2407.04873v1 [cs.Al]l 5Jdul 2024

arxXiv

Evaluating Language Models for Generating and Judging
Programming Feedback

Charles Koutcheme
charles.koutcheme@aalto.fi
Aalto University
Espoo, Finland

Sami Sarsa
sami.j.sarsa@jyu.fi
University of Jyvaskyld
Jyvaskyla, Finland

Nicola Dainese
nicola.dainese@aalto.fi
Aalto University
Espoo, Finland

Juho Leinonen
juho.2leinonen@aalto.fi
Aalto University
Espoo, Finland

Arto Hellas
arto.hellas@aalto.fi
Aalto University
Espoo, Finland

Syed Ashraf
syed.ashraf@aalto.fi
Aalto University
Espoo, Finland

Paul Denny
paul@cs.auckland.ac.nz
The University of Auckland
Auckland, New Zealand

ABSTRACT

The emergence of large language models (LLMs) has transformed
research and practice in a wide range of domains. Within the com-
puting education research (CER) domain, LLMs have received plenty
of attention especially in the context of learning programming.
Much of the work on LLMs in CER has however focused on ap-
plying and evaluating proprietary models. In this article, we evalu-
ate the efficiency of open-source LLMs in generating high-quality
feedback for programming assignments, and in judging the qual-
ity of the programming feedback, contrasting the results against
proprietary models. Our evaluations on a dataset of students’ sub-
missions to Python introductory programming exercises suggest
that the state-of-the-art open-source LLMs (Meta’s Llama3) are al-
most on-par with proprietary models (GPT-40) in both the genera-
tion and assessment of programming feedback. We further demon-
strate the efficiency of smaller LLMs in the tasks, and highlight
that there are a wide range of LLMs that are accessible even for
free for educators and practitioners.

CCS CONCEPTS

« Social and professional topics — Computing education.

KEYWORDS

open source, large language models, generative Al, automatic feed-
back, automatic evaluation, programming feedback, LLM-as-a-judge

1 INTRODUCTION

High-quality and timely feedback is essential for students in pro-
gramming courses. Some types of feedback, such as whether or not
a program runs or passes a provided test suite, are readily avail-
able via simple automated means [14, 30]. However, feedback on
the causes of subtle programming errors and suggestions for re-
solving them can be difficult to produce [15]. Especially in large
classes, providing accurate and personalised explanations of bugs

as feedback to students is a manual and time consuming task for ed-
ucators, and yet essential for reducing frustration and aiding learn-
ing.

The automated generation of human-like feedback has recently
been made possible thanks to the accessibilty of state-of-the-art
generative Al tools, such as ChatGPT. In particular, API access to
powerful large language models (LLMs) has sparked the develop-
ment of many programming feedback tools that are now being de-
ployed in classrooms. These include tools to generate improved er-
ror messages [25], aid with real-time debugging [13], and to help
explain code [24, 26] and tailor next-step hints [37]. Such systems
have shown success not only in generating feedback, but also in
assessing feedback quality, offering the potential for generating
high-quality feedback through iterative improvement.

Despite the promise of LLM-based feedback generation and eval-
uation approaches, the vast majority of research and usage in com-
puting education contexts has relied on proprietary models such
as GPT-4. This reliance on closed-source LLMs is concerning for
several reasons. It requires sending potentially sensitive data to a
third-party with no guarantees on how the data will be used, a
lack of insight into the way models are trained and what delib-
erate or inadvertant biases they may contain, and unpredictable
licensing expenses [23]. Open source LLMs, on the other hand, are
freely accessible and open for modification and distribution, and
have started to become viable alternatives. Despite this, very few
studies have explored their capabilities for providing or assessing
programming feedback.

In this work, our goal is to investigate the potential for open-
source models to produce high-quality feedback, and to assess the
quality of feedback generated by other LLMs. We focus on feed-
back consisting of explanations of bugs or issues in student-written
programs and the steps to address these issues. While prior work
suggests that open-source language models offer competitive alter-
natives to proprietary models for the generation of feedback, the
extent to which they can be used as judges (validators) of such
feedback remains unknown. Using a publicly available benchmark

http://arxiv.org/abs/2407.04873v1
https://orcid.org/0000-0002-2272-2763
https://orcid.org/0000-0001-9806-419X
https://orcid.org/0000-0001-6502-209X
https://orcid.org/0000-0002-7277-9282
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0002-5150-9806

dataset of student-written programs, we address the following two
research questions:

RQ1 How do open- and closed-source models compare with
respect to the quality of their generated bug explanations
and suggested fixes?

RQ2 To what extent can open- and closed-source models as-
sess the quality of programming feedback generated by
other models relative to expert human judgment?

To answer our first research question, we generate explanations
of bugs and their corresponding fixes using five state-of-the-art
open-source and two popular proprietary language models. We
manually evaluate this feedback using a custom rubric that includes
the completeness and comprehensibility of the explanations and
the accuracy of the suggested fixes. To answer our second research
question, we use these expert human-generated ground truth la-
bels to evaluate the performance of the models on the task of judg-
ing the programming feedback.

Our findings suggest that open-source language models are com-
petitive to proprietary models both for the generation and assess-
ment of programming feedback. Given the potential benefits that
open-source models offer around transparency, trust and cost, we
argue that they should be increasingly used in computing educa-
tion contexts.

2 RELATED WORK
2.1 Using Language Models For Feedback

Automating assessment of programming exercises and providing
feedback on the exercises have been studied for decades within
the computing education research domain [15, 29, 30]. Classically,
much of the existing work on automating feedback has focused on
informing students about mistakes in their code, while providing
formative feedback has been less common [15]. Providing sugges-
tions on the location of the issue or hints on how to fix the issue
can improve students’ performance over just pointing out that a
test failed [7], but manually creating quality feedback can be very
time-consuming. For example, the authors of [42] describe creating
over 4000 hand-written “scaffolding” messages for a programming
course.

The recent emergence of powerful language models has led to
researchers exploring their capabilities for programming feedback [3,
9,16, 25, 26,31-33, 35] and, in general, the observations on the qual-
ity or utility of feedback has evolved with the introduction of better
language models [9]. As an example, GPT-3 had high variability in
the quality of feedback, at times generating incorrect and inconsis-
tent feedback [3], while GPT-3.5 would often provide meaningful
feedback and find issues in code, but also often hallucinate issues
that were not present in the code [9]. Language models are also
better at detecting some types of errors than others [9, 16], be-
ing useful especially for providing feedback on syntax or compi-
lation errors [16, 25, 32]. Despite the advances, even the state-of-
the-art models like GPT-4 are still not on par with humans when
generating feedback for programming exercises [33]. At the same
time, there are increasing amounts of evidence from the use of lan-
guage model -powered feedback systems and chatbots in program-
ming [8, 11, 26, 43], which can further aid students, at least when

Charles Koutcheme et al.

the technologies of the courses are such that they have had suf-
ficient exposure prior to the knowledge cutoff point of the used
language models [8].

The majority of existing work on language models for program-
ming feedback in the computing education research context has fo-
cused on utilizing proprietary models (mainly from OpenAl), while
the use of open-source models has received only little attention.
Calls for increasing use of open-source models have been voiced [45],
already due to potential privacy issues related to sharing student
data with language model providers. Work on utilizing open-source
models for the task is also starting to emerge, where one of the
research aspects has been contrasting the performance of open-
source models to the proprietary ones; researchers have already
observed that open-source models are on par with models such as
GPT-3.5-Turbo for programming feedback [21].

In our work, our first research question re-investigates how var-
ious language models, including open-source ones, perform in ex-
plaining issues in student programs and providing fixes, comple-
menting prior studies.

2.2 Using Language Models as Judges

The idea of using an LLM to judge the output of other LLMs —
LLMs-as-judges — was first studied in the work of Zheng et al. [46],
showing good promise, but also limitations, e.g., in grading math
and reasoning tasks. Since then, GPT-4 has been used in multiple
studies as a judge of the quality of other LLMs’ generations [5, 28],
also in educational contexts [20, 21, 38]. Moreover, the reliance
on GPT-4, a proprietary model, has sparked interest in leveraging
other open-source language models to act as judges [17, 44, 47].
Yet, recent work [41] has highlighted the limitations of relying on
a single language model for evaluating the quality of other lan-
guage models’ output, and suggested to employ a diverse ensemble
of smaller models from different LLM families as a jury for cheaper
and less biased evaluations. When answering our second research
question, we test this hypothesis by comparing the usage of sin-
gle judges (both open-source and proprietary) and that of a jury of
smaller open-source language models.

3 METHODOLOGY

In this section, we describe our methodology for answering our
two research questions. We first introduce the dataset used in our
evaluations, then our methods used for answering RQ1 and RQ2.

3.1 Dataset

We use data from the Socratic guidance benchmark [2], which con-
sists of 57 introductory-level programming assignments requiring
students to write functions. Each of the assignments is accompa-
nied by the associated test cases, a unique incorrect student so-
lution, the ground truth descriptions of the bugs in the program,
the required bug fixes, and several conversation threads between
a fake student and a teaching assistant. The ultimate goal for the
benchmark is evaluating LLMs’ ability to help students using the
socratic method, i.e., guiding students in finding a solution on their
own, by asking a series of relevant questions that help their rea-
soning. However, for this study, we focus solely on identifying the
issues in the code and any required fixes, as it is a fundamental step

Evaluating Language Models for Generating and Judging Programming Feedback

for effective use of LLMs for socratic guidance — models incapable
of identifying issues in students’ programs would be likely to pro-
vide them erroneous guidance. We leave the problem of evaluating
LLMs for socratic guidance for future work.

3.2 Generating High-Quality Feedback

Given a student’s incorrect program, our goal regarding RQ1 is to
evaluate LLMs ability to provide two particular types of feedback:
explanations of the bugs in the program and suggested fixes
for the found bugs.

Feedback generation. We prompt the models to provide feedback
according to following example:

©@u are a CS professor teaching introductory programming using Python.

Below are a problem description, test cases, and an incorrect program written
by a student (i.e., it does not pass all test cases).

<problem description>, <test cases>, <student code>

First, list all the bugs in the program that prevent it from passing all unit tests,
then list a series of fixes to address these bugs.

List of bugs and fixes @

To elaborate, we provide a language model: (0) a system prompt
and (1) a description of the task (with all the necessary contextual
information), which results in output (2).

@)

Feedback Language Models. We consider the following open-source
models: Gemma-2B [6], Phi-3-mini [1] (3.8B parameters), Mistral-
7B [12], Llama3-8B [40], Llama3-70B [40]. We choose these models
because of their extensive documentation, community adoption,
strong performance on code and language reasoning benchmarks
(e.g., HumanEval [4] and MMLU [10]), for their parameter count,
and their ability to follow instructions. This selection covers the
recent state-of-the-art models from various companies across the
most used model-sizes for LLMs. Furthermore, we also evaluate
two of OpenAT’s proprietary flagship models, GPT-3.5-turbo and
GPT-40, well representative of the current industry standards.

We query proprietary models using the OpenAlI Python library,
and open-source ones with the EasyLLM [39] Python library to
simplify querying them through the HuggingFace Inference APIL
All models are evaluated using greedy decoding. Next, we explain
the annotation process before detailing the grading rubric.

Annotation. We use the seven models presented above, and the
57 programs of the benchmark, which results in 7 x 57 = 399 model
outputs. To answer our first research question, two annotators (two
authors of the paper) annotated all 399 model outputs as follows.
First, we selected 11 problems out of the 56 available problems us-
ing the manual annotation subset presented in [2]. Then, the two
annotators independently annotated 79 model outputs on an initial
description of each grading criterion on this subset. We then com-
puted an inter-annotator agreement score using Cohen’s Kappa
coefficient. The resulting annotation process yielded a moderate
inter-rater agreement of 0.49. Discrepancies were discussed and
resolved to align the annotators’ understanding. After comparing
annotations and discussing conflicts in understanding, the two au-
thors refined the grading rubric description (presented shortly).

The remaining feedback examples were split between the two an-
notators (169 and 151 feedback respectively). The final annotated
dataset formed the basis for evaluating the quality of the feedback
generated by the language models.

Grading Criteria. During the final annotation phase, each expert
used the following grading criteria for evaluating the quality of a
single generated bug explanation (E), and the quality of the gener-
ated fixes (F):

e EA - EXPLANATION ACCURATE: the explanation identifies
and mentions all ground truth bugs in the student pro-
gram.

e ES - EXPLANATION SELECTIVE: the explanation does not
mention non-existent (or non-relevant) bugs or issues.

e EC - EXPLANATION CLEAR: the generated explanation is
easy to understand by a novice programmer, presented in
a readable format, and does not contain redundant or too
little information (i.e., it is not vague about the cause of
the issue). Note: this criterion is independent of the cor-
rectness of the explanations.

e FA - FixeEs ACCURATE: all required bug fixes are explained.

o FS-FIXES SELECTIVE: no unnecessary changes are outlined;

o FC - Fixes CLEAR: fixes are succinct and mention the unique
changes to perform in the code.

These criteria extend prior work [9, 21, 34]. The first two crite-
ria represent the correctness of the explanations. The annotators
followed the following guidelines: for each ground truth bug (pro-
vided in the dataset), match the bug with the descriptions in the
model output. If some of the generated model descriptions did not
match, the criteria ES was set to false. Then, independently of the
correctness, we looked at whether or not a novice programmer
(unaware of the real issues) could understand the meaning of the
provided bug description. We follow the same strategy for the fixes.
Moreover, for the clarity criterion, we ensure that the fixes provide
clear descriptions of changes with snippets or at least highlight
changes in a repaired program (if present).

In addition, as during the experiments we observed that the gen-
erated feedback often included repaired programs, even though we
did not prompt the model for this, we report the correctness of
these program repair suggestions (RC - Repair Correct). We evalu-
ated the correctness of these repairs using the associated unit tests
from the original dataset. Although program repairs are not the
primary focus of this paper, they represent another valuable form
of feedback for students and can later be useful for hint generation.

3.3 Automatic Feedback Evaluation

In this subsection, we present the methods we used to automati-
cally evaluate the quality of LLM-generated feedback using other
language models (answering RQ2). We explored two approaches
(a single LLM as a judge, and an ensemble of LLMs as a jury) on
two scenarios, depending on whether a reference answer is avail-
able or not. We first describe how we generate the responses to the
grading criteria using a single LLM as a judge for the two scenar-
ios. We then outline our ensemble of LLMs and how we obtain the
jury annotations.

No Reference Answer Available. Given the feedback generated by
a language model, we prompt another language model (the judge)
to grade this feedback (according to the criteria outlined in Sec-
tion 3.2) using the prompting strategy shown and described below:

Below is a list of bugs and their fixes written by a teaching assistant.
<List of bugs and fixes>

Your tasks are as follows:

1. Compare the TA’s feedback (bug descriptions and fixes) against the provided
ground truth.

2. Evaluate the quality of the TA’s feedback based on the following grading
criteria:

<grading criteria>
Write your comparisons, then, for each grading criterion, provide your answer
on a separate line using the format "criteria_name: yes/no".

<FS - yes/no> @

Before asking the judge language model to grade the quality
of the feedback (3) (using the grading criteria list as part of the
prompt), we first ask the judge to generate its own descriptions
of the bugs and issues in the student program, as described in
Section 3.2 ((0X1)(2)). This strategy is a form of zero-shot-chain-
of-thought [18] Single Answer Grading (SAG) [46], i.e., the judge
uses its solution to the “problem” to grade the solution of another
language model. This first scenario without a reference answer is
applicable for educators and practitioners interested in evaluating
language models’ feedback abilities on their private datasets with-
out the need for ground truth annotations.

®

Reference Answer Available. Educators may also be interested in
evaluating their language models on existing benchmarks contain-
ing ground truth annotations of issues. Although such benchmarks
are not abundant [22], we expect more to come as educational Al
advances and becomes more widespread. In consideration of this
scenario, we experiment with providing the judge with the ground
truth descriptions of issues, instead of the more error-prone ap-
proach of generating them using the judge itself. The example be-
low illustrates our prompting strategy:

Q)u are a CS professor teaching introductory programming using Python. |

Below are a problem description, test cases, and an incorrect program written
by a student (i.e., it does not pass all test cases). You are also provided with the
ground truth description of the bugs in that program and the required fixes.

<description>, <test cases>, <code>, <bug description>, <bug fixes>

Below is a list of bugs and their fixes written by a teaching assistant.
<LLM feedback generation>

Your tasks are as follows:

This prompting strategy is a form of reference grading [46]. We
refer to this strategy as GAG (Ground truth Annotated Grading).
We note that for both strategies (SAG, GAG), we extract the re-
sponse to each grading criterion from the final judge model out-
put.

Ensemble of Judges. Prior work suggests that using a single LLM
as a judge has limitations. For example, GPT-4 favours outputs
from OpenAT’s GPT line of models [36]. As mentioned in Section
2.2, instead of using a single LLM, Verga et al. [41] showed that us-
ing multiple language models from different families can address

Charles Koutcheme et al.

many of these issues. We aim to test their hypothesis in our edu-
cational context. We prompt three popular SOTA open source lan-
guage models to provide their judgement, and then, we combine
the model decisions using majority voting separately for each cri-
terion. For example, given three LLMs outputting yes, yes, and no
respectively for a given criterion, the final ensemble result will be
yes. We consider this “jury” both when reference answers are avail-
able (GAG) and not available (SAG).

Judge and Jury Language Models. We evaluate both proprietary
and open-source models as judges. We use GPT-3.5-turbo and ex-
tend prior work [21] by also including GPT-40. We compare these
proprietary models against state-of-the-art open-source language
models Phi-3-mini, Llama3-8B, Mistral-7B, and Llama3-70B. For
the jury, we use the three language models: Llama3-8B, Mistral-
7B, and Phi-3-mini. We selected these three strong LLMs due to
them being at the top of the leaderboards for LLMs of their size,
and being from different families of models. As with the feedback
generation, we query these language models using the OpenAl and
EasyLLM Python libraries and obtain the outputs using greedy de-
coding.

Evaluation. To answer RQ2, we compare the evaluation of each
judge/jury model for the 399 generated feedback against the ground
truth annotations in our dataset, according to the grading criteria.
We then report the performance of each judge/jury across all of
their outputs and for our two scenarios. We report the weighted
average version of the f0.5 score [21] for each judge/jury as this
metric takes into account false positives and potential class imbal-
ances. We also report the kappa score to complement our observa-
tions.

4 RESULTS
4.1 Generating Feedback

Table 1 shows the performance of each language model on vari-
ous grading criteria, including both individual and grouped crite-
ria, based on human evaluations. We make the following observa-
tions.

Open-Source vs. Proprietary Models. The GPT-40 model shows
very strong performance across nearly all individual and grouped
criteria. Among the open-source models, there is significant vari-
ance in performance across different criteria. For instance, Llama-
3-70B performs on par with or better than GPT-3.5-turbo on the
EA, EC, and FA, FC, RC individual criteria. Llama-3-70B even re-
mains competitive with both GPT-3.5-turbo and GPT-4o0 for gener-
ating perfect explanations (EA, ES, EC), and perfect fixes (FA, FS,
FC, RC). In contrast, smaller models such as Gemma-2B perform
poorly across the board. However, size alone does not determine
performance, as some small open-source language models, like Phi-
3-mini, despite their smaller size, perform competitively on several
criteria, notably EA, FA, and RC.

Strengths and Weaknesses. Each model has its strengths and weak-
nesses. However, we notice that most models struggle with selec-
tivity (i.e., they identify irrelevant or redundant issues), while they
generally produce comprehensible outputs (i.e., well-formatted re-
sponses). When looking at the feedback generations, the stronger

Evaluating Language Models for Generating and Judging Programming Feedback

Table 1: Feedback results for various language models based on human evaluations. Bold: best results for each column.

feedback model individual grouped
EA ES EC FA FS FC RC | EAESEC FAFSFC FAFSFCRC ALL EAESFAFS
Gemma-2B 032 002 067 032 002 065 0.07 0.02 0.02 0.00 0.00 0.02
Phi-3-mini 086 0.11 079 081 0.09 081 0.67 0.09 0.07 0.07 0.05 0.05
Mistral-7B 0.68 025 091 063 025 086 040 0.23 0.19 0.11 0.09 0.21
Llama3-8B 0.79 0.16 074 077 018 0.75 0.37 0.12 0.14 0.07 0.05 0.16
Llama3-70B 089 028 093 086 033 0.89 0.68 0.26 0.26 0.23 0.19 0.23
GPT-3.5-turbo 0.89 039 091 082 037 0.89 058 0.35 0.26 0.18 0.18 0.32
GPT-40 096 032 088 086 035 088 0.82 0.26 0.32 0.30 0.23 0.30
Table 2: Judging results.
(a) Detailed £0.5 scores. We show the SAG score and in parenthesis the GAG score. Legend: (b) Kappa scores.

AVGO: (resp. AVGS) average f0.5 overall criteria when judging other models’ (resp. the judge’s own) feedback.

SAG (+- GAG diff)

judge | Ea ES EC | FA FS FC | avco AVGS judge kappa

Phi-3-mini 0.67 (+0.13) 0.11 (-0.04) 0.69 (+0.04) | 0.59 (+0.12) 0.14 (+0.19) 0.70 (+0.07) | 0.43 (+0.11) 0.40 (-0.01) Phi-3-mini 0.01 (+0.08)
Mistral-7B 0.63 (+0.15) 0.06 (+0.15) 0.72 (+0.01) | 0.57 (+0.18) 0.08 (+0.14) 0.71 (+0.06) | 0.40 (+0.14) 0.38 (+0.09) Mistral-7B 0.00 (+0.09)
Llama3-8B 0.64 (+0.11) 0.05 (+0.19) 0.72 (+0.00) | 0.58 (+0.08) 0.07 (+0.19) 0.71 (+0.03) | 0.41 (+0.10) 0.34 (+0.13) Llama3-8B 0.00 (+0.07)
Ensemble 0.63 (+0.17) 0.05 (+0.05) 0.72 (+0.00) | 0.55 (+0.17) 0.06 (+0.19) 0.71 (+0.06) | 0.39 (+0.13) / Ensemble 0.00 (+0.08)
Llama3-70B 0.76 (-0.01) 0.25 (+0.53) 0.72 (+0.00) | 0.72 (+0.06) 0.32 (+0.43) 0.77 (-0.05) | 0.54 (+0.18) 0.51 (+0.18) Llama3-70B 0.09 (+0.31)
GPT-3.5-turbo | 0.69 (-0.01) 0.16 (+0.05) 0.71 (+0.01) | 0.64(-0.01) 0.24 (+0.07) 0.72 (-0.01) | 0.46 (+0.00) 0.53 (+0.09) GPT-3.5-turbo 0.04 (+0.01)
GPT-40 0.71 (-0.01) 0.72 (+0.02) 0.77(+0.00) | 0.69 (+0.00) 0.74 (-0.01) 0.74 (+0.01) | 0.66 (+0.01) 0.61 (+0.05) GPT-40 0.30 (+0.03)

models (e.g. Llama-3-70B, and the GPTs) often added performance
suggestions (e.g. replace a for loop with a built-in function), while
the other models often added incorrect outputs. This indicates a
broader challenge in developing models that can effectively iden-
tify and focus on relevant issues without including redundant or ir-
relevant information. Improvements in this area could lead to sub-
stantial overall performance gains.

Program Repairs. The RC column in Table 1 shows the propor-
tion of generated correct repairs. The repair correctness (RC) scores
show considerable variation, with GPT-40 scoring the highest. In-
terestingly, the correctness of the repairs does not correlate indi-
vidually with either the quality of the explanations or with the ac-
curacy of the fixes. However, the models that are better at writing
both accurate and hallucination-free explanations and fixes (i.e.,
EA, ES, FA, FS) are also better at generating high-quality repairs,
aligning with previous observations [20]. Similarly as in [20], GPT-
3.5-turbo is the only model that disrupts this relationship.

4.2 Evaluating Feedback

Table 2 shows the results of the judgment task, detailing the £0.5
scores and kappa scores for each language model under the two
scenarios (SAG, and GAG). We can make several observations from
these results:

Open-Source vs. Proprietary Models. Among the open-source mod-
els, Llama3-70B stands out as a better judge than GPT-3.5-turbo
when considering the {0.5 scores, particularly in the Explanation
Accurate (EA), Explanation Selective (ES), Fixes Accurate (FA), and
Fixes Clear (FC) criteria. Notably, without ground truth bug list-
ings, GPT-4o is the only model performing consistently well among

the criteria, either as the best or near the best model. This is most
clear in the selectivity criteria (ES and FS) where GPT-40 has over
double the next-best 0.5 score. Providing the models with ground
truth descriptions of the bugs and issues in the programs signif-
icantly improves their results overall criteria (almost over 10%)
compared to relying on their own explanations of the issues. No-
tably, strong models like Llama3-70B and GPT variants did not ben-
efit as much in completeness (EA), suggesting they already handle
this criterion better. Interestingly, when given ground truth anno-
tations (GAG), Llama3-70B outperforms GPT-40 across almost all
criteria, showing the most significant improvement from these an-
notations. However, once again all models, except GPT-4o, struggle
the most with selectivity (ES), although ground truth annotations
significantly boost the score for all models (especially for Llama3-
70B). This indicates that the judges struggle to detect when the
feedback contains hallucinated or non-existent bugs. This could
be due to further hallucination issues and highlights an important
area of improvement.

Kappa Scores. The low kappa scores in the SAG setting indicate
that most model annotations could be due to “chance”. When inves-
tigating the reasons for the scores, we see that most models tend to
be overly positive, predicting “yes” for almost all criteria. This phe-
nomenon aligns with observations in [21], highlighting a tendency
of models to overestimate the quality of feedback. When provided
with ground truth annotations, the results improve to reach a mod-
erate level of agreement, in particular for the Llama models.

Self-Evaluation vs. Evaluation of Others. Models perform better
when evaluating other models’ outputs rather than their own. This

might be due to a bias toward positive evaluations, especially within
models of the same family, as noted in previous research [46].

Ensemble Performance. Combining multiple models into an en-
semble does not improve judgment quality; instead, it biases the
results. The ensemble approach, which averaged the models Phi-3-
mini, Mistral-7B, and Llama3-8B, did not yield better performance.
This contrasts with previous work by Verga et al. [41], possibly
due to the absence of few-shot examples and the overall lower per-
formance of the individual models used here. The previous study
involved models that were competitive with GPT-3.5-turbo, lead-
ing to better ensemble performance.

5 DISCUSSION

Teaching and Learning Implications. Our study aims to show that
a wide range of models are accessible to educators and practition-
ers, some competitive models even for free. Llama3-70B is shown
competitive against GPT-3.5 for feedback generation and GPT-40
for judging the quality of generated feedback. Educators might for
instance rely on GPT-3.5-turbo for generating feedback and Llama-
3-70B for validating [34] the quality of this feedback. Llama3-70B’s
ability to judge feedback could be useful for training more perfor-
mant smaller models, instead of relying on GPT-4 [38]. Notably,
the size of a language model no longer correlates directly with per-
formance. For example, the Phi-3-mini model is competitive with
the 7B Mistral and 8B Llama models, while being able to run on
consumer laptops and even phones. The model struggles with se-
lectivity, which reduces its performance. However, we believe that
fine-tuning techniques might make the results even stronger [19].

Importantly, these open-source models are also easy to access
thanks to libraries such as EasyLLM and APIs offered by compa-
nies such as HuggingFace. For instance, for conducting our exper-
iments, using the EasyLLM package, all models were freely acces-
sible, except for Llama-70B (which required paying 9 dollars for a
month of rate-limited access). We acknowledge that using an ex-
ternal API for querying open-source language models might beat
the purpose of data privacy. However, several institutions lever-
age ChatGPT APIs in one way or another [27], and HuggingFace
platforms, which are dedicated to open-source, offer the same data
privacy guarantees.

Limitations. Our work has limitations. Our prompts will affect
the results and more specific prompts (or different prompting strate-
gies) might influence model performance. Also, we only consid-
ered introductory programming assignments written in Python
and not other programming languages. Moreover, we only consid-
ered two types of feedback, but other types exist. Our selection of
language models, although considered the recent state-of-the-art,
does not exhaust all possible alternatives to popular models. Our
labelling process is also not perfect, as we only used two raters,
which resulted in a moderate inter-rater reliability (0.49), and our
grading criteria did not use actual students (the intended audience)
to rate the clarity of the outputs. Additionally, for judging feedback,
we could have used judge language models which are specifically
designed for evaluation, but we used generic language models in-
stead. Importantly, due to limitations of the EasyLLM library, the
Phi-3-mini results were aggregated on a subset of the feedback (370

Charles Koutcheme et al.

feedback instead of 399), which limits the interpretation of that spe-
cific model’s judging performance.

Future Work. Our overarching goal is to allow educators to keep
track of new language models available and how they could be
useful for their purposes. In the future, we will conduct a larger
scale evaluation of open-source language models’ ability to gen-
erate (and judge) other types of feedback and support. In particu-
lar, we are extending the Socratic benchmark to include next-step
hints [37], and are running evaluation of LLMs for being Socratic
guides. We will study how performance for different types of feed-
back relates to each other. We will also maintain an online leader-
board, similar to what is done for instance on the HuggingFace
leaderboard, and develop benchmarks. Beyond the tracking of the
model performance, we aim to improve the ability of small lan-
guage models (e.g. Phi-3-mini) to be teaching assistants by using
Reinforcement Learning techniques to tackle the selectivity prob-
lem and exploring other generation parameter techniques. The var-
ied strengths of different models suggest that a combined approach
(ensemble methods) might yield even better results for generation.
As our LLM jury results contrasted those by Verga et al. [41], we
also intend to conduct a large-scale study on how the variability,
individual performance, and the number of judges in the LLM jury
affect the performance of the LLM jury in our context.

6 CONCLUSIONS

In this paper, we evaluated (1) how language models perform for
providing explanations of issues in programs and generating bug
fixes, and (2) how well different large language models, including
open-source ones, perform in evaluating the quality of other LM-
generated feedback. Our paper highlights that top open-source lan-
guage models are valid competitors to proprietary language mod-
els both for generating and assessing the quality of programming
feedback. Open-source language models could have benefits to power
free tools, which is important for instance for less funded institu-
tions. As an additional contribution, we also release the code used
for conducting our experiments?!, as well as the model answers and
the annotator’s responses.

ACKNOWLEDGMENTS

This research was partially supported by the Research Council of
Finland (Academy Research Fellow grant number 356114).

REFERENCES

[1] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed
Awadallah, Hany Awadalla, et al. 2024. Phi-3 Technical Report: A Highly Capa-
ble Language Model Locally on Your Phone. arXiv:2404.14219

[2] Erfan Al-Hossami, Razvan Bunescu, Justin Smith, and Ryan Teehan. 2024. Can
Language Models Employ the Socratic Method? Experiments with Code Debug-
ging. In Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2024). Association for Computing Machinery, New York,
NY, USA, 53-59. https://doi.org/10.1145/3626252.3630799

[3] Rishabh Balse, Bharath Valaboju, Shreya Singhal, Jayakrishnan Madathil War-
riem, and Prajish Prasad. 2023. Investigating the Potential of GPT-3 in Providing
Feedback for Programming Assessments. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1. 292-298.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, et al. 2021. Evaluating language Models Trained on Code.
arXiv:2107.03374 [cs.LG]

Thttps://github.com/KoutchemeCharles/feed_genju

https://arxiv.org/abs/2404.14219
https://doi.org/10.1145/3626252.3630799
https://arxiv.org/abs/2107.03374
https://github.com/KoutchemeCharles/feed_genju

Evaluating Language Models for Generating and Judging Programming Feedback

=
X0,

[10]

(1]

[12

(13]

[14]

(15]

[16]

(17]

[18

[19]

[20

[21]

[22]

[23]

[24]

[25]

Cheng-Han Chiang and Hung yi Lee. 2023.
els Be an Alternative to Human Evaluations?
https://arxiv.org/abs/2305.01937

Google. 2024. Gemma: Our open-source models for machine learning fairness.
https://blog.google/technology/developers/gemma-open-models/

Qiang Hao, David H Smith IV, Lu Ding, Amy Ko, Camille Ottaway, Jack Wilson,
Kai H Arakawa, Alistair Turcan, Timothy Poehlman, and Tyler Greer. 2022. To-
wards understanding the effective design of automated formative feedback for
programming assignments. Computer Science Education 32, 1 (2022), 105-127.
Arto Hellas, Juho Leinonen, and Leo Leppénen. 2024. Experiences from Inte-
grating Large Language Model Chatbots into the Classroom. arXiv preprint
arXiv:2406.04817 (2024).

Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpaa, and
Juha Sorva. 2023. Exploring the Responses of Large Language Models to Begin-
ner Programmers’ Help Requests. In Proceedings of the 2023 ACM Conference on
International Computing Education Research - Volume 1. ACM, 93-105.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul
Arora, et al. 2021. Measuring Coding Challenge Competence With APPS.
arXiv:2105.09938 [cs.SE]

Yann Hicke, Anmol Agarwal, Qianou Ma, and Paul Denny. 2023. AI-TA: To-
wards an Intelligent Question-Answer Teaching Assistant using Open-Source
LLMs. arXiv:2311.02775 [cs.LG]

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Deven-
dra Singh Chaplot, et al. 2023. Mistral 7B. arXiv:2310.06825 [cs.CL]

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proc. of the
2023 CHI Conf. on Human Factors in Computing Systems. ACM, New York, NY,
USA, Article 455, 23 pages.

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a Systematic
Review of Automated Feedback Generation for Programming Exercises. In Pro-
ceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education. ACM, 41-46.

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A Systematic Liter-
ature Review of Automated Feedback Generation for Programming Exercises.
ACM Trans. Comput. Educ. 19, 1, Article 3 (2018), 43 pages.

Natalie Kiesler, Dominic Lohr, and Hieke Keuning. 2023. Exploring the Poten-
tial of Large Language Models to Generate Formative Programming Feedback.
arXiv preprint arXiv:2309.00029 (2023).

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, et al. 2023.
Prometheus: Inducing Fine-grained Evaluation Capability in Language Models.
arXiv:2310.08491 [cs.CL]

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and
Yusuke Iwasawa. 2023. Large Language Models are Zero-Shot Reasoners.
arXiv:2205.11916 [cs.CL]

Charles Koutcheme. 2023. Training Language Models for Programming Feed-
back Using Automated Repair Tools. In Artificial Intelligence in Education.
Springer Nature Switzerland, 830-835.

Charles Koutcheme, Nicola Dainese, and Arto Hellas. 2024. Using Program Re-
pair as a Proxy for Language Models’ Feedback Ability in Programming Educa-
tion. In Proceedings of the 19th Workshop on Innovative Use of NLP for Building Ed-
ucational Applications (BEA 2024), Ekaterina Kochmar, Marie Bexte, Jill Burstein,
Andrea Horbach, Ronja Laarmann-Quante, Anais Tack, Victoria Yaneva, and
Zheng Yuan (Eds.). Association for Computational Linguistics, Mexico City,
Mexico, 165-181.

Charles Koutcheme, Nicola Dainese, Sami Sarsa, Arto Hellas, Juho Leinonen,
and Paul Denny. 2024. Open Source Language Models Can Provide Feedback:
Evaluating LLMs’ Ability to Help Students Using GPT-4-As-A-Judge. In Proceed-
ings of the 2024 Innovation and Technology in Computer Science Education, Vol-
ume 1 (Milan, Italy) (ITICSE "24). https://doi.org/10.1145/3649217.3653612
Charles Koutcheme, Nicola Dainese, Sami Sarsa, Juho Leinonen, Arto Hel-
las, and Paul Denny. 2024. Benchmarking Educational Program Repair. In
NeurIPS’23 Workshop on Generative Al for Education (GAIED).

Sanjay Kukreja, Tarun Kumar, Amit Purohit, Abhijit Dasgupta, and De-
bashis Guha. 2024. A Literature Survey on Open Source Large Lan-
guage Models. In Proceedings of the 2024 7th International Conference on
Computers in Management and Business (Singapore, Singapore) (ICCMB
’24). Association for Computing Machinery, New York, NY, USA, 133-143.
https://doi.org/10.1145/3647782.3647803

Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein,
Joanne Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explana-
tions Created by Students and Large Language Models. In Proceedings of the
2023 Conference on Innovation and Technology in Computer Science Education V.
1 (Turku, Finland) (ITiCSE 2023). Association for Computing Machinery, New
York, NY, USA, 124-130. https://doi.org/10.1145/3587102.3588785

Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, et al. 2023.
Using Large Language Models to Enhance Programming Error Messages. In
Proc. of the 54th ACM Technical Symposium on Computer Science Education V.

Can Large Language Mod-
arXiv:2305.01937 [cs.CL]

[26]

(27]

[28]

(29]

[30]

[31]

[32

[33]

[34]

[35

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43

[44]

[45]

[46

1. ACM, New York, NY, USA, 563-569.

Mark Liffiton, Brad E Sheese, Jaromir Savelka, and Paul Denny. 2024. CodeHelp:
Using Large Language Models with Guardrails for Scalable Support in Program-
ming Classes. In Proc. of the 23rd Koli Calling Int. Conf. on Computing Education
Research. ACM, New York, NY, USA, Article 8, 11 pages.

Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton, and
David J. Malan. 2024. Teaching CS50 with Al: Leveraging Generative Artifi-
cial Intelligence in Computer Science Education. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 2 (Portland, OR, USA)
(SIGCSE 2024). Association for Computing Machinery, New York, NY, USA, 1927.
https://doi.org/10.1145/3626253.3635427

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chen-
guang Zhu. 2023. G-Eval: NLG Evaluation using Gpt-4 with Better Hu-
man Alignment. In Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, Houda Bouamor, Juan Pino, and Kalika
Bali (Eds.). Association for Computational Linguistics, Singapore, 2511-2522.
https://doi.org/10.18653/v1/2023.emnlp-main.153

Marcus Messer, Neil CC Brown, Michael Kélling, and Miaojing Shi. 2024. Au-
tomated grading and feedback tools for programming education: A systematic
review. ACM Transactions on Computing Education 24, 1 (2024), 1-43.

José Carlos Paiva, José Paulo Leal, and Alvaro Figueira. 2022. Automated Assess-
ment in Computer Science Education: A State-of-the-Art Review. ACM Trans.
Comput. Educ. 22, 3, Article 34 (2022), 40 pages.

Maciej Pankiewicz and Ryan S. Baker. 2023. Large Language Models (GPT) for
automating feedback on programming assignments. arXiv:2307.00150 [cs.HC]

Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar,
etal. 2023. Generating High-Precision Feedback for Programming Syntax Errors
using language Models. arXiv:2302.04662 [cs.PL]

Tung Phung, Victor-Alexandru Padurean, José Cambronero, Sumit Gulwani, To-
bias Kohn, et al. 2023. Generative Al for Programming Education: Benchmark-
ing ChatGPT, GPT-4, and Human Tutors. Int. J. of Management 21, 2 (2023),
100790.

Tung Phung, Victor-Alexandru Pidurean, Anjali Singh, Christopher Brooks,
José Cambronero, et al. 2023. Automating Human Tutor-Style Programming
Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Stu-
dent Model for Hint Validation. arXiv:2310.03780 [cs.Al]

James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
et al. 2023. The Robots are Here: Navigating the Generative Al Revolution in
Computing Education. In Proceedings of the 2023 Working Group Reports on
Innovation and Technology in Computer Science Education. 108—159.

Nazneen Rajani, Nathan Lambert, Sheon Han, Jean Wang, Osvald Nit-
ski, et al. 2023. Can foundation models label data like humans?
https://huggingface.co/blog/llm-v-human-data.

Lianne Roest, Hieke Keuning, and Johan Jeuring. 2024. Next-Step Hint Gen-
eration for Introductory Programming Using Large Language Models. In Pro-
ceedings of the 26th Australasian Computing Education Conference (Sydney, NSW,
Australia) (ACE °24). Association for Computing Machinery, New York, NY, USA,
144-153. https://doi.org/10.1145/3636243.3636259

Alexander Scarlatos, Digory Smith, Simon Woodhead, and Andrew Lan. 2024.
Improving the Validity of Automatically Generated Feedback via Reinforce-
ment Learning. In Artificial Intelligence in Education, Andrew M. Olney, Irene-
Angelica Chounta, Zitao Liu, Olga C. Santos, and Ig Ibert Bittencourt (Eds.).
Springer Nature Switzerland, Cham, 280-294.

Philipp Schmid. 2023. EasyLLM: Streamlined Tools for
https://github.com/philschmid/easyllm

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, et al. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL]

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Pik-
tus, Arkady Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. 2024.
Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Di-
verse Models. arXiv:2404.18796 [cs.CL] https://arxiv.org/abs/2404.18796

Arto Vihavainen, Matti Luukkainen, and Jaakko Kurhila. 2012. Multi-faceted
support for MOOC in programming. In Proceedings of the 13th annual conference
on Information technology education. 171-176.

Sierra Wang, John Mitchell, and Chris Piech. 2024. A large scale RCT on effective
error messages in CS1. In Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1. 1395-1401.

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, et al.
2023. PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tun-
ing Optimization. arXiv:2306.05087 [cs.CL]

Lixiang Yan, Lele Sha, Linxuan Zhao, Yuheng Li, Roberto Martinez-Maldonado,
et al. 2023. Practical and Ethical Challenges of Large Language Models in Edu-
cation: A Systematic Scoping Review. British Journal of Educational Technology
(2023).

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
et al. 2023. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena.
arXiv:2306.05685 [cs.CL]

LLMs.

https://arxiv.org/abs/2305.01937
https://arxiv.org/abs/2305.01937
https://blog.google/technology/developers/gemma-open-models/
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2311.02775
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.08491
https://arxiv.org/abs/2205.11916
https://doi.org/10.1145/3649217.3653612
https://doi.org/10.1145/3647782.3647803
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3626253.3635427
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://arxiv.org/abs/2307.00150
https://arxiv.org/abs/2302.04662
https://arxiv.org/abs/2310.03780
https://doi.org/10.1145/3636243.3636259
https://github.com/philschmid/easyllm
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2306.05087
https://arxiv.org/abs/2306.05685

Charles Koutcheme et al.

[47] Lianghui Zhu, Xinggang Wang, and Xinlong Wang. 2023. JudgeLM: Fine-tuned
Large Language Models are Scalable Judges. arXiv:2310.17631 [cs.CL]

https://arxiv.org/abs/2310.17631

	Abstract
	1 Introduction
	2 Related work
	2.1 Using Language Models For Feedback
	2.2 Using Language Models as Judges

	3 Methodology
	3.1 Dataset
	3.2 Generating High-Quality Feedback
	3.3 Automatic Feedback Evaluation

	4 Results
	4.1 Generating Feedback
	4.2 Evaluating Feedback

	5 Discussion
	6 Conclusions
	Acknowledgments
	References

