Automatic Inference of Programming Performance and
Experience from Typing Patterns

Juho Leinonen, Krista Longi, Arto Klami, Arto Vihavainen

Department of Computer Science
University of Helsinki
Finland

{juho.leinonen, krista.longi, aklami, avihavai}@cs.helsinki.fi

ABSTRACT

Studies on retention and success in introductory program-
ming courses have suggested that previous programming ex-
perience contributes to students’ course outcomes. If such
background information could be automatically distilled from
students’ working process, additional guidance and support
mechanisms could be provided even to those who do not
wish to disclose such information. In this study, we ex-
plore methods for automatically distinguishing novice pro-
grammers from more experienced programmers using fine-
grained source code snapshot data. We approach the issue
by partially replicating a previous study that used students’
keystroke latencies as a proxy to introductory programming
course outcomes, and follow this with an exploration of ma-
chine learning methods to separate students with little to
no previous programming experience from those with more
experience. Our results confirm that students’ keystroke
latencies can be used as a metric for measuring course out-
comes. At the same time, our results show that students’
programming experience can be identified to some extent
from keystroke latency data, which means that such data
has potential as a source of information for customizing the
students’ learning experience.

CCS Concepts

eInformation systems — Data mining; eSocial and
professional topics — Computer science education;
CS1; eComputing methodologies — Supervised learn-
ing by classification; eSecurity and privacy — Biomet-
rics;

Keywords

keystroke latency, biometric feedback, novice programmer
identification, programming data, source code snapshots,
educational data mining

SIGCSE ’16 / FINAL DRAFT

ACM ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

1. INTRODUCTION

Factors that could explain the difficulties in learning to
program have been studied since the 1950’s [22]. Early re-
search sought to primarily determine whether factors such as
the ability to reason correlate with a tendency towards being
able to create computer programs. Gender, age, high-school
performance, and the performance in various aptitude tests,
for example, have been compared with success in program-
ming [10]. More recently, analysis of log data from students’
learning activities has gained attention [21]. One stream
of research has focused on approaches that extract various
metrics from the programming process, and use those as a
proxy to course outcomes [2,7,14,29].

One of the common pitfalls is the often-made assumption
that students in an introductory programming course have
not programmed previously. From the teacher’s perspective,
this may lead to mistakes with providing constructive feed-
back, as the feedback should take the student’s background
and prior performance into account. Misplaced feedback
such as praising for success on easy tasks can even be misin-
terpreted by students [5], potentially leading to undesirable
effects on both self-efficacy and motivation, as well as influ-
ence the students trust in their teacher. At the same time,
information on students’ programming background could
also be used to adjust the difficulty of provided program-
ming tasks, as well as to help e.g. automatically identify
students at risk.

Previously, we have shown that it is possible to identify
programmers based on their typing patterns [18]. In this
work, we continue on the theme, and study what the stu-
dents’ keystroke latencies tell us about their programming
course performance and their previous programming experi-
ence. Being able to recognize prior programming experience
from keystroke data can be useful for researchers who have
already collected such data but without a background sur-
vey. Moreover, even if such a survey is given to the students,
some may choose not to answer it.

Our analysis is two-fold: as keystroke latencies have pre-
viously been used as a proxy to introductory programming
course outcomes [24], we perform a partial replication of
the study, and explore the applicability of machine learning
methods for a similar task. At the same time, we explore the
extent to which keystroke latencies can be used to separate
novices from non-novices.

This article is organized as follows. First, we visit related
work that is relevant for our study, then in Section 3, we
discuss our research methodology and data, followed by the

description of experiments and results in Section 4. The res-
ults are discussed in Section 5, and in Section 6, we conclude
the article and outline future work.

2. RELATED WORK

Here, we explore three streams of related work. First,
studies on past programming experience and programming
course outcomes are discussed, then, we recap studies that
have explored the use of keystroke latencies, and finally, we
explore the study by Thomas et al. [24] in more detail.

2.1 Past Programming Experience

The connection between past programming experience and
programming course outcomes has been studied in a number
of contexts. Hagan and Markham found that those who had
programmed previously had higher course marks than those
with no previous programming [12], while Bergin and Reilly,
upon considering their students’ past programming exper-
ience, found no statistically significant difference between
course outcomes [3]. In a more recent study, Watson et
al. observed that students with past programming experi-
ence had significantly higher overall course points than those
with no previous programming experience [28].

The notion of past programming experience has also been
extended to ICT experience. For example, Wilson and Shrock
combined variables related to programming and computer
use, such as formal programming education, the use of in-
ternet, and the amount of time spent on gaming, and found
that the combination variable had a significant correlation
with the midterm score of an introductory programming
course [6]. Another study by Wiedenbeck et al. reported
that the number of ICT courses taken by students, the num-
ber of programming courses taken, the number of program-
ming languages students had used, the number of programs
students had written, and the length of those programs, as a
single factor, had a weak but significant positive correlation
with the introductory programming course outcomes [30].
Overall, the evidence points towards positive correlation des-
pite somewhat mixed results.

2.2 Keystroke Analysis

Keystroke analysis has mainly been used in research on
authentication and authorization [15,19]. Typing pattern
properties such as typing speed, keystroke durations and
keystroke latencies can be used to identify users [18] . This
has been used as an extra level of security in addition to the
traditional password and username, as well as for detecting
possible moments in which the logged-in user is no longer
genuine. As individuals have a specific typing rhythm and
latency that can be used to distinguish between them, it is
possible, that some parts of the rhythm and latency could
be explained by programming experience, and consequently,
detected from such data.

Characteristics that can be calculated from keystroke data
include duration of keystrokes, pressure of keystrokes, and
keystroke latencies, which are commonly used in keystroke
analysis [15]. Especially latencies of digraphs — generally
considered to be any two adjacent characters — have been
widely used [8,11,16,18,26]. For example, the word int
includes two digraphs: in and nt. In addition, features like
average keystrokes per minute and amount of errors have
been evaluated [23].

Typing patterns can be affected by changes in equipment

such as a keyboard. For example, in a study by Villani
et al. [26], identification accuracies declined substantially
when the keyboards of the studied subjects were changed
between recording keystroke latencies and attempting to use
new data for identification. On the other hand, the use of
both a desktop and a laptop keyboard — when used both
during recording keystrokes as well as during identification
did not decrease the accuracy noticeably [26].

In addition to equipment, keystroke patterns can be af-
fected by emotional states [9] such as boredom, engagement
and stress [4,27].

2.3 Kaeystrokes and Programming Performance

Thomas et al. [24] performed two experiments to investig-
ate whether keystroke latencies could be used as an indicator
of programming performance. They categorized each di-
graph — a character pair — into one of 7 categories (explained
in more detail in Section 4.1), calculated the mean latency
for each category, and analyzed the correlations between
these mean latencies and different performance measures.

In the first experiment, 38 participants solved program-
ming exercises using Java in a controlled experiment. The
participants had been studying computer science for 2-3
years. The solutions from each student were scored by two
experienced programmers. Significant correlations with di-
graphs for specific categories were observed [24].

In the second experiment, programming sessions of 125
participants were monitored over the course of six weeks.
The programming language in these experiments was Ada,
and the participants attended an introductory programming
class. In the analysis, correlations ranging from —0.3 to —0.4
between the results of the lab exam and digraphs where the
characters were of different type, were observed. However,
only digraphs where both characters were of a different type
but neither is a browsing character, and digraphs composed
of numeric characters, had a significant correlation with the
results of the written test [24].

Thomas et al. suggested that the results indicate that the
mean latencies are related to a learning effect, as the results
from the experiments supported each other. However, they
also noted that the metrics were not sufficient as they are,
and future work was required to enhance the metrics [24].

3. METHODOLOGY
3.1 Context

The data for the study comes from an introductory pro-
gramming course in Java organized during the Autumn se-
mester in 2014 at the University of Helsinki. The course lasts
for a single 7-week period, and during the course the stu-
dents learn topics such as input and output, variables, loops,
lists, and objects. The students’ programming process is re-
corded using a NetBeans-plugin called Test My Code [25].

Unless the students choose to opt-out, the system stores
details of every key press within the programming envir-
onment that changes the source code. The details include a
student identifier, difference created by the change, timestamp,
and the identifier of the current assignment.

The students can work on the exercises either in the com-
puter labs, where they may ask for help from teaching as-
sistants, or they can work on the exercises independently at
home. That is, the students may change computers — and
keyboards — multiple times during a week. A break from
programming can also be taken at any time.

3.2 Research Questions

In this work we seek to further study the applicability of
keystroke latencies to predicting programming performance
and experience. Our research questions are as follows:

RQ 1. To what extent is programming course exam perform-
ance explained by keystroke latency data?

RQ 2. Can such keystroke latency data be used to classify
programmers into novices and experienced program-
mers, and if so, with what accuracy?

With the first research question, we wish to both explore
the use of keystroke latencies as a factor contributing to in-
troductory programming outcomes, as well as to — depend-
ing on the outcomes — consider what a student learns in
a programming class. As programming experience is often
linked with programming course outcomes, with the second
research question, we wish to study the extent to which key-
stroke latency data could be used to explain experience.

3.3 Data and Preprocessing

Overall, 246 students attended the course. We excluded
students who opted out from the data gathering, as well as
those who typed less than 2000 characters during the first
week of the course. On average, the students type 7500 char-
acters during the first week, which means that only students
who worked on more than one quarter of the first week were
included. This left us with 226 students in the data for the
experiments in sections 4.1 and 4.2. Finally, to investigate
whether keystroke latencies can be used to identify students
who have previous programming experience, the students
who did not volunteer to provide their programming back-
ground details were excluded from the study. After this, 223
students were left in the data for the experiment presented
in Section 4.3. Out of the 223 students, 125 had no pre-
vious programming experience, while 98 had at least some
experience of programming.

For the analysis, we excluded all log events that change
the code by more than a single character. These events in-
cluded copy-paste -events, large auto-completion events by
the programming environment, refactoring events, as well
as long deletions. We also eliminated events for which the
duration between the events was too short or too long. This
is relevant for latency analysis, as the students did not work
in controlled environments, and they were able to take a
break or stop working at any time. Therefore, the elapsed
time between two characters could even be a couple of days,
and including such data could create unnecessary noise in
the analysis. Similarly, short events were removed to elim-
inate short auto-completion events from the programming
environment, or other events where two keys are pressed to-
gether. At the end, we included all events within the range
of of 10ms—750ms, as done also by Dowland and Furnell [8].

4. EXPERIMENTS AND RESULTS

Next, we present the experimental setting we designed to
answer each of our research question, as well as the results.

4.1 Exam Performance Correlations

We performed a partial replication of the study by Thomas
et al. [24]. In their second experiment, they monitored 125
students in a 6-week introductory programming course in
Ada. The participants took two exams, one written test

and one laboratory exam, which were graded by profession-
als. In the analysis, they calculated the Pearson correlation
for each digraph type against the exam scores [24].

Several differences exist between our setup and the setup
by Thomas et al. In our case, the keystroke data is collected
from all programming sessions during the 7-week course, the
students program in Java, and the pedagogical approach and
context is different (see [17] for additional details). Moreover,
only a written exam was offered in our context.

Thomas et al. [24] divided the digraphs collected from
the programming process into 7 categories depending on the
type of the event, i.e. whether the students were pressing
for example alphabetical, numerical, browsing event-related
(arrows, home, end) or control-event related (e.g. copy-
paste) keys. In the data at our disposal, events that do not
change the state of the source code have not been recorded,
which means that evaluation of browsing and control events
have been excluded. In our case, we divided the digraphs
into categories as follows:

A When both characters are alphabetic characters, either
lowercase or uppercase

N When both characters are numbers 0-9

O When both characters are other keys

E When the two characters of a digraph are different
types

In addition to the previous, Thomas et al. also studied
the following categories:

B When both characters are browsing keys, e.g. left
C When both characters are control keys

H When one character is a browsing event and the other
either alphabetical, number or other key

We evaluated the method using log data ranging from the
first week of the course to all the data from the course. The
results from correlating the latencies for the above categories
with the written test are presented in Table 1.

4.2 Exam Performance Classification

We also explored the applicability of machine learning
methods for the task of predicting programming course exam
performance. Following the procedure outlined by Ahadi et
al. [2], we divided the students into two populations using
their median exam score, and sought to identify the stu-
dents based on their exam score using keystroke latencies
as the predictive features. Overall, over 10,000 features (di-
graph and single character latencies) were initially extrac-
ted. After extracting the features, feature selection was per-
formed to reduce overfitting, shorten the training times, and
to improve the interpretability of the resulting model. The
feature selection was conducted separately for each dataset
using the WEKA Data Mining toolkit [13].

After the feature selection, 20-50 features were left in the
datasets (discussed in more detail in Section 5.3). This was
followed by an exploration of a number of Bayesian, Rule
learner, and Decision Tree-based classifiers to classify the
students based on their exam performance. The Bayesian
Network and Random Forest classifiers had the best aver-
age performance in the task, when evaluated with 10-fold
cross-validation using classification accuracy and Matthews
Correlation Coefficient [20].

Digraph Type | Week 1 | Weeks 1-2 | Weeks 1-3 | Weeks 1-4 | Weeks 1-5 | Weeks 1-6 | Weeks 1-7 | Thomas et al. [24]
N (numeric) -0.049 -0.025 -0.032 -0.047 -0.059 -0.168* -0.170* -0.333**

A (alphabetic) | -0.014 | -0.023 -0.023 -0.028 -0.034 -0.050 -0.067 -0.183*

O (other) 0.012 0.017 0.007 -0.020 -0.043 -0.060 -0.064 -0.218*

E (edge not B) | -0.112 -0.112 -0.150* -0.171* -0.196* -0.221%** -0.227** -0.276*

B (browsing) NA NA NA NA NA NA NA -0.093

C (control) NA NA NA NA NA NA NA -0.083

H (to/from B) | NA NA NA NA NA NA NA -0.312%*

Table 1: Pearson Correlation of exam points with different digraph types in our experiment and in the
experiment by Thomas et al. [24] (* indicates p < 0.05, ** indicates p < 0.01).

The results for the classification accuracy of Bayesian Net-
work and Random Forest classifiers are shown in Tables 2
and 3. Both tables also include the majority class classifier
ZeroR,, which classifies all instances to the majority class.

Table 2: Exam Performance Classification Accuracy

Dataset ZeroR BayesNet RandomForest
Week 1 52.29 62.46 65.09
Week 1-2 52.02 64.59 65.80
Week 1-3 52.21 66.89 67.47
Week 1-4 52.21 65.66 66.89
Week 1-5 52.21 67.95 68.59
Week 1-6 52.21 65.53 68.23
Week 1-7 52.21 69.71 71.77

4.3 Programming Experience

Out of the 226 students, 223 also reported details in their
programming background. Out of the 223, 125 had no pre-
vious programming experience, while 98 had programmed
previously at least to some extent. For the purposes of this
study, we sought to automatically classify the students into
novices and non-novices.

We followed the same protocol as in Section 4.2, and again,
we were left with 20-50 features. We also evaluated the
same classifiers using the same 10-fold cross validation ap-
proach, which ranked the Bayesian Network and Random
Forest classifiers as the top-performers for both classifica-
tion accuracy and Matthews Correlation Coefficient. Table
4 shows the classification accuracies, and Table 5 outlines
the Matthews Correlation Coefficient for the datasets.

S. DISCUSSION

5.1 Latency and Exam Performance

In the first experiment, outlined in Section 4.1, we per-
formed a partial replication of the study by Thomas et al. [24].
Our results are consistent with the original results in that
the digraphs consisting of transitions between numeric keys
as well as transitions between keys outside the same category
had the highest correlations with the exam results (Table 1).
The correlations are not evident from the first few weeks of
our data, but as the amount of data is increased, the correla-
tions approach the explanatory level achieved by Thomas et
al. However, in our data, the correlations remain somewhat
lower than those reported in the study by Thomas et al. even
when using data from all seven weeks of the course [24].

In the second experiment, outlined in Section 4.2, we ex-
tended the previous work by an exploration over all digraphs

Table 3: Exam Performance MCC

Dataset ZeroR BayesNet RandomForest
Week 1 0.00 0.27 0.31
Week 1-2 0.00 0.31 0.32
Week 1-3 0.00 0.35 0.36
Week 1-4 0.00 0.33 0.34
Week 1-5 0.00 0.37 0.38
Week 1-6 0.00 0.33 0.37
Week 1-7 0.00 0.41 0.44
Table 4: Programming Experience Classification
Accuracy
Dataset ZeroR BayesNet RandomForest
Week 1 60.32 74.01 72.61
Week 1-2 59.37 74.63 75.01
Week 1-3 58.79 77.37 75.11
Week 1-4 58.79 73.91 74.81
Week 1-5 58.79 76.82 74.76
Week 1-6 58.79 74.96 73.69
Week 1-7 58.79 74.56 72.54

and single character presses, and explored classifiers with
the purpose of distinguishing between students whose per-
formance in the written exam was above or below the class
median. The best performing classifier had a correlation of
r = 0.44 with the binarized exam performance, explaining
19% of the variance.

Whilst the results from Sections 4.1 and 4.2 are not dir-
ectly comparable, the results indicate that typing velocity
may explain a small part of the exam performance. Effect-
ively, this means that the students who type faster, at least
at the end of the course, on average, perform marginally
better in the exam. This is an interesting phenomenon per
se, as it now has been observed in separate contexts.

This observation could partially be explained by previ-
ous programming and ICT experience. However, as the ob-
served correlations from the first weeks when such differences
should be most evident are poor, further explanations are to
be sought after. One possibility is that it takes some time
to get used to new tools and environment — details on what
tools or environments the students were familiar with were
not asked for in the questionnaire. On the other hand, it
could be that we are, again, observing a part of “The Ele-
phant” [1].

5.2 Latency and Programming Experience

In Section 4.3, we explored the extent to which keystroke
latencies explain previous programming experience. Upon

Table 5: Programming Experience MCC

Dataset ZeroR BayesNet RandomForest
Week 1 0.00 0.46 0.43
Week 1-2 0.00 0.48 0.48
Week 1-3 0.00 0.54 0.49
Week 1-4 0.00 0.46 0.49
Week 1-5 0.00 0.53 0.51
Week 1-6 0.00 0.49 0.45
Week 1-7 0.00 0.48 0.43

3.0

—— EXPERIENCED
---- NOVICE

25
|

Probability density —>

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

The normalized transition time between characters i and the plus sign. Lower is faster.

Figure 1: Smoothed probability density function of
the times taken between pressing the characters i
and + by novice and experienced programmers.

analysis of the results, we observe that the classification ac-
curacy (Table 4) and the Matthews Correlation Coeflicient
(Table 5) do not increase over time. Throughout the data-
set, the Matthews Correlation Coefficient for the included
classifiers remains between r = 0.43 and r = 0.54, explain-
ing 18-29% of the variance.

That is, the keystroke latencies only partially explain pre-
vious programming experience. Another observation, which
is related to the previous section, is that whilst the classific-
ation accuracy of students’ exam performance increases over
time, the accuracy with which students can be categorized
into novices and non-novices remains nearly the same.

This further suggests that the previous observation that
the classification accuracy of students’ exam performance
increases over time, may not, in fact, be related to previous
programming experience, but to some additional informa-
tion that should be explored in the future.

5.3 Analysis of Selected Features

When exploring the applicability of machine learning meth-
ods for the tasks in Sections 4.2 and 4.3, feature selection
was performed, which helps us now to analyze the individual
features. To do this, we performed a qualitative analysis on
a combination of the selected features that had the most
predictive power over programming experience.

Overall, special keys dominate the list, appearing in nearly
40% of the selected attributes. This is perhaps not surpris-
ing, as experienced programmers have probably used them
before, and therefore are more familiar with their location on
the keyboard. The most relevant digraphs for distinguishing
between novices and non-novices are programming-related,
and can be categorized into four categories: common com-
mands, such as incrementing a variable (i++) or using the
”OR’-operator (|1), common keywords such as true, trans-
itions between characters that require the use of e.g. shift,
ctrl or alt, such as typing opening and closing brackets ({}),
and the speed from backspace to various characters, which
is likely related to rapid fixing of misspellings.

The difference between the speed with which a novice and
non-novice moves typing specific character-combinations, here
from typing the character i to +, is illustrated in Figure 1.
In the figure, the typing speeds for the digraph are normal-
ized between 0 and 1 over all the students, and displayed
as two probability density functions that depict the novices
and non-novices.

6. CONCLUSIONS AND FUTURE WORK

In this work, we explored the applicability of keystroke
latency data to analyzing programming performance and
past programming experience. To summarize our work, the
response to our Research Questions 1, To what extent is pro-
gramming course exam performance explained by keystroke
latency data? is as follows: While the most comparable
results from Thomas et al. explained up to 11% of vari-
ance in the written exam performance, our partial replica-
tion of their work reached up to 5%. In another experiment,
where the task was made easier by seeking to categorize
into two categories based on whether they performed over
the class median or not, up to 19% of the variance was ex-
plained by the model. We also observed that correlations
were rather poor during the early weeks, which may suggest
that past programming experience does not explain the dif-
ferences between the populations. Our results also indicate
that the answer to Research Question 2, Can such keystroke
latency data be used to classify programmers into novices
and experienced programmers, and if so, with what accur-
acy?, is yes, to some extent. The explored models explained
18-29% of the variance in past programming experience.

While our results are far from being able to accurately dis-
tinguish those with at least some programming experience
from those with none, they show promise in that such iden-
tification may be possible. Such knowledge could be used to
e.g. improve learning materials and provide targeted guid-
ance, especially in online contexts, where access to teaching
resources may be sparse.

As a part of our future work, we will further explore the
categories proposed by Thomas et al, by, at least, performing
the same study but explicitly looking only at those with no
previous programming experience. At the same time, we
will be further looking for confounding factors which may
explain some of our results.

Acknowledgements

The research was supported in part by the Academy of Fin-
land (project 1266969 and COIN Centre of Excellence) and
the Finnish Funding Agency for Innovation (under project
Re:Know).

7.
(1]

2]

(3]

(4]

(5]

[6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

REFERENCES

A. Ahadi and R. Lister. Geek genes, prior knowledge,
stumbling points and learning edge momentum: Parts of
the one elephant? In Proceedings of the Ninth Annual
International ACM Conference on International
Computing Education Research, ICER ’13, pages 123-128,
New York, NY, USA, 2013. ACM.

A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen.
Exploring machine learning methods to automatically
identify students in need of assistance. In Proceedings of the
Eleventh Annual International Conference on International
Computing Education Research, ICER ’15, pages 121-130,
New York, NY, USA, 2015. ACM.

S. Bergin and R. Reilly. Programming: factors that
influence success. ACM SIGCSE Bull., 37(1):411-415, 2005.
R. Bixler and S. D’Mello. Detecting boredom and
engagement during writing with keystroke analysis, task
appraisals, and stable traits. In Proceedings of the 2013
International Conference on Intelligent User Interfaces,
IUI ’13, pages 225-234, New York, NY, USA, 2013. ACM.
G. D. Borich and M. L. Tombari. Educational Psychology:
A Contemporary Approach. Longman Publishing/Addison
Wesley, 2nd edition, 1997.

B. Cantwell Wilson and S. Shrock. Contributing to success
in an introductory computer science course: a study of
twelve factors. In ACM SIGCSE Bull., volume 33, pages
184-188. ACM, 2001.

A. S. Carter, C. D. Hundhausen, and O. Adesope. The
normalized programming state model: Predicting student
performance in computing courses based on programming
behavior. In Proceedings of the Eleventh Annual
International Conference on International Computing
Education Research, ICER ’15, pages 141-150, New York,
NY, USA, 2015. ACM.

P. Dowland and S. Furnell. A long-term trial of keystroke
profiling using digraph, trigraph and keyword latencies. In
Y. Deswarte, F. Cuppens, S. Jajodia, and L. Wang, editors,
Security and Protection in Information Processing Systems,
volume 147 of IFIP - The International Federation for
Information Processing, pages 275—-289. Springer, 2004.

C. Epp, M. Lippold, and R. L. Mandryk. Identifying
emotional states using keystroke dynamics. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, pages 715-724, New York,
NY, USA, 2011. ACM.

G. E. Evans and M. G. Simkin. What best predicts
computer proficiency? Comm. of the ACM,
32(11):1322-1327, 1989.

R. S. Gaines, W. Lisowski, S. J. Press, and N. Shapiro.
Authentication by keystroke timing: Some preliminary
results. Technical report, 1980.

D. Hagan and S. Markham. Does it help to have some
programming experience before beginning a computing
degree program? ACM SIGCSE Bull., 32(3):25-28, 2000.
M. Hall, E. Frank, G. Holmes, B. Pfahringer,

P. Reutemann, and I. H. Witten. The weka data mining
software: an update. ACM SIGKDD explorations
newsletter, 11(1):10-18, 2009.

M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the Second
International Workshop on Computing Education
Research, ICER ’06, pages 73-84, New York, NY, USA,
2006. ACM.

M. Karnan, M. Akila, and N. Krishnaraj. Biometric
personal authentication using keystroke dynamics: A
review. Applied Soft Computing, 11(2):1565 — 1573, 2011.
The Impact of Soft Computing for the Progress of Artificial
Intelligence.

K. S. Killourhy and R. A. Maxion. Free vs. transcribed text

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

25]

(26]

27]

(28]

29]

(30]

for keystroke-dynamics evaluations. In Proceedings of the
2012 Workshop on Learning from Authoritative Security
Experiment Results, LASER ’12, pages 1-8, New York, NY,
USA, 2012. ACM.

J. Kurhila and A. Vihavainen. Management, structures and
tools to scale up personal advising in large programming
courses. In Proceedings of the 2011 Conference on
Information Technology Education, SIGITE ’11, pages 3-8,
New York, NY, USA, 2011. ACM.

K. Longi, J. Leinonen, H. Nygren, J. Salmi, A. Klami, and
A. Vihavainen. Identification of programmers from typing
patterns. In Proceedings of the 15th Koli Calling
Conference on Computing Education Research, Koli
Calling ’15, pages 60-67, New York, NY, USA, 2015. ACM.
A. Peacock, X. Ke, and M. Wilkerson. Typing patterns: A
key to user identification. IEEE Security € Privacy,
2(5):40-47, 2004.

D. M. Powers. Evaluation: from precision, recall and
F-measure to ROC, informedness, markedness and
correlation. 2011.

C. Romero and S. Ventura. Educational data mining: A
review of the state of the art. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 40(6):601-618, Nov 2010.

T. C. Rowan. Psychological tests and selection of computer
programmers. J. ACM, 4(3):348-353, 1957.

M. Rybnik, M. Tabedzki, and K. Saeed. A keystroke
dynamics based system for user identification. In Computer
Information Systems and Industrial Management
Applications, 2008., pages 225-230, June 2008.

R. C. Thomas, A. Karahasanovic, and G. E. Kennedy. An
investigation into keystroke latency metrics as an indicator
of programming performance. In Proceedings of the 7th
Australasian Conference on Computing Education -
Volume 42, ACE ’05, pages 127-134, Darlinghurst,
Australia, 2005. Australian Computer Society, Inc.

A. Vihavainen, T. Vikberg, M. Luukkainen, and M. Pértel.
Scaffolding students’ learning using test my code. In
Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education, ITiICSE
’13, pages 117-122, New York, NY, USA, 2013. ACM.

M. Villani, C. Tappert, G. Ngo, J. Simone, H. Fort, and
S.-H. Cha. Keystroke biometric recognition studies on
long-text input under ideal and application-oriented
conditions. In Computer Vision and Pattern Recognition
Workshop, 2006. CVPRW ’06. Conference on, pages
39-39, June 2006.

L. M. Vizer, L. Zhou, and A. Sears. Automated stress
detection using keystroke and linguistic features: An
exploratory study. Int. J. Hum.-Comput. Stud.,
67(10):870-886, Oct. 2009.

C. Watson, F. W. Li, and J. L. Godwin. No tests required:
comparing traditional and dynamic predictors of
programming success. In Proceedings of the 45th ACM
technical symposium on Computer science education, pages
469-474. ACM, 2014.

C. Watson, F. W. B. Li, and J. L. Godwin. Predicting
performance in an introductory programming course by
logging and analyzing student programming behavior. In
Proceedings of the 2013 IEEE 13th International
Conference on Advanced Learning Technologies, ICALT
’13, pages 319-323, Washington, DC, USA, 2013. IEEE
Computer Society.

S. Wiedenbeck, D. Labelle, and V. N. Kain. Factors
affecting course outcomes in introductory programming. In
16th Annual Workshop of the Psychology of Programming
Interest Group, pages 97-109, 2004.

