, Bassam Mokbel, and Barbara Hammer. 2015. A Toolbox
for Adaptive Sequence Dissimilarity Measures for Intelligent Tutoring Systems.

506

https://educationaldatamining.org/EDM2021/virtual/poster_paper70.html
https://educationaldatamining.org/EDM2021/virtual/poster_paper70.html
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
http://arxiv.org/abs/1603.03165
http://arxiv.org/abs/1603.03165
https://doi.org/10.1609/aaai.v33i01.3301930
https://doi.org/10.1609/aaai.v33i01.3301930
https://ojs.aaai.org/index.php/AAAI/article/view/10742
https://ojs.aaai.org/index.php/AAAI/article/view/10742
https://doi.org/10.1145/3293881.3295783
https://arxiv.org/abs/1603.04584
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2102.04664
https://doi.org/10.1145/3564721.3564731

Evaluating Distance Measures for Program Repair ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

In Proceedings of the 8th International Conference on Educational Data Mining
(EDM 2015) (2015-06), Olga Christina Santos, Jesus Gonzalez Boticario, Cristo-
bal Romero, Mykola Pechenizkiy, Agathe Merceron, Piotr Mitros, Jose Maria
Luna, Christian Mihaescu, Pablo Moreno, Arnon Hershkovitz, Sebastian Ven-
tura, and Michel Desmarais (Eds.). International Educational Datamining Society,
632–632. http://www.educationaldatamining.org/EDM2015/uploads/papers/
paper_257.pdf

[56] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated As-
sessment in Computer Science Education: A State-of-the-Art Review. ACM
Transactions on Computing Education (TOCE) (2022).

[57] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, Philadelphia, Pennsylvania, USA, 311–318. https:
//doi.org/10.3115/1073083.1073135

[58] Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar,
Adish Singla, and Gustavo Soares. 2023. Generating High-Precision Feedback
for Programming Syntax Errors using Large Language Models. arXiv preprint
arXiv:2302.04662 (2023).

[59] Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas Guibas. 2015. Au-
tonomously generating hints by inferring problem solving policies. In Proceedings
of the second (2015) acm conference on learning@ scale. 195–204.

[60] Thomas W Price, Yihuan Dong, Rui Zhi, Benjamin Paaßen, Nicholas Lytle, Veron-
ica Cateté, and Tiffany Barnes. 2019. A comparison of the quality of data-driven
programming hint generation algorithms. International Journal of Artificial
Intelligence in Education 29 (2019), 368–395.

[61] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay.
2016. sk_p: a neural program corrector for MOOCs. arXiv:1607.02902 [cs] (July
2016). http://arxiv.org/abs/1607.02902 arXiv: 1607.02902.

[62] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundare-
san, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. CodeBLEU: a Method
for Automatic Evaluation of Code Synthesis. arXiv:2009.10297 [cs.SE]

[63] Kelly Rivers and Kenneth R Koedinger. 2013. Automatic generation of program-
ming feedback: A data-driven approach. In The First Workshop on AI-supported
Education for Computer Science (AIEDCS 2013), Vol. 50. 50–59.

[64] Kelly Rivers and Kenneth R Koedinger. 2014. Automating hint generation with
solution space path construction. In Intelligent Tutoring Systems: 12th International
Conference, ITS 2014, Honolulu, HI, USA, June 5-9, 2014. Proceedings 12. Springer,
329–339.

[65] Kelly Rivers and Kenneth R Koedinger. 2017. Data-driven hint generation in
vast solution spaces: a self-improving python programming tutor. International
Journal of Artificial Intelligence in Education 27 (2017), 37–64.

[66] Anthony Robins, Patricia Haden, and Sandy Garner. 2006. Problem distributions
in a CS1 course. In Proceedings of the 8th Australasian Conference on Computing
Education-Volume 52. 165–173.

[67] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle,
and José Nelson Amaral. 2018. Syntax and sensibility: Using language models to
detect and correct syntax errors. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 311–322.

[68] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do we know how difficult the rainfall problem is?. In Proceedings of the
15th Koli Calling Conference on Computing Education Research. 87–96.

[69] Simon, Oscar Karnalim, Judy Sheard, Ilir Dema, Amey Karkare, Juho Leinonen,
Michael Liut, and Renée McCauley. 2020. Choosing code segments to exclude
from code similarity detection. In Proceedings of the Working Group Reports on
Innovation and Technology in Computer Science Education. 1–19.

[70] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’13). Association for Computing Machinery, New York, NY,
USA, 15–26. https://doi.org/10.1145/2491956.2462195

[71] Rebecca Smith and Scott Rixner. 2019. The error landscape: Characterizing
the mistakes of novice programmers. In Proceedings of the 50th ACM technical
symposium on computer science education. 538–544.

[72] Elliot Soloway. 1986. Learning to program= learning to construct mechanisms
and explanations. Commun. ACM 29, 9 (1986), 850–858.

[73] Elliot Soloway, Jeffrey G. Bonar, and Kate Ehrlich. 1983. Cognitive strategies and
looping constructs: An empirical study. Commun. ACM 26, 11 (1983), 853–860.
https://doi.org/10.1145/182.358436

[74] Elliot Soloway, Kate Ehrlich, Jeffrey G. Bonar, and Judith Greenspan. 1982. What
do novices know about programming? In Directions in Human–Computer In-
teractions, Albert Badre and Ben Shneiderman (Eds.). Vol. 6. Ablex Publishing,
27–54.

[75] James C Spohrer and Elliot Soloway. 1986. Novice mistakes: Are the folk wisdoms
correct? Commun. ACM 29, 7 (1986), 624–632.

[76] Arto Vihavainen, Juha Helminen, and Petri Ihantola. 2014. How novices tackle
their first lines of code in an ide: Analysis of programming session traces. In
Proceedings of the 14th koli calling international conference on computing education
research. 109–116.

[77] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013.
Scaffolding students’ learning using test my code. In Proceedings of the 18th ACM
conference on Innovation and technology in computer science education. 117–122.

[78] Ke Wang, RIshabh Singh, and Zhendong Su. 2017. Data-Driven Feedback Gener-
ation for Introductory Programming Exercises. arXiv:1711.07148 [cs] (Nov. 2017).
http://arxiv.org/abs/1711.07148 arXiv: 1711.07148.

[79] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Dynamic Neural Program
Embedding for Program Repair. https://doi.org/10.48550/arXiv.1711.07163
arXiv:1711.07163 [cs].

[80] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2013. Predicting
performance in an introductory programming course by logging and analyzing
student programming behavior. In 2013 IEEE 13th international conference on
advanced learning technologies. IEEE, 319–323.

[81] Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. 2021. Novice
reflections on debugging. In Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education. 73–79.

[82] Jialu Zhang, José Cambronero, Sumit Gulwani, Vu Le, Ruzica Piskac, Gustavo
Soares, and Gust Verbruggen. 2022. Repairing Bugs in Python Assignments Using
Large Language Models. https://doi.org/10.48550/ARXIV.2209.14876

507

http://www.educationaldatamining.org/EDM2015/uploads/papers/paper_257.pdf
http://www.educationaldatamining.org/EDM2015/uploads/papers/paper_257.pdf
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1607.02902
https://arxiv.org/abs/2009.10297
https://doi.org/10.1145/2491956.2462195
https://doi.org/10.1145/182.358436
http://arxiv.org/abs/1711.07148
https://doi.org/10.48550/arXiv.1711.07163
https://doi.org/10.48550/ARXIV.2209.14876

	Abstract
	1 introduction
	2 Background
	2.1 Studying novice programmer mistakes
	2.2 Automated student program repair

	3 Method
	3.1 Data and annotation
	3.2 Evaluating distance measures

	4 Results
	4.1 Dataset statistics
	4.2 Evaluating distance measures

	5 Discussion
	5.1 Answering research questions
	5.2 Methodological considerations
	5.3 Limitations

	6 Conclusion
	Acknowledgments
	References

