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ABSTRACT

Students sometimes manage to produce functionally correct pro-
gram code while having a fragile understanding of the related
learning goals. Such unproductive success could be intercepted
by an educator who asks questions that target the structure and
evaluation of the student’s program using the constructs and iden-
tifiers in the code. We provide a tool that automatically generates
multiple-choice questions of seven different types for this purpose.
We integrated these questions into a web-based program writing
exercises, which we also publish as a part of this work, and success-
fully used them on an introductory programming course. In our
pilot evaluation of the tool, we found that the students who answer
these questions repeatedly incorrectly are likely to drop out, have
more challenges while writing a program, and resort to tinkering
behavior.
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1 INTRODUCTION

Online courses are an important way for people outside of formal
education settings to acquire new skills and continue learning.
The recent pandemic generated additional demand for distance
learning for all levels of education. In computer science (CS) and
programming, many systems can provide automated assessment to
grade students’ solutions [25] which supports running online and
on-campus Courses.
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All of the above has contributed to a large variety of online
courses in CS of which many consist of instructional material and
exercises in which students write programs that are automatically
checked for correctness (e.g. [5, 36]). The exercise points that stu-
dents earn by solving the assignments are commonly a substan-
tial factor for final course grades. Presumably, solving exercises
correctly is tantamount to learning. However, prior research has
indicated that at least some students have difficulties explaining
their own functionally correct code [16].

Kapur [12] notes that performance and learning are incommen-
surable. That is, a student might perform well with given exercises
but the actual learning might be short term and not lead to longer
term learning and understanding of the topic. He considers four de-
sign considerations for learning: unproductive failure, unproductive
success, productive failure, and productive success. In our present
work, we are particularly interested in unproductive success. These
are cases where students succeed in solving assignments correctly,
but their understanding of programming is fragile and prone to
misconceptions. Evidence of unproductive success in CS education
and programming tasks exists [14, 24, 29].

Identifying students who might be able to piece together a func-
tionally correct solution to an assignment with little conceptual
understanding is an important and interesting problem to solve in
(online) CS courses. Prior work has investigated asking Questions
about Learner’s Code (QLCs) which have been suggested to catch
cases of unproductive success in programming exercises [17]. This
approach uses questions that target the structure and evaluation of
the learners’ own program using the constructs and identifiers in
the code they wrote. Alternatively, the QLCs can be described as
program comprehension questions with the addition that they are
in the context of a program that the learner recently created.

Our present work offers a tool to generate multiple-choice QLCs
for JavaScript programs. We provide an open sourced QLC library
and open sourced program writing exercises that can deliver QLCs
to students. The assignments are available via a content server
which enables testing them in a web browser without installing
anything as well as using them in different learning management
systems (via supported protocols, e.g. LTI).

After reviewing related work in Section 2 we describe the tool
contribution in Section 3. Section 4 describes how we successfully
used the tool on an online introductory programming course col-
lecting data and conducting a pilot evaluation. Finally, in Section
5, we discuss how the presented work, including the tool, may be
useful in teaching as well as research, and conclude the work in
Section 6.
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2 RELATED WORK

2.1 Questions About Learners’ Code

Questions about Learners’ Code or QLCs have been defined as 1)
being questions about code written by a student, 2) QLCs refer to
constructs or patterns in the student’s program, and 3) they are
presented to the student. Automatic QLCs have the additional con-
dition of being generated automatically by analysing the student’s
code [17].

Santos et al. [30] presented an automated QLC system, JASK,
for a subset of Java programs in introductory programming con-
text. The system can generate 17 different question types and the
authors provide question templates which the system fills in to
form actual question instances for specific programs. The system
design is described at high-level steps. The answers were collected
as text, including numeric values and identifiers, and automatically
assessed by the system. The authors conducted an initial study with
student volunteers from an introductory programming course who,
on average, answered 75% of the QLCs correctly. The questions tar-
geting dynamic properties of the programs, such as tracing variable
values, were considerably more challenging having success rates
below 50%.

Jask has not been offered publicly for adoption or evaluation
at the time of writing. Furthermore, supporting different program-
ming languages on the same code base is difficult because there
are constructs, such as generators in Python or object notation in
JavaScript, that don’t easily map across on a syntactic level where
questions need to be presented. The system we are presenting
differs from Jask by targeting a different programming language,
using multiple-choice questions, and integrating into an existing
programming exercise platform. In practice, this means that all stu-
dents receive QLCs once their program passes automated functional
tests.

Lehtinen et al. [16] experimented with questions that were pre-
pared manually to target constructs in programs that pass the func-
tional tests for the selected exercises. Although all students received
the same questions, they appeared as QLCs to the students who
answered in the context of their own program code. On average,
one third of the students struggled to answer these questions in
open text answers. The students who answered QLCs better had
higher course success and retention.

Henley et al. [7] described a system that aims to detect code
smells and possible misconceptions while students are writing pro-
grams. They suggest an intervention that includes questions on
details about the related program structures. We consider this as a
different use-case for QLCs.

While a lot of programming education focuses on program writ-
ing, researchers have increasing interest and knowledge of benefits
in teaching program comprehension [11, 23], including tasks such
as program reading, self-explanation, and program tracing. We con-
sider QLCs as one type of task that has potential to measure and
teach program comprehension.

There are several recent approaches where program comprehen-
sion is practiced with the help of generated questions [28, 33, 34, 37].
Tamang et al. [35] presented an approach focusing on the scaffold-
ing of self-explanation of programs. It can produce questions that
approach human-generated quality. These approaches differ from
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QLCs in that the questions have not been generated and posed for
the learner using a program that the learner created.

2.2 Programming Process

Experts approach solving programming problems differently from
novices (e.g. [21]). However, there are also differences in problem
solving styles within novices. Perkins et al. [27] described three dif-
ferent problem solving strategies in novice programmers: stoppers,
movers, and tinkerers. Stoppers typically give up on solving the
problem, movers explored alternative approaches, and tinkerers
preferred small changes when trying to solve the problem.

Hosseini et al. [8] also created a categorisation of student behav-
iors. By looking at the sequences of steps students took in solving
programming assignments they identified four types of behaviors:
builder, massager, reducer, and struggler. Builders correspond to
movers, that is, they increase the concepts used in the program as
well as its correctness. They also found that some students “mas-
sage” their code by doing a series of small changes that do not
change the number of concepts in the program or its correctness. A
reducing pattern was also identified, where the student reduces the
number of concepts used in the program. Finally, the struggling stu-
dents try different changes to the code but have difficulties getting
even the first steps correct.

Heinonen et al. [6] presented a tool to browse program snap-
shots of students’ work in exercises. The tool was evaluated with
experts examining programming processes and recording errors
and challenges that students had. The students were divided into
two groups and the recorded labels were used to describe their
differences. This initial study only included 20 students and it sug-
gested that students failing the course lacked a systematic approach
and had difficulties with understanding and applying conditionals.
We use a similar method to analyse programming processes using
more fine-grained data.

Shrestha et al. [31] presented a tool that can visualise the rela-
tion between the completed program and the program state after
each programmer’s keystroke in a single diagram. In addition, the
individual code states can be browsed by pointing at the diagram.
Experts were instructed to use this tool to review different program-
ming processes and they were able to efficiently detect interesting
student behaviours, such as copy-pasting, removing parts of the
program, and periods of linear program writing in contrast to jump-
ing to edit different parts of the code. The tool may help reveal
whether the student is using a top-down or bottom-up approach in
programming.

Methodologically our work also bears similarities with Vi-
havainen et al. [36] where they investigated how novices wrote
their first lines of code both qualitatively and quantitatively. They
found out that in an IDE many students tended to start writing code
linearly (as in typing it out character by character) in the beginning
of the course. But already on the second week of the course, many
beginners took advantage of the IDE shortcuts.

One approach to identifying students who are struggling with
programming assignments is to look at their typing patterns. Earlier
research has shown that identifying students is possible based on
the keystroke data they produce when solving programming assign-
ments [22]. Building on that Leinonen et al. [20] sought to infer the
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Table 1: The types of generated QLCs including the question template and possible answer options. The values in italics will be
substituted with their actual content.

ID Question Template Correct Wrong options (distractors)
Q1 Which is the name of the function [declared on line n]? function-id function, parameter-id(s), variable-id(s),
keyword(s)

Q2 Which are the parameter names of the function [declared on  parameter-id(s) function-id, function, variable-id(s), key-
line n]? word(s)

Q3 Which value does parameter-id have when execution of input-value other-input-value(s), literal(s), random-
function-call starts? value(s)

Q4 A program loop starts on line n. Which is the last line inside  line-at-end line(s)-before-loop, line(s)-after-loop, line(s)-
it? inside-loop

Q5 A value is [assigned to|accessed from] variable variable-id on  declaration- reference-line(s), other-random-line(s)
line n. On which line is variable-id defined? line

Q6 Which is the ordered sequence of values that are assigned variable- altered-variable-history, random-values
to variable variable-id while executing [function-calllthe pro- history
gram]?

Q7 Which best describes property-name on line n? method argument, keyword, operator, parameter

experience and performance of programmers based on the typing
patterns. They looked at typing patterns and exam performance
and found that it can be used to explain some of the variance. They
also looked at classifying programmers to novices and non-novices
based on the keystroke data and found that it shows some promise.

Leinonen et al. [18] showed that keystroke-level data provides
a time-on-task metric that outperforms metrics based on the sub-
mission timestamps when predicting success on the course. They
argue that the more fine-grained keystroke-level metric takes into
account the breaks that students take in learning. We apply the
same fine-grained time-on-task metric in our study.

A working group report [10] provides a broader literature review
of research related to data in learning programming—including data
from programming processes.

3 THE TOOL
3.1 QLCs Generation Library

The generation of QLCs about JavaScript programs is contained in
an open sourced, documented library which supports development
of different systems related to QLCs!. The library has an interface
that takes a JavaScript code and a QLC configuration as inputs.
It outputs the questions, multiple-choice answer options, and the
pedagogical explanations for the options as plain data objects. The
code is packaged using an industry standard development tools and
can be built for both server and client use.

The process of generating QLCs starts from an abstract syntax
tree (AST) of the program and a history of variable values that is
recorded while evaluating the program. Then, suitable nodes and
their properties are selected from the AST to decide which types of
questions are generated. The QLC configuration can limit the types
of questions that are considered. Finally, a previously demonstrated
method is used to populate the selected question templates with

Ihttps://github.com/teemulehtinen/qlcjs
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the facts extracted from the AST and the recorded history [17, 30].
The library currently generates seven different types of questions
and multiple-choice answer options as presented in Table 1.

The question templates were selected so that they target learning
goals that are relevant for our pilot study. Most of the selected
question templates have been used in previous QLC studies or are
small adaptations so we could expect efficient implementation and
that the students would mostly understand the questions posed
to them. Additionally, a pedagogically aimed explanation text is
provided for each answer option based on how that option was
generated (see Figure 1 for examples).

3.2 Programming Exercises

Generation of QLCs remains a theoretical curiosity unless the nec-
essary steps are taken to integrate them into students’ workflow.
This includes collecting learners’ programs, posing the QLCs as
a continuum of their programming process, providing automated
feedback that supports learning, and recording all of the above
learning data for analytics and research.

We constructed a system providing online JavaScript program-
ming exercises with QLCs support. These exercises use a code editor
in a web browser window. In addition, the interface includes a task
description and a grade button that runs functional tests on the
student code and displays test results as feedback. After all the tests
pass, the system has an option to generate a set of multiple-choice
QLCs and pose them to the students below their program code.
Each question has 5 answer options.

Figure 1 presents a programming exercise at the time of answer-
ing the generated QLCs. When students choose an incorrect answer
(distractor) the system displays a description of why this is not the
correct answer. When students choose the correct answer the sys-
tem displays descriptions for all the available options and rewards
full points for the exercise.
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WHILE LOOP v B

= My submissions - Count: 8

Create a while ]m]p. that counts down from 5 to 0 (print the numbers u:iirtg console. |n:__E]_ and after the |ucn|‘J
it prants "Lift off!" to the console

v 5, 4, 3, 2, 1, 0, Lift off!

@ Study your program above to answer these questions for 2 more points!

A program loop starts on line 2. Which is the last line inside it?

1 The loop starts after this line
2 This line is inside the loop BUT it is not the last ong
3 This line is inside the loop BUT it is not the last one

® 4 Correct, this is the last line inside the loop (closing curly bracket may appear later)
6 The loop ends before this line

A value is assigned to variable n on line 4. On which line is » declared?

01

- 2 This line references (reads or writes) the given variable BUT it is declared before

a

Y

Lh

Which is the ordered sequence of values that are assigned to variable n while executing the
program?

4,3, 2,1.0,-1
5.2.4.3.0.-1,1
5,43 (]
5,4.3,2.1,0,-1
54,3,2,1,0,-1,-2

Run & Grade Problem solved partially,

Figure 1: Screen capture from the exercice system. First the student is only shown the exercise (1). After the student successfully
completes the exercise the QLCs are shown for the student to answer (2).
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Table 2: The selected exercises including the description for students and the types of QLCs generated.

ID Title Description QLC types
E1 Half number Define a function called halveNumber, that takes a number as parameter and Q1 Function name
function returns the given number divided by 2 Q2 Parameter name
Q3 Parameter value
E2 While loop Create a while loop, that counts down from 5 to 0 (print the numbers using Q4 Loop end
console.log), and after the loop it prints "Lift off!" to the console Q5 Variable declaration
Q6 Variable trace
E3 Countword  Write a function called countWord that takes a search word as the first pa- Q3 Parameter value
rameter, and an array of any words as the second parameter. The function Q4 Loop end
must count the number of times the given search word is in the given array. Q5 Variable declaration
E4 Repeat note Create a function called repeatNote, that takes as parameters a note as Q7 Method call

string and a number n. The function returns a string where the given note is
repeated n numbers of times, each time separated by a white space, without
white space at the end. For example calling repeatNote("C#", 3) should
return "C# C# C#". There are a number of ways to achieve this, for example

Q6 Variable trace

by using the following methods: string.repeat() and string.trim()

The exercises are defined using configuration files. An exercise
requires a task description, possible code template to start with, au-
tomated tests as JavaScript functions, a list of active QLC types, and
possible inputs for generating QLCs related to program evaluation.

The system to deliver JavaScript programming exercises and
QLCs is provided as an open sourced content package for Acos
content server.? The project documentation also links to online ex-
ercises that are available for testing them online — without the need
of installing anything. The Acos content server offers integration
to different learning management systems (LMS) which may use
different interoperability protocols [32]. One of the widely used
protocols is LTI that can be used to include the exercises to courses
run in many of the commercial and open-source LMS products
available.

Currently, the QLCs are enabled for four selected exercises (E1-
4) for which we configured question types that were relevant for
the learning goals of the exercises. Table 2 presents the exercise
titles, descriptions as given to students, and the enabled question
types. Additionally, E3 included the required function signature as
a template in the program editor.

3.3 Enabling Research

The system collects each keystroke and other action event from the
user interface to the system logs. Each event includes a timestamp
and relevant details, such as the inserted/removed characters with
their location, the mouse coordinates, the generated QLCs, and
the selected answer option. These series of events are stored for
each session along the exercise state and user identifier using a
JSON-formatted row in the log files.

To support CS education research the system includes a feature to
play the events from a logged session inside the browser interface.
In a way, this allows examination of learners’ work “over their
shoulder” at a later time. The researcher can also move on the

Zhttps://github.com/teemulehtinen/acos-webdev-editor
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timeline freely. To enforce privacy there are no means to select
stored logs from the browser. Instead, once the logs are retrieved
from the server and research consents are handled properly an
individual JSON session can be posted to the system’s replay URL.

4 PILOT EVALUATION

4.1 Context

We used the QLC system in the spring of 2022 on an online course
that is offered by the university to life-long learners. The course had
56 student participants of whom 51 gave research consent. The aim
of the course is to combine introductory programming with web
development. The focus of the first half of the course is on learning
basics of HTML & CSS and how to program with JavaScript in
the browser. There are no prerequisites for the course leading to
participants with very different backgrounds and demographics.

The course consists of an interactive ebook with automatically
assessed exercises without any final exam. The course is organised
completely online using the ebook without on-premise lectures or
lab sessions. The course platform has a question and answer (Q&A)
section where students can request help if they are stuck with an
exercise or do not understand a particular concept.

Our evaluation targeted the third and fourth round of the course
(R3 and R4). The QLCs tool was used on R3, and we include student
points from R4 as a measure of student success. These rounds in-
troduced programming using concepts such as variables, functions,
conditional statements, and iteration statements.

R3 included four chapters of the ebook that comprised 23 pro-
gramming exercises, three quizzes, eight short videos, two program
visualisations, and a generous amount of annotated example code
and text. While the programming exercise system we described
in section 3 was used on the course regularly, we decided to pilot
QLCs in four selected exercises (E1-4). In order to limit the new
type of effort for students, E1-4 were located in separate sections
of R3 with other exercises and learning activities between them.
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In E1-4, students had 10 attempts to create a program that passed
all of the automated tests. The input, output, and result for each
test was provided as feedback. After all tests passed, the student
was awarded 8/10 points for the exercise and a set of 2-3 QLCs
were generated and posed to the student. Students had unlimited
attempts and received descriptive feedback when answering the
multiple-choice QLCs. Once they answered them correctly they
were rewarded the full 10 points for the exercise. Considering this,
our interest for E1-4 lies in the incorrect choices rather than final
points.

We also investigated student success on the fourth round (R4) of
the course that continued to practice and apply the rudimentary
programming concepts using the web context. The rounds after R4
are arranged by different topics on web programming, such as a
HTTP server or client session, and they are not required for passing
the course. Previously some students have skipped rounds they
found less interesting and many of the life-long learners are not on
the course to get the best grades. We deemed R3 and R4 to provide
an adequate understanding about students’ success in learning
rudimentary programming concepts without introducing too much
variation from personal learning preferences. In the following, we
present total points as a percentage of all exercise points available
in R3 and R4.

4.2 Data Collection

As described in section 3, our programming exercise system col-
lected event data on the keystroke-level so that any state of a pro-
gram that a student edited in the system could be recovered. In
addition to the log data, we had access to the course database includ-
ing the student answers, automated grading results and feedback
for each exercise or survey, as well as posts to the Q&A section.
For this research we fetched the aforementioned data for the 51
students who gave their research consent during the enrolment
survey. The pre-processing step combined the log and database
data using cross-references and created anonymised data tables for
researchers to analyse. We wanted to analyse answers to QLCs —
thus we included 39 students who completed at least one of E1-4
i.e. created a program and answered the related set of QLCs.

4.3 Method

4.3.1 Quantitative. Previous research on QLCs has collected stu-
dents’ answers as text they could submit once. Our research uses
multiple-choice answer options that students selected until they,
sooner or later, arrived to the correct answer. We decided to use
students’ first selection as a comparison with the studies where
students could submit only once. We report, separately for each
question type, the ratio of students who answered correctly on first
attempt as well as the numbers of times different wrong options
were chosen.

We wanted to evaluate the correlation between answering QLCs
and success in learning rudimentary programming concepts. Our
study included students who had answered different numbers of
QLCs. In order to compare between all students, we decided to
measure success in QLCs by the student’s average number of erro-
neous choices while answering them. The other variable, learning
success, is measured as the total points i.e. percentage of all exercise
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points available in R3 and R4. The relevance of these rounds was
discussed in subsection 4.1. Almost every student works linearly
through R3 and R4 and rarely stops working on an exercise before
they are awarded full points for the task i.e. a student having 50%
of the points has most likely completed R3 and has not completed
significant work in R4. Therefore, we see the total points as an
equally good measure for course retention in our context. The more
points students collect, the further they proceed in the ebook — and
practice more principles of programming in JavaScript.

To evaluate correlation between students’ average number of
errors in QLCs and the total points we provide a visual correla-
tion inspection for increased transparency. We report the Pearson
correlation coefficient and p-value using a two-sided test.

4.3.2  Qualitative. We wanted to study how different students cre-
ated their programs and whether those programming processes
have any underlying potential reasons for how the students an-
swered the following QLCs. Considering previous research on pro-
gramming processes, they are not easily described or measured.
We decided to qualitatively research the recorded programming
processes in E1-4.

Using the replay feature described in section 3, we examined
how students had produced their programs. We started with 132
processes of which we rejected processes where the majority of
the source code was copy-pasted to the browser as that concealed
possible struggles that students had during writing the program.
We assume most of these students preferred to use an IDE over the
online editor. In the end, 92 processes from 24 different students
were included in the analysis.

We select 6 students to represent the population and cover the
spectrum and outliers of the interplay between successes in QLCs
and the total points. While we provide few numeric facts of those
student processes, the result of the study are the qualitative descrip-
tions of how they created the programs i.e what features the first
author observed in the programming processes. In results, we focus
on objective observations and strive to limit our interpretations
until discussion.

4.4 Results

4.4.1 QLC answers. Table 3 reports how students answered the
QLCs in E1-4. The results reveal that the initial success at multiple-
choice QLCs, the first choice, is roughly similar to success in text
answers for manually prepared QLCs [16] or text answers to auto-
matically generated QLCs for another programming language [30].
Questions on code’s surface-level about atomic concepts, relations,
or code blocks were answered, at first attempt, above 70% of times
correctly. Questions about details on execution-level had much
lower 30-40% initial success.

Furthermore, Table 3 presents that when the same question type
was repeated it was answered more correctly on the first attempt
in 3 cases and less correctly in 1 case. The order in popularity of
incorrect choices follows the intuition of the authors — harder to
easier.

4.4.2  Success correlation. Figure 2 presents on the left the distribu-
tion of students’ average number of errors while answering QLCs
as well as the first and third quantiles that limit the 25% of students
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Table 3: Student Answers to QLCs.

Exer- QLC type N QLC correct Incorrect answer options for QLC
cise on first (number of times selected)
E1 Q1 Function name 35 34 (97%) Keyword (1)
Q2 Parameter name 35 29 (83%) Function name (7) Keyword (6)
Q3 Parameter value 35 15 (43%) Random value (18) Parameter name (9) Literal in body (8)
E2 Q4 Loop end 30 21 (70%) Line inside block (8) Line before block (7) Line after block (2)
Q5 Variable declaration 30 23 (77%) Reference line (16) Random line (4)
Q6 Variable trace 30 10 (33%) Miss last (19) Miss first (9) Shuffled (2) Extra at end (1)
E3 Q3 Parameter value 25 19 (76%) Wrong parameter value (4) Parameter name (3)
Q4 Loop end 25 14 (56%) Line inside block (11) Line after block (6) Line before block (1)
Q5 Variable declaration 25 22 (88%) Reference line (4)
E4 Q6 Variable trace 18 10 (56%) Miss first (4) Smaller value (3) Shuffled (3) Miss last (2) Extra at end (1)
Q7 Method call 18 17 (94%) Keyword (1)
100% - © @ o 100% (@)
o 10 R4 ° R4
" 5} S
S 51 i; 50% 4 0080000 ‘—; 50% -
: g . J B i
n e ° ®
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Average errors in QLCs

Average errors in QLCs

Student groups by errors in QLCs

Figure 2: The distribution of students’ average number of errors while answering QLCs and correlation with the total points
they received in the two rounds R3 and R4. Quantiles q; and g3 mark the limits for 25% of students with the least and most errors

respectively.

with the least errors and the 25% of students with the most errors
respectively.

In the middle, the students’ average errors in QLCs is compared
with their total points. Students who are below 50% did not suc-
cessfully continue working on the fourth round, R4. In addition, a
regression line is fitted for the data. The Pearson correlation coeffi-
cient for the average errors and points is —0.459. The p-value for a
two-sided test for non-correlation is 0.003.

On the right, the students are divided into groups by the quan-
tiles so that there are 10 students with the least errors, 19 students in
the middle, and 10 students with the most errors in QLCs. Students
in all of these groups received full points for the programming tasks
related to the QLCs they answered. The representation of the distri-
butions of their points highlights that 25% of students who had on
average 0.72 or more errors in QLCs (the “high” group) were likely
to drop out and not continue to learn more programming on the
course. This supports the previous finding of correlation between
success in manually prepared QLCs and course retention [16].

4.4.3  Processes. Figure 3 employs the previously presented cor-
relation diagram to mark the six students (S1-6) that we selected
to represent the population. The students marked in gray had a
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Figure 3: The students described qualitatively in this study.

process that included mostly copy-pasted code (i.e., likely written in
another editor) and were rejected from qualitative analysis. Table 4
collects the available measures for the selected students. In follow-
ing, we describe our observations of the programming processes,
in turn for each selected student.

S1 had no recognisable challenges and did report to have up to
1000 hours of previous programming experience. They efficiently
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Table 4: Students in Qualitative Analysis.

Average errors  Total points ~ Self-reported Average Average attempts Q&A posts
in QLCs % experience,h time-on-task®, min at program tests*
S1 0.0 100 101-1000 4 1.0 0
S2 0.4 60 11-100 23 2.3 0
S3 0.8 42 101-1000 28 6.7 8
S4 1.7 25 0 91 8.0 6
S5 0.7 100 11-100 33 2.7 2
S6 0.0 28 n/a 40 7.0 5

* In tasks E2-4, E1 was excluded as a much simpler task that required less work

seemed to decide on the next subgoals and knew how to implement
them for E1-4. S1 passed all functional tests for the programs on
the first attempt. S1 answered QLCs in a timeline that suggests they
derived the correct answers with thought. They did not use the
Q&A service.

S2 wrote a conditional statement for a while-loop in E2 that had
that counted up instead of down, but noticed it while writing the
related decrement statement. In the related QLCs, they did take
time to consider but first missed the last iterator value violating the
loop condition in Q6 Variable trace. In E3, S2 had a plan on how to
solve the problem but was little challenged with including all the
necessary parentheses and seemed to lean towards Python type of
syntax — they did report up to 100 hours of previous programming
experience. Also, they were about to start array iteration from 1
instead of 0 but again, fixed all errors before running the program. In
E4, S2 did first some experimentation and eventually ran a version
that was showing the expected value instead of returning it as
required in the task description. After fixing that they did again
have off-by-one errors in Q6 Variable trace.

S3 ran into numerous challenges. In E2, they started to change
the design of an incrementing while-loop into a decrementing one
but quickly resorted to tinkering where they combined multiple
conditionals and inserted break statements. They reduced it grad-
ually to the simple solution 30 minutes later. In the related QLCs,
they had errors in both Q5 Variable declaration and Q6 Variable
trace. In E3 & E4, S3 was seemingly missing plans to proceed even
while seeking help in the Q&A service and reporting up to 1000
hours of previous experience. They tried a lot of program runs and
eventually passed functional tests in E4 with an incomplete solution
using a corner case that was not realised when the instructor had
prepared the tests. They had more errors in the QLCs Q3 Parameter
value and Q5 Variable declaration (for the second time).

S4 completed only E1 and E2. In E2, they too attempted to start
from a design of an incrementing loop. After initial attempts, they
copied example code and placed a number from the task description
to a printed string as they would expect that to have an effect in
how many times a program loop will repeat. Next, S4 changed a
plus operator to a minus without other considerations. We consider
these actions tinkering that was based on the description but did not
follow any plan for a program. S4 did complete E2 with help from
the Q&A service after 10 editing sessions for 6 lines of code. They
did not have previous programming experience. Considering QLCs,
S4 did stop to think for each question but most of their first choices

56

were incorrect and then they trialed the options until hitting the
correct one.

S5 ended little off-road in E2 by failing to assign a variable when
decrementing and by applying a condition to execute a statement
that could have simply been located after a loop. However, it seems
they proceeded with a subgoal at a time and managed to solve them
in a matter of minutes. In E3 and E4, the processes were similar
including initial challenges with handling arrays and padding a
string with space. S5 selected many answers to QLCs promptly and
had errors in Q3 Parameter value on two occasions as well as errors
in Q6 Variable trace and Q4 Loop end. They did not explicitly use
the Q&A service for E1-4 and reported up to 100 hours of previous
experience.

S6 reached as far as to attempt E3. In E1, they struggled with
syntax to declare a function and which name to use for calling
it. Once they completed the program and received QLCs, they
used time to consider and answered perfectly. Similarly in E2, they
struggled with the concept of a code block and its syntax for 8
editing sessions and 7 attempts to pass the tests — yet they carefully
chose correct answers to QLCs. Despite posting to Q&A service
they could not finish E3 which in the end had a typo in “lenght”
and was missing a return statement for the calculated value.

Based on these results, we argue that students who answered
incorrectly to many types of QLCs had fewer plans for implement-
ing a program and resorted to tinkering behaviour. We recognised
more challenges per programming task for these subjects.

The stronger success students had in QLCs, the more systemat-
ically they recognised and resolved issues in their programs. Al-
though, the outliers in data reveal that the care that students invest
in answering QLCs and their attitude towards unlimited attempts
may affect their average number of errors in QLCs significantly.

5 DISCUSSION

The main contribution of this work is the presented open sourced
tool for automatically generating Questions about Learners’ Code
(QLC). Our system serves as a reference implementation for this
type of software for JavaScript questions and it can be readily
adopted into teaching and research practice.

5.1 QLC Tool

Considering practitioners, our tool provides a novel type of exercise
for courses. There are many tools targeting productive successes,
i.e. for cases where students get the exercise correct and learn from
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it, but very few targeting unproductive successes which is where
QLCs shine. As an example, prior research has shown benefits
of Parsons problems [3, 4, 26], and multiple tools for presenting
Parsons problems to students have been presented in prior work [9,
13, 15, 38]. Having a QLC tool that can be easily integrated to
courses is a valuable addition to the toolbox of those teaching
JavaScript courses.

Future research could look into QLCs correlation with time-
on-task, number of grading attempts, or other measures that may
already be available on a given course — we did not research such
correlations due to the small size of our process data. However,
adopting QLCs could have additional value to practitioners. They
can help with identifying at-risk students early for targeted inter-
ventions, with the added benefit of not just being an early warning
sign but also providing information of what concepts and ideas
the student is having difficulties with. In addition, QLCs have been
previously speculated to have potential to act as self-explanation
prompts that help learning [17]. Research on that avenue is yet to
be started.

One problem pointed out in prior work is the potential over-
reliance on automated assessment tools that are ubiquitous in pro-
gramming courses [2, 19] — Baniassad et al. dubbed this “autograder
insanity” where students tinker their programs based on autograder
feedback, never thinking about their program carefully but eventu-
ally ending up with a correct solution. We propose that QLCs could
be a “cure” for the autograder insanity as students who tinker their
way to a solution will most likely be less successful on QLCs, and
can then be given additional support.

Another unfortunately common issue in online courses is pla-
giarism [1]. One way to try combat plagiarism would be using
QLCs - if the student plagiarised their answer, they might not be
able to correctly answer QLCs related to their answer. At the very
least they will need to study the plagiarised code in more detail,
potentially helping them learn and make the best of a bad situation.

5.2 Pilot Evaluation

Regarding QLC related research, though our pilot evaluation pop-
ulation is small, our observations are indicative towards making
new hypotheses and designing further studies with QLCs. Our
results regarding students’ success rates are aligned with earlier
studies [16, 30]. Supplementing earlier results, we showed that re-
peatedly answering QLCs incorrectly is a sign of immediate danger
and the student is likely to drop out from the course as seen in
Figure 2.

Based on the qualitative analysis of the students’ programming
processes, we found that students with a higher error rate in QLCs
had more challenges while writing a program and resorted to tinker-
ing behaviour. For example, students repeatedly run the program
with small changes that do not seem to follow a logical plan and
finally pass the tests. We argue such examples are likely to include
cases of unproductive success and we know the same students did
not progress very far in their studies. This highlights how QLCs
can give us information that traditional unit test -based assessment
can not or provides too late.
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In our future work, we are interested in studying the types of
interventions students should be given when they incorrectly an-
swer QLCs. In smaller courses, such as the one where the pilot
evaluation was conducted, student performance on QLCs could be
visualised to the teacher, who could then decide the type of support
personalised for the student. In larger courses, performance on
QLCs could be used, for example, to decide whether the student
should be given an additional exercise on the topic if they fail to
answer QLCs correctly.

5.3 Limitations

There are limitations to the tool and the pilot evaluation that we out-
line here. Related to the tool, it currently only supports JavaScript,
which could hinder adoption of the tool. As the tool has been de-
veloped with our specific context in mind, there are potentially
features that would be useful, but we have not thought about.

Related to the pilot evaluation, the population in the course
where the tool was evaluated is different from many other comput-
ing courses. Most of the students are lifelong learners, which likely
affects their motivations for taking the course and backgrounds
in general. Thus, it is possible that results would be different in
more traditional contexts (e.g., a CS1 course with majors). The pilot
evaluation had a relatively small number of students (n=51) and
used relatively simple methods — correlational analysis and one
researcher going through student processes qualitatively. In our fu-
ture work, we are planning on conducting a more rigorous research
study related to how the tool affects student performance.

Lastly, our qualitative analysis relied on observing the recon-
structed programming processes where some behaviours were clas-
sified as challenges. However, we do not really know about students’
motivations for their actions: for example, trying what happens
when parts of the code are changed could be productive, inten-
tional exploration by the student, but classified as a challenge in
our analysis. In our future work, we are interested in conducting a
think-aloud study to examine student challenges in more detail.

6 CONCLUSION

We presented a tool for automatically generating Questions about
Learners’ Code (QLC) for JavaScript courses. A pilot evaluation
supports the value of the tool, showing that being unsuccessful
on QLCs correlates with dropping out of the course and can give
instructors information on what topics students struggle with. QLCs
fill the gap often present in programming courses by focusing on
unproductive successes where students get the exercise right but
do not understand their solution, which is missing from many
traditional tools.
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