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ABSTRACT
Intuitively, it seems plausible that students who start their work
earlier and work on more days than their peers should perform
better in any course. But does the early bird really catch the worm?
In this article, we examine introductory programming students’
time management behavior as evidenced by data collected from a
programming environment. We analyze: 1) the earliness of students’
work, i.e. when they start working on their course assignments, 2)
the number of days students work on course assignments, and 3)
the relationship between earliness, the number of days worked, and
course outcomes. Our results provide further support for the notion
that, on average, students who start working on course assignments
early perform slightly better in the course. At the same time, we
found that starting early does not necessarily mean that students
work on more days, and that starting early and working on many
days does not necessarily mean that students get better grades. In
addition, some students who start working early on the assignments
in the first weeks of the course seem to start delaying when they
begin working on assignments as the course progresses, while other
students seem to be able to continue starting early throughout the
course.
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1 INTRODUCTION
Research into earliness of students’ work (or the lack of it) in com-
puting education research has provided some insight into when stu-
dents work and how the scheduling of their work relates to course
outcomes. For example, Edwards et al. [10] found that students
who start their project work early often achieved higher project
scores than those who did not, and Auvinen et al. [1] observed
that individual time management practices may also influence time
management practices in group work. As such, it is not surpris-
ing that researchers have sought ways to improve students’ time
management practices (e.g. [15]).

Although the generic trend seems to be that starting to work
on course assignments early leads to better course outcomes, and
that starting early is likely linked with working on more days [7],
the underlying factors that contribute to these effects are not clear.
At times, results from studies that have sought to determine these
underlying factors may have even been contradictory. As an exam-
ple, when considering students’ metacognitive strategies, measured
using the widely-used MSLQ questionnaire [26], Bergin et al. [2]
and Watson et al. [32] had noticeable differences in their research
outcomes, possibly highlighting the effect of contextual differences.

In this work, we study students’ time management as evidenced
by log data gathered from their programming process in an intro-
ductory programming course, exploring how observed time man-
agement behaviors relate to course outcomes. In particular, we
are interested in the earliness of students’ work—i.e. when they
start to work on course assignments—and the spacing of students’
work—i.e. how many days they work on course assignments—and
the relationship of these two variables when considering course
outcomes. We also consider the possible effect of the context on
the study outcomes, and point out the need for further insight into
why students behave as they do.

The closest matches to our work are studies where time manage-
ment of students, and especially earliness of their work, has been
studied based on log data such as the studies by Edwards et al. [10],
Watson et al. [32], and Spacco et al. [30]. We build upon that work
by including students’ spacing of their work, i.e. on how many days
students work on assignments, into the analysis.

This article is organized as follows: in the following Section 2,
we go over work related to time management, focusing on prior
studies within computing education. In Section 3, we describe the
pedagogical context of the study, our data and research methods,
and our research questions. We describe the results of our analysis
in Section 4, which we discuss further in Section 5. Lastly, we
summarize our overall study and findings, and outline possible
future work in Section 6.
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2 RELATEDWORK
Within computing education research, earliness of students’ work
and students’ timemanagement practices have been broadly studied
using two approaches or a combination of them: (1) using scales and
surveys that quantify time management (e.g. [2, 20, 21, 32]), and
(2) using data collected from learning environments (e.g. [10, 17–
19, 30]).

When using surveys to quantify metacognitive strategies (in-
cluding planning and scheduling of work measured, for example,
with the MSLQ questionnaire [26]), researchers have found contra-
dictory evidence on the effect of metacognitive strategies on course
outcomes. For example, Bergin et al. [2] observed that metacog-
nitive strategies had a medium effect size on course outcomes,
while Watson et al. [32] and Longi [21] did not identify statistically
significant correlations. Leppänen et al. [20] suggested that such
discrepancies could be related to students answering based on what
they think they are doing instead of what they are actually doing.
Additional evidence on this would be needed, however—in general,
there are rather few studies on metacognition and self-regulation
within computing education research [27].

The lack of time management skills has been linked to lower
productivity and lower academic performance [22], and interest
in using students’ self-regulation for predicting performance is on
the rise [13]. Poor time management skills are also linked with
counterproductive study strategies such as plagiarism [5], as well
as stress and anxiety [24]. At an extreme, poor time management
may also include procrastination, i.e. delaying tasks that need to
be completed to the extent that they can no longer be completed
at an expected level, or at all [12]. Not all delaying of tasks is
procrastination, however, as one may delay the starting of a task
to think about how it should be approached, such as in the case of
incubation [28].

Good time management among students may manifest through,
for example, students starting to work on their assignments early.
Using data collected from learning environments, Edwards et al. [10]
observed that students who start working on their projects early
tend to achieve better scores on the projects than those who start
working on the projects late. Similar observations, also related
to correctness of submitted projects, were reported by Martin
et al. [23] and Denny et al. [8]. These results may be linked with stu-
dents starting early potentially spending more time on the projects,
as suggested by Denny et al. [7], although there are also stud-
ies that suggest that starting early also leads to submitting work
early [16, 23].

For learning, however, it is not always ideal to submit the work
early, even if the work would be started early. The spacing effect [9,
14] stipulates that learning is enhanced when study sessions are
spaced out. That is, one should prefer dividing work over multiple
study sessions (e.g. days) instead of “cramming” all the work in the
same space. Much of the work on the spacing effect has been done
with recall and there are issues that complicate the interpretation
of spacing studies [6]. It is also not clear whether the effect should
hold in programming. Indeed, there are some studies that suggest
that the spacing effect does not hold for complex motor skills such
as learning to play the piano [33].

Our current project builds on this prior work in several ways.
First, we examined CS1 students’ time management through an
analysis of fine-grained log data collected from an IDE used in a
CS1 course. We looked at when students started work on their
programming assignments (i.e. earliness) and their active periods of
work prior to the assignment deadlines (i.e. spacing of their work).
These allow us to get a sense of how students were using their
time prior to the deadline to work on course assignments. We also
explored potential relationships between students’ earliness and
work-spacing, and their overall performance (grade) on the course.

3 METHODOLOGY
3.1 Course Context
This study was conducted in an introductory programming course
(CS1) offered by the University of Helsinki. The university follows a
quarterly system: a quarter is 8weeks, with 7weeks for teaching and
a final week for exams. The introductory programming course uses
Java as the programming language, teaches students the principles
of composing solutions to programming problems, and starts with
a procedural programming approach that introduces students to
standard input and output, variables, conditional statements, loops,
functions, lists, and maps. Students then proceed with the basics of
object-oriented programming, with a focus on representing data
as objects and using objects for separating concerns (e.g. UI, logic,
data).

3.1.1 Pedagogy. The course uses an online textbook with em-
bedded videos, questionnaires, and programming assignments, and
follows a many small assignments approach, where students work
on multiple assignments whenever they learn a new topic. When
learning a new topic, students often first see a few multiple-choice
questions and a few programming assignments, which may com-
bine into larger programs, seeking to implicitly teach program
(de)composition. The course has a total of 147 programming as-
signments; while the majority of the assignments are small (e.g.
printing if an input value is negative or positive, solving the rain-
fall problem [29], etc.), the latter weeks of the course also contain
relatively complex and open-ended assignments (e.g. Tournament
Uno by Stephen Davies [25]).

3.1.2 Coursework, Exams, and Grading. Coursework (ques-
tionnaires and programming assignments) are automatically as-
sessed, and the course has weekly deadlines. In the course under
study, the deadline was at midnight on Mondays; the sole lecture
of the week was on Tuesdays. Assignments were released a week
before the deadline, except for the last week, where students had
an additional week to work on the assignments. Due to technical
issues with the automatic assessment system, students were given
two extra days on week four to submit assignments. In addition
to the feedback from the automatic assessment system, students
can also attend feedback labs with TAs and course personnel (the
course was run prior to the COVID-19 pandemic).

The course has two exams: a midterm exam, given on the third
week, and a final exam, given on the final week. Exams are similar in
content to the programming assignments of the course and students
need to receive at least half of the exam points in order to pass the
course. The final course grade is computed as a combination of the



exams and the coursework, where 70% of the overall points come
from the course questionnaires and programming assignments, and
30% of the points come from the exams (10% from the midterm and
20% from the final exam). The course grade is on a six-point scale
from 0 to 5. The highest grade is 5, which is achieved by collecting
at least 91% of the overall points, while 70% of the overall points
leads to the lowest passing grade of 1. Additionally, students are
required to get at least half of the points from the final exam in
order to pass the course.

As an alternative to passing the course by coursework and exams,
the university offers the option of taking separate “alternate” exams.
When taking an alternate exam, the course grade will be fully
determined by the alternate exam (i.e. coursework is not counted
towards the grade). While this helps in cases when students have
overlapping exams, some students opt for this to attempt to gain a
better grade (e.g. due to not completing sufficient coursework for
their desired grade). Official transcripts do not contain details on
failed courses.

Students enroll to the course at the end of the previous quar-
ter, and joining in late is possible, although late submissions of
assignments are not allowed. Students at University of Helsinki
are allowed to “sample” the offered courses, which often results
in more students attending the first week of the course than the
subsequent weeks.

3.2 Data and Preprocessing
Students in the course use Test My Code [31], which is a customized
IDE that supports downloading the programming assignments and
submitting them for assessment. The IDE collects data about stu-
dents’ programming processes as they are completing assignments,
such as students’ timestamped submissions and keystrokes within
the IDE. We focused our analyses on the timestamped data col-
lected from the IDE and the students’ final course grade. Overall,
we analyzed data from 345 students in the course. Table 1 shows
the number of programming assignments and the number of active
students, i.e. students who had at least a single keystroke, for each
week of the course. Only data from students who had provided
consent to use their data for research was used.

Table 1: The number of programming assignments (PAs-
signs) and active students (Students) per week of the course.

Week 1 2 3 4 5 6 7 Overall

# PAssigns 32 24 30 25 10 16 10 147

# Students 318 312 302 298 271 272 255 345

3.3 Research Questions
In this work, we are interested in understanding how students’
earliness of work and time management relates to course outcomes.
We study this through the following research questions (RQs):
RQ1 When do students start working on programming assign-

ments and to what extent does their start time influence the
number of days they take to work on their assignments?

RQ2 How does when students start working on programming
assignments and the number of days students work on pro-
gramming assignments relate to their performance and effort
in the course?

For RQ1, we look at when students start working on weekly
course assignments as evidenced by the first keystroke on the course
assignments. Having a keystroke for an exercise indicates that
students have downloaded the assignment and very likely read the
assignment description.We also look at howmany days the students
work on the course assignments as evidenced by the number of
distinct days when students submit at least a single assignment.

For RQ2, we study students’ earliness on each course week and
how many days the students work on the course assignments, and
contrast these with the course outcomes as evidenced by the grade
students got from the course.

4 RESULTS
We analyzed data (Section 3.2) from all 7 weeks of the course. While
all our discussions of our analyses and findings cover all our data,
we selected to present visualizations (Figures 1 to 4) from weeks
1 and 5 for the sake of space and because these best highlight our
salient findings1. Other weeks of the course show similar trends.

4.1 Earliness and Number of Days Worked on
Assignments

Figure 1 shows the number of active students at every hour of
weeks 1 and 5 of the course. Looking at the figure, we see that in
the first week of the course, the number of students working on
each day of the course seems pretty equal, peaking at around 40
students in the most active hour in all of the days except the final
day before the deadline, when the most active hours have slightly
over 60 students active. Looking at the fifth week of the course, we
see that fewer students are active in the first 5 days (peak activity
has around 20-30 students active), and that the two last days have
higher activity peaks (at 60 and almost 80 students active during
peak hours for the second to last and the last day before the deadline
respectively).

Figure 2 shows the relationship between when students started
working on course assignments and howmany days studentsworked
on course assignments for weeks 1 and 5. We see that, interestingly,
there is not a big difference between students who start very early
(6 or 5 days before the deadline) and somewhat early (3 to 4 days
before the deadline), and in both cases, the median number of work
days is three. Those who start close to the deadline (1 day before
or on the day of the deadline) have fewer days, but this is to be
expected as those who, for example, start on the day of the deadline,
only have a single work day left to work on their assignment.

4.2 Earliness, Number of Days Worked, and
their Relation to Course Performance

Figure 3 shows how students who started work a certain number
of days before the deadline perform in the course. Here, students
are split into three groups based on their final course grade. We
categorize as low performers those who get either a 0 (fail) or a

1The visualizations for all weeks are at: https://github.com/mession/iticse-2021



(a) Week 1 (b) Week 5

Figure 1: Number of active students (per hour) on the days before the programming assignment deadline

(a) Week 1 (b) Week 5

Figure 2: When students started (Days before deadline) and how long they worked on their assignment (Number of work days)

1; as medium performers those who get a 2, 3, or 4; and as high
performers those who get a 5. We see that for both of the weeks
visualized, there is a clear trend (Pearson’s 𝑟 = 0.23, 𝑝 = 0.0003 for
week 1 and 𝑟 = 0.30, 𝑝 < 0.0001 for week 5) that those who started
earlier performed better in the course. However, even of those who
start one day before the deadline, most will get a 5, i.e. the best
grade available. Only for those who start on the very last day, the
day of the deadline, the most likely grade is 0 or 1. The trends are
similar also for the weeks not visualized here.

Figure 4 visualizes the average grade of students based on when
they started working on their programming assignments and how
many days they worked on their assignments. The average was
calculated only for combinations where data from at least five
students was available, and only for those who attended the final
exam. We again see a clear trend that students who start work
earlier perform better. Interestingly, for some cases, we note that
when taking the number of work days into account, for students
who start on the same day, those that work on fewer days seem to
perform better compared to those who work on more days (e.g. on
weeks 1 and 2).

5 DISCUSSION
5.1 Does Starting Early Mean Working More?
We found that most students start working on course assignments
early. However, we still observe that the last day before the deadline
is the most active (see Figure 1). Since our data is only quantitative
in nature, we do not knowwhy some students start late and why the
last day is the most active. A possible explanation is that students
procrastinate [12], but it is also possible that students start late
because of the incubation effect [28], i.e. thinking about the problem
before working on it.

We found that students who started earlier tend to work on more
days (see Figure 2), which is not surprising – there is an implied
relationship between the two as those who start earlier simply
have a larger number of possible days when they can work on
assignments. Interestingly, the differences between, for example,
those who start on the first day that assignments are available, and
those who start, for example, three days before the deadline, are
not great. One possible explanation is that there is a “ceiling” as
once students have completed all of the assignments, they will not



(a) Week 1 (b) Week 5

Figure 3: Number of students and when they started working on their assignments, binned by final course grade: low (0 and
1), medium (2, 3, and 4), high (5).

(a) Week 1 (b) Week 5

Figure 4: Heatmaps indicating the average course grade of students (values inside squares) by their start times (x-axis) and
how long they worked on their assignment (y-axis). Darker shades indicate lower grades. (Lowest grade: 0, highest grade: 5).

accrue more work days. This has a few implications. Firstly, simply
getting students to start earlier might not mean that they will work
on more days. This suggests that interventions aimed at simply
getting students to work earlier [15, 16, 23] might not be as useful
as one might expect. On the other hand, this could also mean that
those interventions could be effective even if deployed only, for
example, three or four days before the deadline.

5.2 Early start = Better grade: Not that simple
In our context, there seems to be a trend that students who start
earlier end up with better grades in the course (see Figures 3 and 4).
However, while the proportion of students getting a high grade
diminishes for those who start work closer to the deadline, even for
those who start just one day before the deadline, the most common
grade is 5, which is the highest available grade. This suggests that,
for example, predicting performance purely based onwhen students
start working on assignments might be ineffectual. One possible
explanation for why we see this effect is that some students who
perform well and start late could have had previous programming

experience and thus know that they can start late and still com-
plete all the assignments. Additionally, since the deadline was on
Mondays, those who start one day before the deadline start work
on a Sunday. It is likely that students have more time to work on
assignments on Sunday compared to weekdays, which could partly
explain why students starting just one day before the deadline are
still able to achieve high grades.

Prior research suggests that students who start early perform
better [10] and that because of the spacing effect [9, 14], students
who split work over multiple days should perform better than those
who work on fewer days. Interestingly, we found that when exam-
ining students grouped by how many days before the deadline they
started to work on assignments and how many days they worked
(see Figure 4), in some cases for students who start on the same
day, those who end up working on fewer days tend to perform
better in the course on average. One possible explanation for this
is that high performing students require fewer days to complete
assignments – prior work has shown that there are substantial



differences in the time it takes students to solve programming prob-
lems [11]. However, this also means that at least some students who
exhibit the “ideal” work habits of both starting early and working
on multiple days will nevertheless perform poorly in the exam.
This suggests that there could be two cohorts of students exhibiting
those patterns: students with good work habits, and students who
are struggling and thus have to start early and have to work on
multiple days. This means that interventions based purely on time
management might miss some struggling students, and that inter-
ventions (e.g. additional support) should be aimed also at students
who have already started work on assignments.

5.3 Changes in Earliness
We also observed that over the course, there is a change in earliness.
That is, some students who start their work early in the first week(s)
of the course start their work later in the subsequent course weeks.
This does not hold for all students though, and some of the students
are consistent in how they start their work early in the course.
As starting to work later is linked with poorer course outcomes,
additional insight into this behavior would be valuable.

In the course under study, the assignments are released weekly
so that there are at least six days to work on the assignments.
This means that this change in earliness cannot be attributed to
overlapping deadlines within the course, and we can only speculate
on the possible reasons. It is possible that this behavior is, for
example, influenced by deadlines of other courses, by students
adjusting their effort based on their expectations on the time that
the assignments will take, or due to differences in the perceived
value of the assignments.

5.4 Limitations
One limitation of our work is the lack of rich qualitative data that
digs deeper into potential factors affecting students’ use of time
and their perception of their course assignments. For example, we
did not account for students’ workload such as how much other
coursework they have in addition to their CS1 coursework (and
e.g. the deadlines for other courses), how well they understood the
topics, or the life-context of students outside of the university (e.g.
part-time jobs that affect when they could do schoolwork); these
could all influence how much time students could spend on their
assignments and how many days they could work on assignments,
and in turn, how well they perform on the course overall. Castro
and Fisler found that even students’ value judgements about the
programming topics they are learning affects howwell they perform
on their assignments [3, 4]. Similarly, how students perceive the
topics as beneficial to them could affect how much time they might
allot for their work.

For the heatmap visualizations shown in Figure 4, we only in-
cluded students who attended the final exam. This was done because
students who did not attend the exam could have done so for a
multitude of reasons: for example, it could be that they dropped
out of the course due to struggling, but it could also be that they
did not attend the final exam because they opted for the alternate
exam (see Section 3.1.2) which we do not have data from. Thus,
we decided to focus only on final exam attendees for that specific

visualization. This, again, highlights the need for qualitative data
that could help explain findings based on quantitative data.

The course from which our data was collected follows a “many
small exercises” approach, which could have affected the results.
For example, Denny et al. [7] found that students are likely to
start smaller assignments earlier compared to more complex assign-
ments. Additionally, there are many other course-specific factors
(see Section 3.1 for details) that might influence the generalizability
of our results.

6 CONCLUSIONS
In this work, we examined the relationship of students’ time man-
agement in an introductory programming course and course out-
comes. As a summary of our work, our answers to our research
questions are as follows:

RQ1 When do students start working on programming assignments
and to what extent does their start time influence the number
of days they take to work on their assignments?

Findings:We found that most students start working on course
assignments relatively early, although a large proportion (about
40%) of students tend to have activity on the day of the deadline.
Additionally, those who start on the last or second to last day
before the deadline work on fewer days, but there are no big
differences between those who start earlier than that.

RQ2. How does when students start working on programming as-
signments and the number of days students work on program-
ming assignments relate to their performance and effort in the
course?

Findings: Our findings suggest that students who start earlier
perform better in the course on average. However, we found that
a majority of those who start just one day before the deadline
still get the highest grade. Interestingly, we found that of those
who start early, in some cases the students who spendmore days
working on the assignments perform more poorly compared to
those early starters who work on fewer days.

Our results support prior work that found that students who
start their coursework early perform better [10, 22, 23]. However,
we found that some students who, based on the log data, have
“ideal” work patterns (i.e. they both start work early and space their
work over multiple days), still end up performing poorly in the
course. This suggests that there is a need for interventions that also
target students who have already started working and whose time
management behavior seems optimal. One possible explanation for
this is that based on our analysis, it is hard to differentiate between
students who self-regulate effectively by starting work early and
spacing their work, and those who start early and spend multiple
days working because they are struggling.

Part of our future work involves collecting qualitative data, for
example, through student interviews and surveys to get a richer
picture of the factors underlying students’ use of their time. These
could augment the quantitative data we collect and further our
understanding of the reasons behind different time management
behaviors observed in this study.
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