
Comparison of Time Metrics in Programming
Juho Leinonen

University of Helsinki
Helsinki, Finland

juho.leinonen@helsinki.fi

Leo Leppänen
University of Helsinki

Helsinki, Finland
leo.leppanen@helsinki.fi

Petri Ihantola
Tampere University of Technology

Tampere, Finland
petri.ihantola@tut.fi

Arto Hellas
University of Helsinki

Helsinki, Finland
arto.hellas@cs.helsinki.fi

ABSTRACT
Research on the indicators of student performance in introductory
programming courses has traditionally focused on individual met-
rics and specific behaviors. These metrics include the amount of
time and the quantity of steps such as code compilations, the num-
ber of completed assignments, and metrics that one cannot acquire
from a programming environment. However, the differences in the
predictive powers of different metrics and the cross-metric correla-
tions are unclear, and thus there is no generally preferred metric of
choice for examining time on task or effort in programming.

In this work, we contribute to the stream of research on stu-
dent time on task indicators through the analysis of a multi-source
dataset that contains information about students’ use of a program-
ming environment, their use of the learning material as well as
self-reported data on the amount of time that the students invested
in the course and per-assignment perceptions on workload, ed-
ucational value and difficulty. We compare and contrast metrics
from the dataset with course performance. Our results indicate that
traditionally used metrics from the same data source tend to form
clusters that are highly correlated with each other, but correlate
poorly with metrics from other data sources. Thus, researchers
should utilize multiple data sources to gain a more accurate picture
of students’ learning.

1 INTRODUCTION
The amount of practice it takes to become an expert has intrigued
researchers for decades. General rules, such as the 10-year rule [11,
32] and the 10,000-hour rule [11, 14, 28], have been developed to
estimate how laborious it is to master a skill. The rules have been
fine-tuned along the way, for example by only taking deliberate
practice [11] into account. While more recent research [24] has
somewhat criticized these rules that promise mastery within a
fixed-time period, there is no denying that the use of time on the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER ’17, August 18-20, 2017, Tacoma, WA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4968-0/17/08. . . $15.00
https://doi.org/10.1145/3105726.3106181

task must have at least some kind of an effect on learning the task
– one cannot become a master without practice.

A rising field within computer science education research is re-
search based on logs of the students’ programming process [17].
These logs can be very fine-grained, including information even
on single keystrokes the students type while completing course
activities [35]. One of the main advantages of fine-grained program-
ming logs is the wide range of research that can be conducted with
such data. For example, fine-grained log data can be aggregated
into complex formats such as typing profiles [20], used to study the
programming behavior of students [10], and estimate the time and
effort students spend on assignments [33, 34]. In practice, data with
finer granularity provides, among other things, information on how
the students have reached a solution instead of just showing what
the students’ solutions are – this information can be used to even
determine if the students have collaborated during the process [16].

The metrics that can be derived from programming logs have
been used to detect struggling students in need of an interven-
tion [1, 26]. The total time students spend on programming as-
signments has been found to correlate with course scores by Mun-
son [26]. However, as programming logs only include indirect in-
formation on time, estimating the time that students actually use
on an assignment is challenging [27]. For example, Munson [26]
calculated the time between first and last compilations of an assign-
ment to estimate the time that students spent on a single exercise.
Murphy et al. [27] assumed that all compile events within 30 min-
utes of each other belong to the same programming session while
Toll et al. [34] allowed up to 15-minute breaks within a single ses-
sion. Additionally, both Murphy et al. [27] and Munson [26] assume
that students are working on the assignment and not engaging in
off-task behavior in-between compilations in a single session.

However, when only programming logs are considered, it is
impossible to know what students do in-between compile events.
There are many types of off-task behavior that the students might
engage in – some that should be counted as practice towards the
course such as studying the course material, and some that prob-
ably should not such as browsing social media. This means that
additional information aside from programming logs should be con-
sidered. Even then, it is hard to know what type of metrics would
be most suitable for measuring time. For example, if there are two
time-like metrics available, even if they appear quite similar, there
could be great differences in what they measure, which means that

https://doi.org/10.1145/3105726.3106181

the results of a study could be totally different depending on the
chosen metric.

In this work, we study time and time-like metrics derived from
three separate data sources: programming logs, online material us-
age logs, and questionnaire answers. We look into how the metrics
correlate with each other at three granularities: within a single
assignment, within a single course component, and over the whole
course. We are interested in learning whether some of the studied
metrics could be replaced by other metrics, i.e. whether they have
a strong correlation.

This article continues as follows. In Section 2 we go over some
of the relevant background literature. In Section 3 we lay out the
design of this research, first listing our research questions (Section
3.1), then describing the context of the study (Section 3.2), where the
data for it is from (Section 3.3) and the methods we use to answer
the research questions (Section 3.4). Sections 4 and 5 describe and
discuss our results, respectively, with Section 5.1 describing the
limitations of this work. Finally, Section 6 draws final conclusions
from the results of this study.

2 BACKGROUND
2.1 Time on Task and Learning
Time on task is a term from pedagogy that refers to the amount of
time that is spent on learning related activities. This period of time
– as it is by definition spent actively on learning – is considered to
be one of the most important factors to learning.

Tracing the origins of the notion is challenging. One of the earlier
notions of the phenomenon comes from Ebbinghaus [9], who in
the late 19th century acknowledged the phenomenon and sought to
understand it more deeply by asking if the relationshipwas linear. In
a series of memory experiments that involvedmemorizing nonsense
syllable sequences, he observed that the time spent on memorizing
the sequences did indeed have a near-linear relationship with the
amount of remembered syllables. In another experiment where
the syllable sequences were split into subsequences that were first
learned and then combined, he observed that the total time spent on
learning the whole task was not reduced. This led to the formation
of the total time hypothesis, which states that a fixed amount of
time is necessary to learn a fixed amount of material no matter how
the task is divided.

Ebbinghaus was also one of the first to study the benefits of
distributed practice versus massed practice. He studied the memo-
rization task over a series of days, where the memorized syllable
series was repeated a changing number of times, and observed that
learning was most effective when distributed. That is, the total
time spent on memorizing a series of syllables was longer if the
memorization process was crammed together when compared to
distributing the practice over multiple days.

Whilst subsequent research has shown the benefits of time
on task and spaced practice over massed practice over and over
again [2, 6], students’ decisions on how to study are influenced by
numerous competing factors. As a consequence, massed practice
is often preferred over spaced practice, even when students have
explicitly been given feedback on their better performance with
spaced practice [18].

This observation on some preferring to use non-optimal learning
practices lends directly to the studies conducted by Ericsson et
al. [11]. They studied the practice of expert violinists, and noted
that the high-performing individuals had a habit of deliberately
focusing on the areas that they were lacking in instead of simply
practicing the songs over and over again. They suggested that
in order to truly excel at something, one must “step outside the
comfort zone” and deliberately practice the challenging activities
over and over again – something that many choose not to do.

Whilst Ericsson observed that developing expertise takes years,
neither Ebbinghaus nor Ericsson claimed that each individual would
learn at the same pace. The observation that the speed of learning
varies among individuals [4, 37] has led to the development of
teaching approaches that take this variety into account, including
the Mastery Learning approach [3], where students are expected
to master the current tasks before they are allowed to advance to
the next tasks.

2.2 Factors Affecting Performance in
Programming Courses

Factors affecting students’ performance in programming courses
have traditionally been studied with the purpose of being able to
predict the students’ performance. In this line of research, a myriad
of predictors ranging from students’ affective states [31], students’
programming behavior [8, 10, 12, 13, 21, 27, 38] to complex pro-
gramming process based metrics [5, 20, 30] have been constructed.
Research has also been invested in analyzing and reviewing differ-
ent metrics for student performance [39]. Much of the research on
performance in programming courses has been aimed at identifying
at-risk students early enough to intervene and help the students
learn the course contents and thus pass the course [1, 26].

Murphy et al. [27] have developed a tool called Retina to give
both students and instructors a better idea of how students are
performing on the course. The tool offers information on errors
made on exercises, but also information on how much time it takes
on average to complete each exercise. They note that it is practically
impossible to know the exact amount of time that students work
on assignments solely based on programming log data.

Several studies have highlighted time as an integral factor in
course success. For example, Watson et al. [39] found that in addi-
tion to anmetric constructed from sequential compilation events [38],
the percentage of time that students spent on resolving errors in
a programming lab was indicative of their future performance in
the course. They studied 38 traditional and 12 new metrics of stu-
dent success. The new metrics were solely based on programming
log data whilst the traditional metrics were based on for exam-
ple student background variables such as previous programming
experience and questionnaire answers.

An emerging field of detecting at-risk students is using machine
learning methods instead of relying on the educator for noticing
struggling students [1, 26]. Recently, Munson [26] studied auto-
mated metrics for assessing novice programmers’ performance
early enough in the course for an intervention. Munson derived
numerous metrics from programming logs and analyzed their cor-
relations with course scores and each other. The metrics included
session time, error, edit, and compile related measurements. He

found that especially total session time, i.e. the amount of time
the student spent programming, had a moderate positive correla-
tion with course scores. Additionally, the amount of changes to the
source code had a similar positive correlation with course scores.
Interestingly, total session time and the amount of change events
were highly correlated, which could indicate that the amount of
changes to the source code is a good metric for time. However, as
partial correlations between themetrics were not studied, it remains
possible that the correlation could be at least partially explained by
other variables that correlate with both the amount of changes and
total session time.

As noted by Ihantola et al. [17], it is questionable whether spe-
cialized metrics generalize to other contexts as many studies are
conducted within a single course at a single institution with custom
metrics, which makes it hard to replicate such studies. Even with an
increasing amount of research conducted based on time and effort
metrics derived from programming logs, there are no standardized
metrics for measuring time based on these logs. It is also unclear
how such metrics are related to each other.

3 METHODOLOGY
3.1 Research Questions
The overview of the background literature in Section 2 paints a
picture where a large amount of research has focused on two types
of predictors of student success. Some predictors are essentially
metrics of “quality” such as the amount of errors in program code,
whilst other predictors are essentially metrics of time and effort in
that they measure how much work or time or effort the student put
into studying, for example by calculating the amount of changes to
the source code or estimating the time spent based on timestamps.

This raises a question: how are these different time-like metrics
related to each other? To allow for a better understanding and
comparison of results from different studies, we take a look at
correlations between a certain group of time-like metrics available
to us and answer the following research questions:
RQ1: How do common time and time related metrics correlate on

a per-assignment basis?
RQ2: How do common time and time related metrics correlate

within larger course components?
RQ3: How do common time and time related metrics correlate

over the whole course?

3.2 Context of the Study
The data for this study has been gathered from two introductory pro-
gramming courses organized at University of Helsinki, a research-
oriented university in Europe. The courses were held during spring
and fall of 2016 and one of the authors of this paper is also respon-
sible for organizing both courses. The programming language that
is taught in the course is Java, and the contents of the course are
similar to many other introductory programming courses offered at
universities: variables, input/output, selection, objects, lists, sorting,
and searching. The courses lasted for seven weeks each.

The teaching method in the course expects that the majority of
the time in the course is spent on working on programming assign-
ments. To provide support, the computer science department offers
open labs with a total of 70 computer seats and additional places

for those with laptops. Instructors and teaching assistants attend
the open labs providing support (for additional details, see [19]).

The course is mandatory for students majoring in computer
science, and they are expected to take it in the first teaching period
of their first year. Other students can take it if they feel that it
would benefit their studies, or if they are considering computer
science as a potential minor subject. Non-CS students often take the
course later in their studies, for example in the second year. During
spring 2016, the course was graded using a pen-and-paper exam
and a computer-based exam, and during fall 2016, the course was
graded using three take-home exams. The course grading schemes
were slightly different, but approximately 40% of the overall course
mark comes from the exams, and 60% comes from working on sets
of individual programming assignments and pair-programming
assignments.

3.3 Data Sources and Variables
During the courses, participants provided data through many av-
enues. The students used the NetBeans IDE with the Test My Code
(TMC) -plugin [36] as they worked on the programming assign-
ments. The plugin recorded the students’ programming process and
automatically assessed the correctness of students’ submissions. For
each submitted assignment that was solved correctly, the students
were asked to rate the difficulty, workload, and educational value
of the assignment. Additionally, the online learning material that
the students used stored details on their use of the material, and
finally, questionnaires were administered to gather data regarding
the students’ weekly use of time in the course.

3.3.1 Working Environment and Assessment Server. The Net-
Beans IDEwith TMCprovides the functionality needed to download
and submit programming assignments, as well as the typical pro-
gramming environment functionality such as running and testing
the code that one is working on. The students were able to run as-
signment specific test suites that gave them feedback on what parts
of the assignment were correctly implemented and provided hints
towards solving some of the simpler and more common mistakes.

The environment was augmented to record and store the stu-
dents’ working process data on each programming project that
was related to a programming assignment on the course. The data
includes timestamps for every modification that the students do on
the programming assignment templates as well as project specific
actions such as running the code, testing the code and submitting
the project. Whenever the student submitted an assignment to the
server, a set of unit tests was run on the assignment. Once the unit
tests were executed, feedback on the correctness of the student’s so-
lution so far was provided back to the student. Multiple submissions
were allowed and there was no penalty associated with submitting
incomplete or incorrect solutions.

The programming process data was further analyzed by extract-
ing assignment specific information that contains (1) total time
spent on each assignment, (2) total active time spent on each as-
signment, (3) number of code edit events, (4) number of paste events,
(5) number of times that the assignment was run, (6) number of
times that the assignment was tested, (7) number of times that the
assignment was submitted, (8) number of times the students used
the debug functionality of the IDE, (9) the number of times the IDE

either gained or lost focus, (10) sum of counts 3 through 9, and (11)
the average typing speed of the student.

The total time spent on the assignment was calculated based
on the first event and the last event where the student modified
the source code similar to Munson’s work [26]. The total active
time was the same, but excluding pauses longer than 3 minutes.
The average typing speed was calculated by extracting all intervals
between edit events (that is, individual key presses) between 10
and 750 milliseconds in length similar to Longi et al. [23].

3.3.2 Online Course Material Usage Data. The course used an
online ebook with embedded assignment descriptions. The ebook
was divided into seven course components, each containing theory,
program snippets, worked examples and assignment descriptions
for the specific week of the course. The course components were
long HTML pages; each page can be considered an analogue to a
chapter of a traditional textbook. The online ebook used a JavaScript
library that stores information on the use of the materials [22].

The stored data includes information on each time when a user
scrolls the page, or stays in the same location of the page for a
predefined time interval or a “tick”, and can be used to measure the
amount of time a user spends at different parts of the onlinematerial.
If the user spent more than three minutes on the same exact location
without moving, the JavaScript library stopped storing the events
until the next time that the user became active.

Weekly information on the amount of scroll events and ticks on
the material was extracted for the analysis.

3.3.3 Questionnaire Data. After completing an assignment, the
students were prompted for information on the assignment. The
per-submission questionnaires contained three specific questions,
one each regarding the educational value, difficulty and workload of
the assignment. Answers to each of these were provided on a 5-step
Likert-scale with 1 indicating “not at all” and 5 “extremely”. The
participants were also able to provide feedback in a free text form,
but these textual answers were not analyzed as a part of this study.
The students were not required to answer these questionnaires and
were not incentivized to answer them.

Furthermore, at the end of each week, the students were asked
to provide a self-estimate of the time they had spent working on
the course during that week.

3.3.4 Course Exam. During spring 2016, the course had both a
pen-and-paper exam as well as a computer exam, and during fall
2016, three computer exams were administered. As the courses had
a different number of exams, administered using different means
and with different questions, we use only the combined exam scores
for both courses as variables in this study. That is, each student has a
single variable that contains how many points the student obtained
overall in all the assignments of all the exams of the respective
course.

3.3.5 Summary. A summarizing listing of the variables used in
this study – grouped by source – is provided as Table 1.

Overall, 406 students participated in the courses in total. After
excluding the students who chose to opt out from the study, who
had participated in the same programming course previously, and
who did not answer at least a single self-report questionnaire, a
total of 309 students was left for the analysis.

Table 1: A listing of the variables and their sources used in
the study

Source Variable
Process data Time spent on each assignment
Process data Active time spent on each assignment
Process data Edit event count
Process data Paste event count
Process data Run event count
Process data Test event count
Process data Submit event count
Process data Debug event count
Process data Focus changes
Process data Event count
Process data Average typing speed
Assessment Assignment correctness
Assessment Points from assignments
Material Weekly scroll event count
Material Weekly tick event count
Exams Total exam points
Questionnaire Assignment-specific perceived educational value
Questionnaire Assignment-specific perceived difficulty
Questionnaire Assignment-specific perceived workload
Questionnaire Estimated time spent on course each week

3.4 Method
The data from the sources described in the previous subsection
were combined into a singular data set. For each research question,
the data was normalized to have 0 mean and variance of 1 within
the corresponding groups: within each assignment for the first
research question, within each course component for the second
research question, and finally over the whole course for the third
research question. The questionnaire data was left unnormalized.

In the case of the first research question, our data includes stu-
dents who did not answer the questionnaires. In the data set used
to answer research question two, students who did not answer the
questionnaires were excluded.

From these normalized data sets, correlations were calculated
between all pairs of variables. After that, correlation matrices were
reordered by using hierarchical clustering1 to facilitate visual anal-
ysis of the results. Finally, partial correlations between all variable
pairs were estimated from the previously calculated correlation
matrix2 so that the effects of all other variables were excluded.

We use Spearman’s rank correlation coefficient to measure re-
latedness between our variables since some of the correlations are
nonlinear. Unlike Pearson’s correlation coefficient, which measures
linear relation, Spearman’s rank correlation coefficient measures
how well the relation between the two variables is explainable by
a monotonic function [15]. As an added benefit, Spearman’s rank
correlation coefficient does not require the variables to be normally
distributed and is as such more resilient towards outliers [25].

All calculated p-values were corrected for multiple comparisons
using the Bonferroni correction [7], which controls the familywise

1https://cran.r-project.org/web/packages/corrplot/
2https://cran.r-project.org/web/packages/corpcor/

https://cran.r-project.org/web/packages/corrplot/
https://cran.r-project.org/web/packages/corpcor/

error rate of multiple comparisons. The correction simply modifies
the threshold of statistical significance from α = 0.05 to α/n, where
n is the number of comparisons made. Essentially, the Bonferroni
correction is used to avoid finding correlations based on random
chance due to the large amount of pairwise correlations that are
studied in this work.

4 RESULTS
Our results are presented visually in Figures 1–6. Non-significant
correlations in Figures 1, 3 and 5 are excluded and shown as crosses,
other correlations are statistically significant after Bonferroni cor-
rection. The size of the diagonal correlations (correlation of the
variable with itself, i.e. r = 1) can be used for visually estimating
the strength of the other correlations.

4.1 Per-Assignment Results
In order to answer the first research question, “How do common
time and time related metrics correlate on a per-assignment basis?”,
we observe the pairwise correlations plotted in Figures 1 and 2.
These correspond to students’ effort during individual assignments.

Figure 1 presents the full correlations between all pairs of vari-
ables in the data. We note that the graph contains multiple clusters
wherein the variables are highly correlated with each other. The
largest of these is the cluster in the top-left corner of the graph,
where active work time, total count of source code events, count of
code edit events, number of times the program was run and number
of focus change events are all correlated with each other positively
(correlations range between r = .4 and r = .9). Specifically, active
time correlates with total count of source code events (r = .79),
edit event count (r = .72), run event count (r = .53) and focus
change event count (r = .54). These same variables are then mildly
correlated with student perceptions of educational value, workload
and difficulty, as well as number of paste events (these correlations
range between r = .15 and r = .3).

Next up, the number of times the debug feature was used is
correlated positively with the total time (including pauses) used on
the assignment (r = .4). Both of these are then negatively correlated
with maximum assignment correctness (r = −.25, r = −.35). Finally,
a cluster of positive correlations forms between student perceptions
of educational value, workload and difficulty (these correlations
range between r = .5 and r = .8).

Observing the pairwise partial correlations where all other vari-
ables have been used as control variables (see Figure 2), we no-
tice essentially the same clusters, albeit with significantly weaker
correlations. The total event count and code edit counts are very
strongly correlated (r = .9), as are student perceptions of difficulty
and workload (r = .7). We note that typing speed is unsurprisingly
negatively correlated with total time spent (r = −.3), as is the count
of paste events with the count of code edit events (r = −.3). The
negative correlation between assignment correctness and total time
is essentially unaffected compared to the full correlations.

One additional change from the full correlations is the new neg-
ative correlation between number of edits and number of focus
changes (r = −.3).

4.2 Per-Week Results
For the second research question, “How do common time and time
related metrics correlate within larger course components?” we ob-
serve the pairwise correlations plotted in Figures 3 and 4. These
correspond to students’ effort within single weeks of the studied
course.

The full correlations in Figure 3 are largely similar to those pre-
sented in Figure 1. Similar clusters form in both between largely the
same variables. Perhaps the clearest difference is that the negative
correlations with assignment correctness disappear when inspect-
ing a course week instead of single assignments. Instead, we see
a new medium-strength correlation between assignment correct-
ness and edit count (r = .41), submission count (r = .38), event
count (r = .35) and active time (r = .34). We furthermore note that
both scroll and tick counts retrieved from material usage metrics
(r = .73) are correlated with the larger cluster of programming envi-
ronment count (these correlations range between r = .3 and r = .5).
An additional value representing students’ self-reported weekly
time on the course is also included – the correlation between the
self-reported time and active time is r = .5.

Continuing to the partial correlations presented in Figure 4, we
note that it, too, is very similar to Figure 2. We note that the only
negative correlation of any significance is between the number
of edits and the number of focus changes (r = −.33). This same
correlation was present in the per-assignment partial correlations.
Compared to the full correlations, the correlations between the
learning material event counts and the programming environment
event counts essentially disappear when partial correlations are
considered, as do the correlations with the students’ self-reported
total time.

4.3 Full Course Results
For the third research question, “How do common time and time
related metrics correlate over the whole course?”, we observe Figures
5 and 6.

Figure 5 presents the full correlations over the combined data
set that includes both courses. The plot contains two larger striking
features: first of all, almost everything is correlated with almost
everything else. Secondly, the only outliers regarding that are total
time spent – which does not correlate with exam scores or assign-
ment correctness – and exam scores. Exam scores show a relatively
strong correlation with assignment correctness (r = .6), which is
easily understandable. Interestingly, while exam scores do correlate
positively with active time (r = .2), the correlation with total time
is not statistically significant when corrected.

Figure 6 shows the partial correlations between all variable pairs
over the complete courses. These results seem to be largely in line
with those presented in relation to the other partial correlation
plots. We note that the number of negatively correlated pairs is,
however, slightly larger than previously. Assignment correctness
is negatively correlated with the programming environment event
count (r = −.24). The number of source code edits is also nega-
tively correlated with the number of focus changes to and from
the programming environment (r = −.25) and the number of paste
events (r = −.25). Peculiarly, the time spent in the course ebook

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● −1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

te
st

C
ou

nt

ac
tiv

eT
im

e

ev
en

tC
ou

nt

ed
itC

ou
nt

ru
nC

ou
nt

fo
cu

sC
ha

ng
es

su
bm

itC
ou

nt

to
ta

lT
im

e

de
bu

gC
ou

nt

as
si

gn
m

en
tC

or
re

ct
ne

ss

ed
uc

at
io

na
lV

al
ue

w
or

kl
oa

d

di
ffi

cu
lty

pa
st

eC
ou

nt

ty
pi

ng
S

pe
ed

testCount

activeTime

eventCount

editCount

runCount

focusChanges

submitCount

totalTime

debugCount

assignmentCorrectness

educationalValue

workload

difficulty

pasteCount

typingSpeed

Figure 1: Per-assignment Spearman-correlations with signif-
icances corrected using the Bonferroni correction for multi-
ple comparisons. Size and color of circles indicate the Spear-
man correlation coefficient. Crosses indicate that the corre-
lation is not statistically significant.

Figure 2: Pairwise per assignment partial Spearman-
correlations controlled for all the other variables. Size and
color of circles indicate the Spearman correlation coefficient.

(tick count) is very slightly negatively correlated with total time
spent on assignments (r = −.14).

In the partial correlations, the exam scores are positively corre-
lated with assignment correctness (r = .44), and slightly correlated
with the number of paste events (r = .19). They also show a very
slight negative correlation with total time (r = −.12), but this cor-
relation was not statistically significant as a full correlation.

5 DISCUSSION
Our results show that there is a large amount of correlation within
certain variable clusters. Events recorded within the programming
environment tend to correlate, as do events recorded from the
learning material. Due to this, it is important to look at partial
correlations of the variables. Essentially, partial correlations are
used to study whether any two variables correlate when controlling
for other variables in the data set.

The largest cluster of highly-correlating variables we observed
consisted of variables collected from the IDE the students used.
First of all, active programming time is highly correlated with the
number of actions taken in the programming environment and the
number of code edits. It is also relatively well correlated with the
count of program runs and changes of focus either out of or to the
programming environment. These together form a large cluster of
variables that are well-correlated with each other.

At the same time, this first cluster is only slightly correlated with
the counts of test runs, debug usage, total time (including pauses),

number of paste events and the number of times the code is sub-
mitted. There is also very little correlation between this cluster of
variables and the perceived amounts of educational value, workload
or difficulty for each assignment.

When partial correlations are considered, this cluster essentially
reduces to a strong correlation between the total number of events
and code edits. This indicates that most of the actions taken by the
students in the programming environment are edits to code.

While these relations – as well as the negative correlation be-
tween the typing speed and the amount of active time – are some-
what self-evident they do suggest that the analytical methods are
correct. Thus, these “trivial” results support the existence of the
more curious phenomena we observe next.

One such curious phenomenon is the negative correlation be-
tween the numbers of edits and focus changes that is also visible
when corrected for the other variables. This indicates that the stu-
dents who do more changes to their code tend to not change in and
out of their editor as much as students with less changes to their
code. One possible explanation for this is that some students tend
to tinker their code in the editor if they are having trouble whereas
others go to the material for help [29].

Also curious is the behavior of the number of debug events: it
is negatively correlated with assignment correctness, perceived
educational value, workload and difficulty. While the first one is
explainable by the fact that struggling students are likely to both
use the debug tool and abandon an assignment before finishing it
completely, the negative correlations with perceptions regarding

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● −1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

su
bm

itC
ou

nt

as
si

gn
m

en
tC

or
re

ct
ne

ss

de
bu

gC
ou

nt

se
lfR

ep
or

te
dT

ot
al

T
im

e

sc
ro

llc
ou

nt

tic
kc

ou
nt

to
ta

lT
im

e

ac
tiv

eT
im

e

ev
en

tC
ou

nt

ed
itC

ou
nt

ru
nC

ou
nt

fo
cu

sC
ha

ng
es

ed
uc

at
io

na
lV

al
ue

w
or

kl
oa

d

di
ffi

cu
lty

pa
st

eC
ou

nt

te
st

C
ou

nt

submitCount

assignmentCorrectness

debugCount

selfReportedTotalTime

scrollcount

tickcount

totalTime

activeTime

eventCount

editCount

runCount

focusChanges

educationalValue

workload

difficulty

pasteCount

testCount

Figure 3: Within week, i.e. per course component Spearman-
correlations with significances corrected using the Bonfer-
roni correction for multiple comparisons. Size and color of
circles indicate the Spearman correlation coefficient. Crosses
indicate that the correlation is not statistically significant.

Figure 4: Pairwise within week, i.e. per course component
partial Spearman-correlations between the tested variables
controlled for all the other variables. Size and color of circles
indicate the Spearman correlation coefficient.

the assignment are not as intuitive. One possible explanation is
that the debug feature is mostly used by advanced students, or in
other words, students who do not struggle with the assignments
and want to understand the functionality of the programs better.

We further note that while perceived educational value, work-
load and difficulty are correlated in the full correlation analysis,
partial correlation analysis indicates that perceived educational
value is only very slightly correlated with the others when partial
correlations are observed. In other words, assignments that are
difficult or laborious are not necessarily beneficial for learning, and
beneficial assignments do not need to be laborious or difficult. Ad-
ditionally, these self-reported metrics, including the self-reported
hours spent each week, did not have significant correlations with
other metrics when examining the partial correlations, which raises
questions about the validity of self-reported metrics altogether.

We failed to find any significant partial correlations between
metrics obtained from the ebook-like learning material and the
programming environment. Our belief is that this is partially due
to focusing on too coarse grained data – it is likely that different
students spend different proportions of time in different learning
environments and material locations. Thus, effort should not be esti-
mated solely based on the total study time, as even small pauses can
account for large variations in learning outcomes [21]. Moreover,
it is also important to know what the time is spent on – for exam-
ple, knowledge on which material paragraphs the students spend
their time on could provide additional insights on the students’
struggles [22].

Interestingly, essentially none of the variables are strongly cor-
related with exam scores: exam scores are most strongly correlated
with assignment correctness and slightly correlated with paste
counts, number of assignment submissions, active programming
time, number of programming events and code edit event counts.
When partial correlations are considered, only assignment correct-
ness and paste counts are correlated in any significant magnitude
with exam scores. Based on this, it seems that in our context, it
would not be sensible to conduct interventions based on time re-
lated metrics alone without additional proof of the student needing
help – however, it is also possible that the change from the pen-
and-paper -based exam to the computer exam has influenced the
overall exam data.
5.1 Limitations
One of the core limitations of this work is that the data comes from
a type of a university course with high attrition rates. In our context
where over 400 students were initially active, data from marginally
over 300 was used. We excluded information from students who
chose to not participate in the study, who did not answer any of the
questionnaires, and who potentially had e.g. JavaScript blocking
scripts on their computers (students with practically no data from
the material logging component). This means that there is a risk
of selection bias. However, we tried to combat these problems by
normalizing the data whenever possible so that the metrics would
be comparable as well as taking averages instead of summing so that
missing data points (e.g. a student not answering a questionnaire)
would not affect the results as much.

●
●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●
●
●
●
●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●
●

●
●
●
●
●
●
●
●

●
●

●

●
●
●

●
●
●
●
●
●
●

●
●

●

●

●

●
●

●
●
●
●

●

●

●
●

●

●
●
●
●
●

●
●
●
●
●

●
●

●

●
●

●
●
●
●

●
●
●

●
●

●

●
●

●
●
●
●

●
●
●

●

●

●

●

●

●
●
●

●
●
●

●
●

●
●

●

●

●

●
●
●

●
●
●
●

●

●
●

●

●

●

●
●
●

●
●
●
●

●
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

as
si

gn
m

en
tC

or
re

ct
ne

ss

ex
am

de
bu

gC
ou

nt

te
st

C
ou

nt

pa
st

eC
ou

nt

ru
nC

ou
nt

fo
cu

sC
ha

ng
es

su
bm

itC
ou

nt

ac
tiv

eT
im

e

ev
en

tC
ou

nt

ed
itC

ou
nt

to
ta

lT
im

e

sc
ro

llc
ou

nt

tic
kc

ou
nt

assignmentCorrectness

exam

debugCount

testCount

pasteCount

runCount

focusChanges

submitCount

activeTime

eventCount

editCount

totalTime

scrollcount

tickcount

Figure 5: Full course Spearman-correlations with signifi-
cances corrected using the Bonferroni correction for multi-
ple comparisons. Size and color of circles indicate the Spear-
man correlation coefficient. Crosses indicate that the corre-
lation is not statistically significant.

Figure 6: Full course partial pairwise Spearman-correlations
between the tested variables controlled for all the other vari-
ables. Size and color of circles indicate the Spearman correla-
tion coefficient.

A concern for the external validity and generalizability of the
study arises from the fact that all the data used in this study comes
from a single university. We sought to combat this by including data
from multiple course instances, but acknowledge that the course
content is the same. We encourage fellow researchers to replicate
our study in their context, and are willing to provide support and
the necessary tools to do so.

Additionally, the course material usage data might differ depend-
ing on the specifications of the resolution of the screen of the user
as the JavaScript library used to study material usage tracks things
visible on the user’s screen. A larger screen with a higher resolu-
tion can have more content on the screen at the same time. Thus,
users with low-resolution monitors might have more scroll events
compared to users with high-resolution screens.
6 CONCLUSIONS
In this work, we looked at different time metrics from multiple
different data sources. We calculated the correlations between the
metrics within single assignments, single thematically coherent
course components, and over the whole course.We found that many
of the metrics form clusters indicating possible redundancy. Further
analysis of partial correlations revealed that somemetrics are indeed
most likely redundant, for example students’ self-reportedworkload
and difficulty.

With this work, we have sought to bring attention to the myriad
of variables that can potentially be used to measure students’ activ-
ity and time usage in the course. If this multitude of factors is not
taken into account, the best case scenario is that separate research

streams that study these variables merely create redundancy as
research groups report on distinct but highly correlated variables
as all explaining some other variable. In the worst case, strands of
research that in actuality describe the same underlying phenomena
are not recognized as related if they use slightly different – but
in actuality highly related – variables as both the explaining and
explained variables.

Interestingly, we found that exam scores are not strongly corre-
lated with any of the studied metrics. Based on our results, when
corrected for independence, the self-reported educational value of
an assignment does not have a strong correlation with assignment
difficulty and workload, which indicates that an assignment can
be educational even if it is not laborious. Additionally, we noticed
that material usage metrics do not have significant correlations
with metrics built from programming logs. This means that in order
to get an accurate picture of students’ learning, data from all the
learning environments the students use should be combined.

As part of our future work, we are interested in combining stu-
dent background information with the data studied here. For exam-
ple, there could be differences in how well certain metrics perform
depending on factors such as previous programming experience.
Additionally, we are interested in building predictive models based
on the time-like metrics examined in this study.

ACKNOWLEDGEMENTS
This work was partially funded by Academy of Finland under grant
number 303694 Skills, education and the future of work.

REFERENCES
[1] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015.

Exploring machine learning methods to automatically identify students in need
of assistance. In Proceedings of the Eleventh Annual International Conference on
International Computing Education Research. ACM, 121–130.

[2] AD Baddeley and DJA Longman. 1978. The influence of length and frequency of
training session on the rate of learning to type. Ergonomics 21, 8 (1978), 627–635.

[3] Benjamin S Bloom. 1974. Time and learning. American psychologist 29, 9 (1974),
682.

[4] John B Carroll. 1963. A model of school learning. Teachers college record (1963).
[5] Adam S Carter, Christopher D Hundhausen, and Olusola Adesope. 2015. The

normalized programming state model: Predicting student performance in com-
puting courses based on programming behavior. In Proceedings of the eleventh
annual International Conference on International Computing Education Research.
ACM, 141–150.

[6] John Dunlosky, Katherine A Rawson, Elizabeth J Marsh, Mitchell J Nathan, and
Daniel T Willingham. 2013. Improving students’ learning with effective learning
techniques: Promising directions from cognitive and educational psychology.
Psychological Science in the Public Interest 14, 1 (2013), 4–58.

[7] Olive Jean Dunn. 1961. Multiple comparisons among means. J. Amer. Statist.
Assoc. 56, 293 (1961), 52–64.

[8] Gregory Dyke. 2011. Which aspects of novice programmers’ usage of an IDE
predict learning outcomes. In Proceedings of the 42nd ACM technical symposium
on Computer science education. ACM, 505–510.

[9] Herm Ebbinghaus. 1885. Ueber das Gedächtnis. (1885).
[10] Stephen H Edwards, Jason Snyder, Manuel A Pérez-Quiñones, Anthony Allevato,

Dongkwan Kim, and Betsy Tretola. 2009. Comparing effective and ineffective be-
haviors of student programmers. In Proceedings of the fifth international workshop
on Computing education research workshop. ACM, 3–14.

[11] K Anders Ericsson, Ralf T Krampe, and Clemens Tesch-Römer. 1993. The role of
deliberate practice in the acquisition of expert performance. Psychological review
100, 3 (1993), 363.

[12] Anthony Estey and Yvonne Coady. 2016. Can Interaction Patterns with Supple-
mental Study Tools Predict Outcomes in CS1?. In Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education. ACM,
236–241.

[13] Anthony Estey, Hieke Keuning, and Yvonne Coady. 2017. Automatically Clas-
sifying Students in Need of Support by Detecting Changes in Programming
Behaviour. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Com-
puter Science Education. ACM, 189–194.

[14] Malcolm Gladwell. 2008. The 10 000 hour-rule. In Outliers: the story of success.
Little, Brown and Company, New York, 35–68.

[15] J Hauke and T Kossowski. 2011. Comparison of values of Pearson’s and Spear-
man’s correlation coefficient on the same sets of data. Quaestiones Geographicae
30, 2 (2011).

[16] Arto Hellas, Juho Leinonen, and Petri Ihantola. 2017. Plagiarism in Take-home
Exams: Help-seeking, Collaboration, and Systematic Cheating. In Proceedings
of the 2017 ACM Conference on Innovation and Technology in Computer Science
Education. ACM, 238–243.

[17] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
and others. 2015. Educational data mining and learning analytics in programming:
Literature review and case studies. In Proceedings of the 2015 ITiCSE on Working
Group Reports. ACM, 41–63.

[18] Nate Kornell and Robert A Bjork. 2007. The promise and perils of self-regulated
study. Psychonomic Bulletin & Review 14, 2 (2007), 219–224.

[19] Jaakko Kurhila and Arto Vihavainen. 2011. Management, Structures and Tools
to Scale Up Personal Advising in Large Programming Courses. In Proceedings of
the 2011 Conference on Information Technology Education (SIGITE ’11). ACM, New
York, NY, USA, 3–8. DOI:http://dx.doi.org/10.1145/2047594.2047596

[20] Juho Leinonen, Krista Longi, Arto Klami, and Arto Vihavainen. 2016. Automatic
inference of programming performance and experience from typing patterns. In

Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
ACM, 132–137.

[21] Leo Leppänen, Juho Leinonen, and Arto Hellas. 2016. Pauses and spacing in learn-
ing to program. In Proceedings of the 16th Koli Calling International Conference
on Computing Education Research. ACM, 41–50.

[22] Leo Leppänen, Juho Leinonen, Petri Ihantola, and Arto Hellas. 2017. Using
and collecting fine-grained usage data to improve online learning materials. In
Proceedings of the 39th International Conference on Software Engineering: Software
Engineering and Education Track. IEEE Press, 4–12.

[23] Krista Longi, Juho Leinonen, Henrik Nygren, Joni Salmi, Arto Klami, and Arto
Vihavainen. 2015. Identification of programmers from typing patterns. In Pro-
ceedings of the 15th Koli Calling Conference on Computing Education Research.
ACM, 60–67.

[24] Brooke N Macnamara, David Z Hambrick, and Frederick L Oswald. 2014. Deliber-
ate practice and performance in music, games, sports, education, and professions
a meta-analysis. Psychological science 25, 8 (2014), 1608–1618.

[25] MM Mukaka. 2012. A guide to appropriate use of correlation coefficient in
medical research. Malawi Medical Journal 24, 3 (2012), 69–71.

[26] Jonathan P Munson. 2017. Metrics for timely assessment of novice programmers.
Journal of Computing Sciences in Colleges 32, 3 (2017), 136–148.

[27] Christian Murphy, Gail Kaiser, Kristin Loveland, and Sahar Hasan. 2009. Retina:
helping students and instructors based on observed programming activities. ACM
SIGCSE Bulletin 41, 1 (2009), 178–182.

[28] David A Omahen. 2009. The 10 000-hour rule and residency training. Canadian
Medical Association Journal 180, 12 (2009), 1272–1272.

[29] David N Perkins, Chris Hancock, Renee Hobbs, FayMartin, and Rebecca Simmons.
1986. Conditions of learning in novice programmers. Journal of Educational
Computing Research 2, 1 (1986), 37–55.

[30] Andrew Petersen, Jaime Spacco, and Arto Vihavainen. 2015. An exploration
of error quotient in multiple contexts. In Proceedings of the 15th Koli Calling
Conference on Computing Education Research. ACM, 77–86.

[31] Ma Mercedes T Rodrigo, Ryan S Baker, Matthew C Jadud, Anna Christine M
Amarra, ThomasDy,Maria Beatriz V Espejo-Lahoz, Sheryl Ann L Lim, Sheila AMS
Pascua, Jessica O Sugay, and Emily S Tabanao. 2009. Affective and behavioral
predictors of novice programmer achievement. In ACM SIGCSE Bulletin, Vol. 41.
ACM, 156–160.

[32] Herbert Simon and William Chase. 1988. Skill in chess. In Computer chess
compendium. Springer, 175–188.

[33] Daniel Toll. 2016. Measuring Programming Assignment Effort. Ph.D. Dissertation.
Faculty of Technology, Linnaeus University.

[34] Daniel Toll, Tobias Olsson, Morgan Ericsson, and Anna Wingkvist. 2016. Fine-
grained recording of student programming sessions to improve teaching and
time estimations. In International Journal of Engineering, Science and Innovative
Technology, Vol. 32. 1069–1077.

[35] Arto Vihavainen, Matti Luukkainen, and Petri Ihantola. 2014. Analysis of source
code snapshot granularity levels. In Proceedings of the 15th Annual Conference on
Information technology education. ACM, 21–26.

[36] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013.
Scaffolding students’ learning using test my code. In Proceedings of the 18th ACM
conference on Innovation and technology in computer science education. ACM,
117–122.

[37] Herbert J Walberg. 1988. Synthesis of research on time and learning. Educational
leadership 45, 6 (1988), 76–85.

[38] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2013. Predicting
performance in an introductory programming course by logging and analyzing
student programming behavior. In Advanced Learning Technologies (ICALT), 2013
IEEE 13th International Conference on. IEEE, 319–323.

[39] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2014. No tests
required: comparing traditional and dynamic predictors of programming success.
In Proceedings of the 45th ACM technical symposium on Computer science education.
ACM, 469–474.

http://dx.doi.org/10.1145/2047594.2047596

	Abstract
	1 Introduction
	2 Background
	2.1 Time on Task and Learning
	2.2 Factors Affecting Performance in Programming Courses

	3 Methodology
	3.1 Research Questions
	3.2 Context of the Study
	3.3 Data Sources and Variables
	3.4 Method

	4 Results
	4.1 Per-Assignment Results
	4.2 Per-Week Results
	4.3 Full Course Results

	5 Discussion
	5.1 Limitations

	6 Conclusions
	References

