
Exploring the Effects of Contextualized Problem Descriptions on
Problem Solving

Juho Leinonen

University of Helsinki

Helsinki, Finland

juho.leinonen@helsinki.fi

Paul Denny

University of Auckland

Auckland, New Zealand

paul@cs.auckland.ac.nz

Jacqueline Whalley

Auckland University of Technology

Auckland, New Zealand

jwhalley@aut.ac.nz

ABSTRACT
Prior research has reported conflicting results on whether the pres-

ence of a contextualized narrative in a problem statement is a help

or a hindrance to students when solving problems. On the one

hand, results from psychology and mathematics seem to show that

contextualized problems can be easier for students. On the other, a

recent ITiCSE working group exploring the “problem description

effect” found no such benefits for novice programmers.

In this work, we study the effects of contextualized problems on

problem-solving in an introductory programming course. Students

were divided into three groups. Each group was given two different

programming problems, involving linear equations, to solve. In the

first group both problem statements used the same context while

in the second group the context was switched. The third group was

given problems that were mathematically similar to the other two

groups, but which lacked any contextualized narrative.

Contrary to earlier findings in introductory programming, our re-

sults show that context does have an effect on student performance.

Interestingly depending on the problem, context either helped or

was unhelpful to students. We hypothesize that these results are

explained by a lack of familiarity with the context when the context

was unhelpful, and by poor mathematical skills when the context

was helpful. These findings contribute to our understanding of how

contextualized problem statements affect novice programmers and

their problem solving.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
context, story problems, word problems, contextualization, novice

programmers, problem representation, problem description, sym-

bolic problems

ACM Reference Format:
Juho Leinonen, Paul Denny, and Jacqueline Whalley. 2021. Exploring the

Effects of Contextualized Problem Descriptions on Problem Solving. In

Australasian Computing Education Conference (ACE ’21), February 2–4, 2021,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACE ’21, February 2–4, 2021, Virtual, SA, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8976-1/21/02. . . $15.00

https://doi.org/10.1145/3441636.3442302

Virtual, SA, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/

10.1145/3441636.3442302

1 INTRODUCTION
The very first step in the problem solving process is understanding

the problem. Prior research has shown that this step can be difficult

for novices who sometimes form inaccurate conceptual models

about the problem to be solved and then struggle to correct them

[40]. One approach for addressing this is the use of interventions

independent of the wording of the problem statement, such as

requiring students to solve test cases before writing code [13]. In

this research we focus on the presentation of the problem statement

itself, and the context provided by its narrative.

In mathematics education problems that are presented with only

minimal, essential, information are known as no-context, numeric,

or symbolic problems. Such problems are presented in the form of

mathematical symbols and equations. Problems that include context

in their problem description in the form of a story or narrative

are known as “story problems” or “word problems” [7]. Arguably,

these “story problems” include unnecessary information that adds

additional cognitive load to the problem solving process. In order to

solve a story problem, an extra step in the problem solving process

is necessary where relevant information must be extracted from

the story. Conversely, it is possible that context can assist students

in relating to a problem and thus help them understand what they

are supposed to do in order to solve it.

A 2016 ITiCSE working group studied how context in the de-

scription of a problem can affect problem-solving in introductory

programming courses [2]. Two modified versions of the Rainfall

Problem [16, 43, 45] were used, one with context (“the Satellite Prob-

lem”) and one without (“Just the Numbers”). Participants from six

institutions were divided into two groups. One group was given the

problem with context and the other the problem with no-context.

There was no within-group analysis. Their results showed that

adding context to a problem description had no statistically measur-

able effect on problem-solving. This finding was contrary to earlier

findings in, for example, mathematics [29] and psychology [20]

where it was found that context can be beneficial for problem-

solving.

A follow-up study by Craig et al. [5] involved participants com-

pleting a set of five problems each with a context and no-context

variant. The contexts used were familiar to the participants as the

problem domains had been encountered in prior course work. Their

results were mixed with students performing better on the con-

textualized variant for only one of the five problems. The authors

concluded that any advantage that a familiar context might have

https://doi.org/10.1145/3441636.3442302
https://doi.org/10.1145/3441636.3442302
https://doi.org/10.1145/3441636.3442302

ACE ’21, February 2–4, 2021, Virtual, SA, Australia Juho Leinonen, Paul Denny, and Jacqueline Whalley

provided was hidden by other factors such as the use of complex

terminology and the length of the problem description.

The vast majority of research into the effect of problem descrip-

tion and level of context on problem solving success is situated in

the fields of psychology and mathematics education. It is gener-

ally accepted that computer science (CS) has unique characteristics

when compared with other disciplines [42], and that therefore the

results found regarding contextualization of problems in other do-

mains may not apply to CS. The little work that exists within the

computing education research literature on the effects of context

is inconclusive or contradictory. Further research about the effect

and its associated factors is therefore warranted.

A better understanding of the effect of context should lead to

better designed programming assessments where context is used (or

not) – a goal that is of clear interest to computing educators [10]. If

context is used then it should be possible to present it in a way that

assists rather than hinders learning and assessment outcomes.Work

by Mason and Seton [34] examines how learning and assessment

tasks in a database course can be adjusted to reduce cognitive load

and we believe better understanding of aspects of context that affect

problem solving could in a similar manner improve the presentation

of programming tasks.

In this paper, we extend the work of Bouvier et al.’s 2016 ITiCSE

working group [2] and that of Craig et al. [5]. In contrast to their

studies, our participantswere asked to completemoremath-oriented

programming tasks. We were interested in exploring whether it is

easier for novice programmers to solve problems when they are

provided with only the essential information, or does extra infor-

mation that places the problem in a familiar context help? In order

to study the effect of context we examine how changing the context

between two sequential problems, in a single assignment, affects

student performance and how this compares to a situation in which

the context remains the same in both problems. We also investigate

how context affects the type and number of mistakes students make

in their programs. We postulate that when assignments are more

math-oriented, as in our study, the results will be closer to previous

results in mathematics education. Additionally, we hypothesize that

changing the context between two problems will have an effect

on how quickly and correctly students are able to solve the sec-

ond problem. Specifically we aim to answer the following research

questions:

RQ1. How does contextualization affect correctness?

RQ2. How does contextualization affect time on task?

RQ3. Does contextualization have an effect on the type and num-

ber of errors students make?

2 RELATEDWORK
In order to understand the literature on the effect of context on prob-

lem solving a few definitions are necessary. Two types of problems

appear in the literature: story (also know as word problems) and

no-context problems. In mathematics, story problems are presented

in the form of a short narrative rather than using mathematical

notation or symbols. When compared with no-context problems

(also known as symbolic, decontextualized, or numeric problems)

story problems have context and the actual problem is often hid-

den within the details of that context. Koedinger and Nathan [29]

introduced an additional type of problem called word equations to
represent an intermediate mathematical problem type that does

not include context but instead presents a verbal equivalent of a

numeric problem. Examples of each type of problem are presented

in Table 1. In this research, we use the term no-context problem
to refer to a problem presented without a context narrative and

context problem to refer to a problem presented with context in the

form of a short narrative.

It is clear from the research presented in the literature that the

way in which problems are presented influences problem-solving

outcomes (e.g., [5, 7, 37, 41]). Minor variations in the linguistic

elements used in a problem’s description have been found to sig-

nificantly impact task difficulty [2, 29].

In mathematics, problems can be presented in different ways in-

cluding result-unknown and start-unknown. The problems in Table 1

are all presented as start-unknown problems in which the answer

or result of the problem (i.e. John’s total earnings) and the change

values (i.e. hours worked and tips) are known but the starting value

(i.e. John’s hourly wage) is unknown. We know John has an hourly

wage but the story does not tell us what it is. In contrast, if the

story was presented as result-unknown the start and the change val-

ues would be known but not John’s total earnings. Start-unknown

problems, with and without context, are considered to be more

difficult to solve than result-unknown problems [8, 9, 18, 23, 29].

Result-unknown problems usually are considered to be arithmetic

whereas start-unknown problems are considered to be algebraic

problems [29]. In this study the problems used include both start-

unknown and result-unknown problems in the form of context and

no-context problems.

Many papers discuss the advantages of context in problem solv-

ing tasks with respect to engagement [50], motivation [14, 15, 17],

and retention [21]. Performance on context problems, which were

used to measure problem solving ability, has also been found to

be an early predictor of performance for novice programmers [38].

Here we are focused not on engagement per se but on the impact

that context has on the ability of novice programmers to solve a

problem.

2.1 Context, Cognition and Problem Solving
The process of solving context problems is believed to involve an

additional phase over and above the problem solving process for

no-context problems [6, 22, 29, 31]. This additional first phase is

the Comprehension Phase. It is here that the story text is processed

and the problem solver creates an internal representation of both

the situational and quantitative relationships present in the text

[37]. This linguistic processing involves the processing of different

types of knowledge including, situational, verbal, and symbolic

knowledge. Additionally, in this phase the parts of the story relevant

to solving a problem need to be extracted from any irrelevant details

provided in a context problem’s presentation. In essence, the output

of this phase is an abstract model of the situation and problem. No-

context problems are actually presented as such models, for an

example see the symbolic problem given in Table 1.

The second phase of problem solving involves the transition

between the problem solvers’ internal situation and models to the

external representation of the solution to the problem. This phase

Exploring the Effects of Contextualized Problem Descriptions on Problem Solving ACE ’21, February 2–4, 2021, Virtual, SA, Australia

Table 1: Examples of Context Types for Start-Unknown Problems in Mathematics. Adapted from [29]

Story Problem Word Equation Symbolic Problem

John is a waiter. He worked 6 hours today

and made $60 in tips. When he added his

tips to the amount he earned today, he

found he had earned $91.80. How much

does John earn per hour?

Starting with some number, if I multiply

it by 6 and then add 60, I get 91.80. What

number did I start with?

Solve for x:

𝑥 × 6 + 60 = 91.80

is known as the Solution Phase. It is here that strategies used to

process the relevant aspects of the problem are applied such as

equation solving, and guessing and testing. Thus, in simple terms

the overall process follows a translate-and-solve strategy in which

the two phases are, in practice, interleaved and iterative. What is

learnt in terms of internal and external representations in one cycle

can go on to influence future comprehension cycles [28]. Koedinger

and Nathan [29] give an example of this story problem solving

process in the context of solving algebraic problems, “the problem

text is first translated into written symbolic form and then the

symbolic problem is solved” (p. 133). In CS, there is some anecdotal

support for an additional comprehension phase in solving problems

presented with context. Bouvier et al. [2] provide an example of

a student who was uncertain about values of zero in the context

of Soloway’s rainfall problem [45] . To someone familiar with data

fromweather stations they would know that this meant the day had

no rain. The authors note that “however awkwardly, this student

was trying to make a connection between the numerical problem

and the context” [2, p. 103].

This theory of solving problems presented in a context is preva-

lent in the literature and, along with Cognitive Load Theory [32, 46],

is used to explain the difficulty of story problems. It has been argued

that context increases cognitive load and results in a problem being

more difficult. The argument goes that working memory is limited

and context requires the consideration of irrelevant information re-

sulting in a higher cognitive load [5]. On the other hand, it has been

argued that context can improve problem solving if the context

triggers an appropriate solution strategy [29].

In computer programming, a similar theory of problem solving

has been proposed involving two types of knowledge: semantic and

syntactic [44]. Semantic knowledge is used to translate a problem

from its initial representation into a plan or model that represents

a computer program. This knowledge is independent of the pro-

gramming language [38]. This type of knowledge is involved in

the Comprehension Phase of problem solving for context prob-

lems. According to Nowaczyk, “semantic knowledge is dependent

on problem solving ability” [38, p. 149]. Syntactic knowledge is

required to translate this plan into the symbols of the program-

ming language. Syntactic knowledge is required during the Solution

Phase.

In 2017, Bubnó and Takács presented a method for teaching

school children learning computer programming how to solve con-

text problems [3]. Their method employed Pòlya’s model [39] for

problem solving which maps well to current understandings of

problem solving for word problems in mathematics and computer

programming. The steps involved are: comprehend and understand

the problem; devise a plan (create a model to solve the problem, or

find the right algorithm); carry out the plan; and review/extend (re-

flect and test). The authors note that there are similarities between

the steps used to devise and write a computer program to solve a

problem and those used for solving mathematical problems.

While the literature in psychology supports the position that

context is helpful in problem solving, the seminal literature in

mathematics and early work in computer programming has had

mixed results. In the next subsections we summarize the research

in mathematics and computer programming based on their findings

in terms of problem context being helpful, harmful, and benign.

2.2 Context is Helpful
Wason’s selection task is a widely studied psychological test of logi-

cal reasoning that has been discussed in mathematics education (e.g.

[24]). The original selection task involved logical problem solving

without context. The test involves the implication rule: 𝑖 𝑓 𝑝 𝑡ℎ𝑒𝑛 𝑞

and four cards 𝑝 , 𝑛𝑜𝑡 𝑝 , 𝑞 and 𝑛𝑜𝑡 𝑞. Griggs and Cox [20] provide

an illustrative example of the test comprised of four cards showing

respectively, A, 4, D and 7, and the rule: 𝑖 𝑓 𝑣𝑜𝑤𝑒𝑙 𝑡ℎ𝑒𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 .

Each card has a letter on one side and a number on the other. Par-

ticipants are asked to select and turn over only the cards necessary

to test whether or not the rule is true. In its basic, context free form,

the Wason’s task has been found to be very difficult and is typically

solved successfully by fewer than 10% of participants [25, 47, 48].

Some follow on studies used context variants of Wason’s task find-

ing that context was helpful and led to vastly improved performance

on the task [49].

Koedinger and Nathan found that beginning algebra students

were more successful at solving simple algebra story problems

than solving the equivalent problem posed as a no-context, sym-

bolic problem [29]. Their problems involved more than one mathe-

matical operator and were presented as both start-unknown and

result-unknown problems. They claim their results are not just due

to situated world knowledge aiding problem solving, but are also

related to a fragile understanding of symbolic representations in

mathematics for novice learners. The authors go on to emphasise

the importance of external representations of problems and their

influence on problem solving. They note that when one representa-

tion is easier for learners to understand, or when one triggers the

retrieval and use of a more reliable solution strategy, it facilitates

problem solving. This conclusion echoes that of Griggs and Cox

[20] who argued that context works if the student has relevant

world experiences of the context and the task is presented in a

manner that triggers the student’s recall of that experience.

ACE ’21, February 2–4, 2021, Virtual, SA, Australia Juho Leinonen, Paul Denny, and Jacqueline Whalley

2.3 Context is Harmful
Early research on school children and their story problem solving

abilities reported that arithmetic and algebraic context problems are

difficult to solve [4, 37] and that more errors are made when solv-

ing story problems [19]. Cummins et al. found that math students

perform better on numeric problems than on matching problems

presented as stories, and go on to claim that story problems con-

tinue to be more difficult even as students progress [6]. The authors

noted that factors other than mathematical skills and knowledge

contribute to story problem solving success. They theorized that

the main barrier to success is mapping from linguistic input into

the mathematics domain knowledge and that “text comprehension

factors figure heavily in word problem difficulty” [6, p. 435]. This

view aligns with others in the literature who identify the compre-

hension phase and its associated cognitive processes as being the

primary reason for errors and problem solving difficulties for story

problems [7, 29, 31].

2.4 Context has No Effect
Some research has found little difference between problem solving

success in context and no-context problems. When context vari-

ants of Wason’s selection task were explored, some researchers

reported that adding context had no effect on problem solving [33].

The 2016 ITiCSE working group found no significant difference

in performance between novice programmers who attempted a

context problem and those who attempted its no-context variant

[2]. A subsequent controlled experiment [5] also reported a lack of

measurable context effect. In this case, the context domains were

chosen to be familiar to the students, having been included in earlier

course work, mitigating concerns about the ability of individuals

to retrieve relevant experiences of context. The authors concluded

that any advantage in context was outweighed by other factors

such as the complexity of terminology and the length of the prob-

lem descriptions. Similar findings are confirmed by Lovellette et al.

[32] who examined novice programmer performance on Soloway’s

rainfall [45] problem and its decontextualized “Just the Numbers”

variant.

3 RESEARCH METHODS
3.1 Participants and Timing
The study was conducted in an introductory programming course

at The University of Auckland. There were 917 students in the

course and the problems used in this study were given as part of

the final lab (in Week 12) of the course. Each student was given

two problems to solve, which were treated as “warm up” exercises

for the lab given their relative simplicity compared to assessment

tasks typical at the end of a CS1 course.

The students used an automated assessment tool, CodeWrite [12],

to complete and submit their answers to the two programming

problems. Each problem was presented as a problem description, a

method signature (including the return type and parameter list) and

one example output of the method along with the specific inputs

to generate the output. The problems were solved in the order

they were presented to the students. The tool enforced this order,

Table 2: Group Problem Allocation

Group A Group B Group C

of students 308 307 302

1st problem Wage 1 Donuts No-context 1

2nd problem Wage 2 Wage 2 No-context 2

which is important for this research as we examine the relationship

between the first problem and the second problem encountered.

3.2 Method
Students were randomly assigned into three groups, which we call

groups A, B, and C. Each group was assigned two problems that

relate to our study. For all groups, the first problem encountered

was a result-unknown problem and the second problem was a start-

unknown problem. In the first problem, students had to solve for

𝑥 in the equation: 𝑎 ∗ 𝑏 + 𝑐 = 𝑥 whereas in the second problem,

students had to solve for 𝑥 in the following equation: 𝑥 ∗ 𝑎 + 𝑏 = 𝑐 .

The exact problem descriptions are given in Figure 2.

The allocation of problems by group is shown in Table 2. Group A

were given two context problems, where the context remained the

same in both problems. Group B also had contextualized versions

of the problems, but the context was different for each problem. For

Group C, the problems had no context. In all cases, students were

given a description of the problem and the signature of the method

they were required to write.

For the analysis, unless otherwise specified, we examined the first

submission that a student made for a particular problem. Students

received immediate feedback on correctness following a submis-

sion, and could make as many submissions as were necessary for

them to solve the problem. Students were generally not under any

significant time pressure as these problems were relatively simple

and acted as “warm up” tasks at the beginning of the lab session.

To answer Research Question 1, “How does contextualization af-
fect correctness?”, the correctness of each compiling submission was

calculated based on unit test results. A score was given between

zero and ten depending on the number of passing test cases: the

score was linear so that a submission where all the tests fail would

receive a score of zero and a submission where all the tests pass

would receive a score of ten. Additionally, we calculated the num-

ber of passing, non-compiling, and failing submissions for each

problem.

Non-compiling submissions were not included in the correctness

analysis based on scores because they could not be tested against

the automatic test cases used to mark the large number of student

submissions. Moreover, including all non-compiling submissions

as failures in the analysis would also likely mean including pro-

grams with minor syntactic problems that are correct semantically

which would obfuscate the results and incorrectly bias the data

with respect to failed submissions.

To answer Research Question 2, “How does contextualization af-
fect time on task?”, we analyzed the number of submissions students

made for each problem. The number of submissions was used as a

proxy for time on task. Additionally, as another measure for time

Exploring the Effects of Contextualized Problem Descriptions on Problem Solving ACE ’21, February 2–4, 2021, Virtual, SA, Australia

Figure 1: Histogram of the elapsed times between first view
and first passing submission. The x-axis is elapsed time in
minutes and the y-axis is the number of students. The red
line shows the cutoff for the slowest 10% of students. The
tail of the distribution is long and students who spent over
30 minutes on a problem are not shown.

spent on task, we calculated the actual elapsed time from the mo-

ment a student first viewed a problem to the time they submitted a

successful solution. For both measures, outliers were removed to

improve reliability. The removals were only done for this particular

time on task analysis and do not affect the other analyses reported.

For the number of submissions, students who made more than 13

submissions for a problem (only 1% of the class) were removed

from analysis as this likely indicates a serious level of frustration or

difficulty unrelated to the problem wording. For the elapsed time

measure students who took the longest, those in the top 10%, were

removed from analysis: this means that only students for whom

the time between the first view of a problem and first passing sub-

mission was less than 761.5 seconds (12.7 minutes) were analyzed.

Removing the slowest 10% of students removes those who, for ex-

ample, took long breaks between reading a problem description

and submitting a solution to that problem. The histogram of the

elapsed times for a problem, for all of the problems (Figure 1) shows

that removing these outliers has little effect on the analysis results.

Moreover, this approach to filtering is consistent with much prior

work on programming process data in situations where students

are unobserved [11, 26, 30, 35].

To answer Research Question 3, “Does contextualization have an
effect on the type and number of errors students make?”, we examined

the total number of failing submissions (that is, compiling but not

passing all test cases) that students made for each problem, as well

as identifying the most commonly occurring combinations of failed

tests to explore the common types of errors being made.

When analyzing statistical significance, we used a Bonferroni

correction to account for multiple comparisons [1]. We did a total

of 18 statistical significance tests and thus had 𝑛 = 18 out of an

abundance of caution, even though the score, number of attempts

and time on task likely correlate with each other [30], meaning

𝑛 = 18 could be too conservative [36]. To consider a difference

significant, we used a threshold of 𝑝 < 0.05 after the correction. To

evaluate statistical significance, we used the Mann-Whitney U test

Table 3: Flesch-Kincaid Grade Levels

Problem Grade Level

Wage 1 11.1

Donuts 10.7

No context 1 12.3

Wage 2 11.8

No context 2 12.3

because the data is not normally distributed. For effect sizes, we

used Cohen’s d.

3.3 Problem Descriptions
The problems used in this study (see Figure 2) were adapted from

Koedinger and Nathan’s symbolic and story problem versions of

the wages and donuts problems [29]. The first problem (Wage 1,

Donuts, or No context 1) presented to each of the groups is a result-

unknown problem and the second problem (Wage 2, or No context

2) is a start-unknown problem. The problems were adjusted to suit

a computer programming exercise in which a method is written to

solve each problem. In our CS variants, the students were given a

description of the problem and a method signature. The method

signature included the return type and the parameters (name and

data types), and students were required to use this signature to solve

the problem (see Figure 2). Providing the signature meant that the

problem of designing the method was eliminated, and students

could focus on the actual arithmetic, algebraic and algorithmic

requirements.

We calculated the Flesch-Kincaid Grade Levels [27] for each of

the problem descriptions to establish whether the readability of the

assignments were equal. These are shown in Table 3. The grade

levels of the problems indicate that all of the questions are at a

high school readability-level, and thus should not pose problems

for the university-level students in our study. More importantly,

there are no notable differences between the problems with regards

to readability, so any difference in the performance of students

is likely unrelated to the complexity of the language used in the

problem descriptions.

4 RESULTS
4.1 Correctness of First Submissions
Figure 3 shows the distribution of the outcome of the first submis-

sion by problem. Most students solved the problem successfully in

their first submission regardless of which problem they were as-

signed. In all three groups, students had considerably fewer compila-

tion errors in their first submissions for the second (start-unknown)

problem than for the first (result-unknown) problem.

Additionally, the proportion of solutions that passed was higher

for the second problem than the first problem for all groups, al-

though the increase was considerably less for Group C. The pro-

portion of submissions where at least one of the tests did not pass

was quite similar across different problems and groups with two

exceptions. Firstly, for Group B, the first problem (B1) had nearly

ACE ’21, February 2–4, 2021, Virtual, SA, Australia Juho Leinonen, Paul Denny, and Jacqueline Whalley

Problem A1
Group A, 1st problem – Wage 1

context problem — result-unknown

John is a waiter and would like to calculate his total earnings during

his last shift. Make a function that calculates the total money earned

by John during his shift when he knows how many hours he has

worked, his hourly wage, and how much he has earned in tips

during his shift.

double TotalEarnedDuringShift(int hours, double wage, double tips)

Problem B1
Group B, 1st problem – Donuts

context problem — result-unknown

Alex owns a donut shop and would like to calculate how much he

should charge for a box of donuts. Make a function that calculates

how much Alex should charge when he knows how many donuts

fit in a box, the price of a single donut, and how much profit he

would like to make for each box of donuts.

double ChargeForDonuts(int donuts, double price, double profit)

Problem C1
Group C, 1st problem – No context 1

no-context problem — result-unknown

Make a function that calculates the value of x for the following

equation when 𝑎, 𝑏, and 𝑐 are given as parameters: 𝑎 ∗ 𝑏 + 𝑐 = 𝑥 .

double SolveEquation(double a, double b, double c)

Problem A2 & B2
Groups A & B, 2nd problem – Wage 2

context problem — start-unknown

Sarah wants to verify that her employer has paid her the correct

hourly wage for her last shift. Make a function that calculates the

hourly wage (not including tips) for Sarah when she knows how

many hours she has worked, how much money she has gotten as

tips, and how much she earned in total.

double HourlyWage(int hours, double tips, double total)

Problem C2
Group C, 2nd problem – No context 2

no-context problem — start-unknown

Make a function that calculates the value of x for the following

equation when 𝑎, 𝑏, and 𝑐 are given as parameters: 𝑥 ∗ 𝑎 + 𝑏 = 𝑐 .

double SolveEquation(double a, double b, double c)

Figure 2: Problem Descriptions

Figure 3: Distribution of Status of First Submissions by Prob-
lem and Group.

twice as many failing submissions (13%) when compared to Group

A (8%) and C’s (6%) first problem (A1 and C1 respectively). Sec-

ondly, Group C’s second problem (C2) had almost three times as

many failing submissions (20%) when compared with Groups A

and B’s second problem (A2 (7%) and B2 (8%) respectively). In short,

the Donuts problem stood out as being difficult for students in

Group B, whereas students in Group C struggled more with their

start-unknown no-context problem.

The average scores for each problem (out of 10, based on the

proportion of test cases passing) are provided in Table 4. Generally,

students achieved high scores for their first submissions: for almost

all of the problems, the average score is around 9.5 out of 10. Similar

to the results shown in Figure 3, there are two exceptions: the first

Group B problem and the second problem of Group C, both of which

were slightly harder for students. For Group B’s first problem (B1),

the average score is about 0.6 lower when compared to the average

score for the other two groups on their first problem (A1 and C1

respectively), and the difference is statistically significant between

B1 and C1 (𝑈 = 14693.5, 𝑝 = 0.0004, 𝑑 = 0.42). For Group C’s second

problem (C2) the average score is about 1 mark lower than other

groups on their second problems and this difference is statistically

significant between both A2 vs C2 (𝑈 = 24894.5, 𝑝 < 0.0001, 𝑑 =

0.45) and B2 vs C2 (𝑈 = 27149.0, 𝑝 < 0.0001, 𝑑 = 0.43).

4.2 Time on Task
The average number of attempts per problem are shown in Table 5.

There are no notable differences between the groups on either

problem. The first problems (A1, B1 and C1) required, on average,

slightly more attempts when compared to the second problems (A2,

B2 and C2). The largest difference observed was between problems

C2 (requiring 2.91 attempts) and A2 and B2 (requiring 2.49 and 2.38

Exploring the Effects of Contextualized Problem Descriptions on Problem Solving ACE ’21, February 2–4, 2021, Virtual, SA, Australia

Table 4: Average scores by problem. The average score for
problem C2 was statistically significantly lower than the av-
erage scores of the other two similar problems (A2 and B2).

Problem ID Problem Score avg. (sd)

A1 Wage 1 9.49 (1.47)

A2 Wage 2 9.53 (1.52)

B1 Donuts 8.89 (2.42)

B2 Wage 2 9.51 (1.67)

C1 No context 1 9.68 (1.08)

C2 No context 2 8.57 (2.58)

Table 5: Average number of attempts. Problem C2 required
significantly more attempts to solve than A2 and B2.

Problem ID Problem Attempts avg. (sd)

A1 Wage 1 3.40 (2.46)

A2 Wage 2 2.49 (1.15)

B1 Donuts 3.43 (2.29)

B2 Wage 2 2.38 (1.08)

C1 No context 1 3.23 (2.34)

C2 No context 2 2.91 (1.77)

attempts respectively). These differences are statistically significant:

C2 vs A2 (𝑈 = 39150.5, 𝑝 = 0.005, 𝑑 = 0.28) and C2 vs B2 (𝑈 =

36049.0, 𝑝 < 0.0001, 𝑑 = 0.37).

The average time (in seconds) between the first viewing of a

problem and the first passing submission can be found in Table 6.

The second problem for all groups was on average faster to com-

plete than the first problem, requiring approximately 2.3 minutes

compared with approximately 3.7 minutes.

For the first problem, Group C had the fastest average completion

speed of 171 seconds. In contrast, Groups A and B – who had to

make sense of the problem statement context – took 206 seconds

and 280 seconds respectively. In fact, students in Group B answered

their first problem (the Donuts problem, B1) significantly slower

than the other two groups: B1 vs A1 (𝑈 = 20307.0, 𝑝 < 0.0001, 𝑑 =

0.48) and B1 vs C1 (𝑈 = 16011.0, 𝑝 < 0.0001, 𝑑 = 0.71). For the

second problem, students in the no-context group (problem C2)

answered significantly faster compared to the other two groups:

C2 vs A2 (𝑈 = 36721.5, 𝑝 = 0.012, 𝑑 = 0.08) and C2 vs B2 (𝑈 =

31098.0, 𝑝 < 0.0001, 𝑑 = 0.24).

4.3 Common Errors
The total number of errors, the count of the most common error, and

the number of other errors per problem are shown in Table 7. When

looking at the most common errors students had in submissions,

where one or more of the test cases failed, we found two errors that

were far more frequent than other errors.

Firstly, for the problems encountered first, for all groups the

overwhelmingly most frequent error involved using integer values

Table 6: Average time on task in seconds. The time on task
for the first problem encountered in each group’s assign-
ment (result-unknown)was significantly longer than for the
corresponding second problem (start-unknown).

Problem ID Problem Time avg. (sd)

A1 Wage 1 206 (143)

A2 Wage 2 132 (98)

B1 Donuts 280 (166)

B2 Wage 2 152 (116)

C1 No context 1 171 (141)

C2 No context 2 124 (115)

Table 7: Frequency of Errors

Problem ID # Total Errors # Most Common # Other

A1 25 20 5

A2 23 6 17

B1 40 18 22

B2 25 6 19

C1 17 16 1

C2 59 33 26

rather than double values in the method body (e.g. see Figure 4).

This error was made even though students were given the method

signature clearly detailing the requirement for a double return type.

The use of integer temporary variables means that the double values

computed are truncated upon assignment (although a compiler

warning is issued for the type mismatch, the code is still executable).

This error occurred in 80%, 45%, and 94% of the submissions with

errors present in groups A, B, and C respectively.

Figure 4: Using integers instead of doubles was a common er-
ror in the first problem for all groups. An example solution
using integers instead of doubles in the Wage 1 problem.

Group B exhibited more and a wider variety of errors in their

solutions to their first problem, the Donuts problem, than Groups A

and C encountered for their Wage 1 and No context 1 problems. The

most common error observed in the Donuts problem was, as for the

Wages 1 problem, the use integers rather than doubles. Analyzing

ACE ’21, February 2–4, 2021, Virtual, SA, Australia Juho Leinonen, Paul Denny, and Jacqueline Whalley

the errors in more detail, we found that many of the errors students

made were related to misunderstanding the problem statement.

Figures 5 and 6 show examples of solutions that exhibit two of the

more common misunderstandings identified.

Figure 5: A misunderstanding where profit is calculated for
each donut instead of the whole box of donuts.

Figure 6: Some students mistakenly calculated the price per
donut instead of the price for the whole box of donuts.

For Group C’s second problem the most common error that

occurred (in 33 of the 59 first submissions with errors) was an

algebraic mistake. Students were required to write a program that

solves for 𝑥 in the equation 𝑥 ∗ 𝑎 + 𝑏 = 𝑐 . The common mistake,

shown in Figure 7 was caused by incorrectly rearranging the term

𝑎 + 𝑏 from the left hand side of the equation to the right hand side

by division, ending up with the incorrect equation 𝑥 = 𝑐/(𝑎 + 𝑏).
Solving this problem correctly requires subtraction of𝑏 and division

by 𝑎 to rearrange the equation so that 𝑥 = (𝑐 − 𝑏)/𝑎.
For the second problem, Wage 2, completed by both Groups A

and B, the errors were varied in both groups and there was no one

common error which dominated in the solutions which failed one

or more test cases. For these problems some students accidentally

included the waiter’s tips in the calculation, others had missing or

incorrectly placed parentheses, or returned an integer value.

5 DISCUSSION
Contrary to previous results in introductory programming [2], we

found that the context provided in the problem descriptions did

have an effect on students’ problem-solving. A possible explanation

for this difference is that the solutions to our problems were more

“mathematical”, whereas Bouvier et al. used a variant of the Rainfall

problem [2]. The solution to the Rainfall problem is more algorith-

mic in nature and therefore errors relating to weak knowledge of

mathematics may have been less frequent, and harder to measure

than algorithmic mistakes.

Figure 7: For the second no-context problem of Group C,
a common mistake was an incorrect rearrangement of the
equation.

In the first problem, students with theWage problem (A1) and the

no context problem (C1) solved their problems significantly faster

than the students with the Donuts problem (B1). This difference

is not caused by the Donuts problem being more linguistically

complex – in fact the Donuts problem had the lowest Flesch-Kincaid

Grade Level of all the task descriptions. Additionally, the Donuts

problem had the lowest average score of the first set of problems. It

is possible that students found the wage context easier to relate to,

perhaps due to part-time work experience. In the Donuts problem,

students had to assume the role of a business owner calculating

profits, which may be a less familiar scenario for many students.

This conjecture is consistent with the literature which suggests that

an individual’s familiarity with the problem context has an effect

on problem-solving [20].

Looking at the types of errors students made in the Donuts

problem (see Figures 5 and 6), another possible explanation for the

difficulty students had may relate to the comprehension phase of

problem solving, where relevant details must be extracted from

the story. The errors indicate that students might have solved the

wrong problem. For example, calculating how much the owner

should charge for an individual donut instead of for the whole box.

When comparing the narrative for the Donuts problem with that of

the Wage 1 problem, the words used in the Donuts problem (“price”

and “profit”) could be interpreted as referring to individual donuts

whereas “hourly wage” and “total earnings” in the Wage 1 prob-

lem do not suffer from the same ambiguity. This yields additional

support for earlier studies that have found that problems in the

comprehension phase cause the most errors when solving story

problems [7, 29, 31].

Surprisingly, there were no significant differences between group

A and group B with regards to performance and time on task on

their second problem, which was the same for both groups (Wage

2). Our initial hypothesis was that since the context changed for

group B, they would solve the second problem more slowly and

with less success – this was not the case.

Another interesting result is that while the second no-context

problem (C2) only took students 47 more seconds on average to

complete compared to the first no-context problem (C1), students

had lower scores and made more errors in their first submissions

for that second problem (C2) compared with the problem versions

that provided context (A2 and B2).

Delving into the reasons for this, we found that themost common

error in this assignment was related to weak algebraic knowledge.

The students were less able to rearrange the start-unknown prob-

lem (C2) than the previously attempted result-unknown problem

Exploring the Effects of Contextualized Problem Descriptions on Problem Solving ACE ’21, February 2–4, 2021, Virtual, SA, Australia

(C1). This supports earlier results in mathematics education where

lack of context has been shown to make assignments harder for stu-

dents [29] and that start-unknown no-context algebraic problems

are more difficult to solve than result-unknown problems [7, 29].

The fact that students performed better and made less errors

on A2 and B2 than on C2, may suggest that students are more

likely to make logical errors when solving a problem with no-

context and that context may help them, in certain circumstances, to

avoid algebraic mistakes. For example, the second context problem

(Wage 2) explicitly stated that when calculating the hourly wage,

tips should not be included. This may have helped the students

to construct a correct equation since they know that tips must

be subtracted from the total earnings. Additionally, the algebraic

version of the problemmight seem very simple and easy to students

at this point in their studies, which might cause them to make basic

mistakes they would not make with harder assignments.

An alternative explanation is that some students may have not

identified the need to cope with situations that would cause a divide

by zero error. This situation only occurs in C2 where to solve for 𝑥 ,

the students would need to divide by 𝑎 – and that will not work if

𝑎 is zero. In the context versions of this problem, 𝑎 (hourly wage)

cannot be zero, so the problem may have been simpler. However,

the test suite did not include a test case where 𝑎 was zero so it

is more likely the task took longer and was more error prone for

students who may have considered the divide by zero issue for C2.

Interestingly, in our study it took students in all groups less time

to complete their second start-unknown problem than their first

result-unknown problem. We might expect that a shorter time to

solve the second problem suggests that students found the start-

unknown problems easier. However, the scores for Group A and

B’s problems were relatively similar suggesting that in the case of

problems with context there is no difference in difficulty between a

result-unknown and a start-unknown problem. These findings con-

tradict those of previous work in mathematics, where it was found

that start-unknown problems are harder than result-unknown prob-

lems [29]. Additionally, students encountered roughly twice as

many compilation errors in the first result-unknown problem when

compared to the second problem, and students were more likely

to get the second problem correct on their first try. One possible

explanation for this is that they were less likely to make the same

syntactical mistakes on the second problem.

5.1 Threats to Validity
This study was conducted at the end of the course, with the prob-

lems presented to students as “warm up” tasks for their final labo-

ratory. These problems were relatively easy compared to the other

problems students were expected to complete near the end of the

course. Given their relatively simple nature, students should not

have struggled greatly with the syntactic aspects of coding their

solutions, and thus we believe that any differences between the

groups (A, B and C) are more likely due to effects of the problem

descriptions. However, because the problems were in the context

of the course “easy”, our results may not generalize to scenarios

where students are solving more difficult problems. Moreover, the

role of context in being helpful or unhelpful to students might be

different for problems with different levels of complexity.

The scoring of the problems was based on automated assessment

via test cases, i.e. whether specific test cases passed or not. While

the test cases were the same for the different groups (since they

were essentially solving the same equation), it is possible that the

test cases did not capture all possible mistakes students might have

made in their solutions.

Our analysis of the errors that students encountered was based

on the first submission they made to each problem. Some of the

errors we observed may not be due to the provided context of

the problem. For example, students were not penalised for making

multiple submissions and so some students may have submitted

incorrect code deliberately to simply obtain feedback from the tool.

However, there is no obvious reason why such behaviour would be

more common in one group than another.

6 CONCLUSIONS
In this work, we studied how the context provided in problem

descriptions affected the performance of introductory programming

students. We conducted a randomized controlled A/B study where

students were split into three groups. Each group had to program

two functions that essentially solve the same two linear equations.

For two of the groups, the problems were contextualized and for

one there was no context. For the two groups with context, one

group had the same context (calculating wages) for both problems,

and for one group the context changed (from calculating the profits

from donut sales to calculating wages).

Our results indicate that, contrary to previous results in introduc-

tory programming [2, 5], context might have an effect on problem

solving in programming. In our case, students found a contextual

version of a start-unknown problem to calculate wages easier to

solve than a non-contextual version which presented only the math-

ematical formula. One possible explanation for the difference is

that the previous studies in introductory programming had more

algorithmic problems, whereas in this study the problems were

more mathematical in nature. Our hypothesis is that appropriate

contextual information in the problem description can help students

with poor mathematical skills avoid making algebraic errors. This

conjecture is supported by earlier studies in mathematics education

that have found context to be helpful for students [29].

Our results suggest that context can be harmful for students

with respect to time on task. Students solving a problem where they

calculated profits for a donut shop spent significantly more time

solving the problem when compared with both the students solv-

ing a non-contextualized version of the problem and the students

solving the same problem with a different context. One possible

explanation for this effect is that students might have had trouble

extracting relevant information from the story even though the

problems were, according to their Flesch-Kincaid grade levels, of a

similar linguistic complexity.

Based on the results presented here, contextualizing the problem

descriptions for relatively simple programming tasks can be both

helpful and harmful with respect to solution correctness and time

on task. Thus, more research is needed to study the aspects of

context that affect problem solving in introductory programming

assignments, and to explore these effects across more complex tasks.

ACE ’21, February 2–4, 2021, Virtual, SA, Australia Juho Leinonen, Paul Denny, and Jacqueline Whalley

REFERENCES
[1] Richard A. Armstrong. 2014. When to use the Bonferroni correction. Ophthalmic

and Physiological Optics 34, 5 (2014), 502–508.
[2] Dennis Bouvier, Ellie Lovellette, John Matta, Bedour Alshaigy, Brett A. Becker,

Michelle Craig, Jana Jackova, Robert McCartney, Kate Sanders, and Mark Zarb.

2016. Novice Programmers and the Problem Description Effect. In Proceedings of
the 2016 ITiCSE Working Group Reports (Arequipa, Peru) (ITiCSE ’16). ACM, New

York, NY, USA, 103–118.

[3] Katalin Bubnó and Viktor L. Takács. 2017. The mathability of word problems as

initial computer programming exercises. In 2017 8th IEEE International Conf. on
Cognitive Infocommunications (CogInfoCom). 39–44.

[4] John Clement. 1982. Algebra Word Problem Solutions: Thought Processes Under-

lying a Common Misconception. Journal for Research in Mathematics Education
13, 1 (1982), 16–30.

[5] Michelle Craig, Jacqueline Smith, and Andrew Petersen. 2017. Familiar Contexts

and the Difficulty of Programming Problems. In Proceedings of the 17th Koli
Calling International Conf. on Computing Education Research (Koli, Finland) (Koli
Calling ’17). Association for ComputingMachinery, New York, NY, USA, 123–127.

[6] Denise Dellarosa Cummins, Walter Kintsch, Kurt Reusser, and Rhonda Weimer.

1988. The role of understanding in solving word problems. Cognitive Psychology
20, 4 (1988), 405 – 438.

[7] Gabriella Daroczy, Magdalena Wolska, Walt Detmar Meurers, and Hans-

Christoph Nuerk. 2015. Word problems: a review of linguistic and numerical

factors contributing to their difficulty. Frontiers in Psychology 6 (2015), 348.

https://www.frontiersin.org/article/10.3389/fpsyg.2015.00348

[8] Erik De Corte and Lieven Verschaffel. 1981. children’s solution processes in ele-

mentary arithmetic problems: Analysis and improvement. Journal of Educational
Psychology 73, 6 (1981), 765–779.

[9] Erik De Corte and Lieven Verschaffel. 1981. The effect of semantic structure

on first graders’ strategies for solving addition and subtraction word problems.

Journal for Research in Mathematics Education 18, 5 (1981), 363–381.

[10] Paul Denny, Brett A. Becker, Michelle Craig, Greg Wilson, and Piotr Ba-

naszkiewicz. 2019. Research This! Questions That Computing Educators Most

Want Computing Education Researchers to Answer. In Proceedings of the 2019
ACM Conf. on International Computing Education Research (Toronto ON, Canada)

(ICER ’19). ACM, New York, NY, USA, 259–267.

[11] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All Syntax Errors

Are Not Equal. In Proceedings of the 17th ACM Annual Conf. on Innovation and
Technology in Computer Science Education. ACM, New York, NY, USA, 75–80.

[12] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.

CodeWrite: supporting student-driven practice of java. In Proceedings of the 42nd
ACM technical symposium on Computer science education. 471–476.

[13] Paul Denny, James Prather, Brett A. Becker, Zachary Albrecht, Dastyni Loksa, and

Raymond Pettit. 2019. A Closer Look at Metacognitive Scaffolding: Solving Test

Cases Before Programming. In Proceedings of the 19th Koli Calling International
Conf. on Computing Education Research (Koli, Finland) (Koli Calling ’19). ACM,

New York, NY, USA, Article 11, 10 pages.

[14] Janine DeWitt and Cynthia Cicalese. 2006. Contextual Integration: A Framework

for Presenting Social, Legal, and Ethical Content across the Computer Security

and Information Assurance Curriculum. In Proceedings of the 3rd Annual Conf.
on Information Security Curriculum Development (InfoSecCD ’06). Association for

Computing Machinery, New York, NY, USA, 30–40.

[15] Sarah Esper, Stephen R. Foster, and William G. Griswold. 2013. CodeSpells:

Embodying the Metaphor of Wizardry for Programming. In Proceedings of the
18th ACM Conf. on Innovation and Technology in Computer Science Education
(Canterbury, England, UK) (ITiCSE ’13). Association for Computing Machinery,

New York, NY, USA, 249–254.

[16] Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of the Tenth
Annual Conf. on International Computing Education Research (Glasgow, Scotland,

United Kingdom) (ICER ’14). Association for Computing Machinery, New York,

NY, USA, 35–42.

[17] Andrea Forte and Mark Guzdial. 2005. Motivation and Nonmajors in Computer

Science: Identifying Discrete Audiences for Introductory Courses. IEEE Trans. on
Educ. 48, 2 (May 2005), 248–253.

[18] Ana García, Juan E. Jiménez, and Stephany Hess. 2006. Solving arithmetic word

problems: An analysis of classifications as a function of difficulty in children with

and without arithmetic LD. Journal of Learning Disabilities 39, 3 (2006), 270–281.
[19] David C. Geary. 1994. Children’s mathematical development: Research and practical

applications. American Psychological Association.

[20] Richard A Griggs and James R Cox. 1982. The elusive thematic-materials effect

in Wason’s selection task. British journal of psychology 73, 3 (1982), 407–420.

[21] Mark Guzdial. 2010. Does Contextualized Computing Education Help? ACM
Inroads 1, 4 (Dec. 2010), 4–6.

[22] Rogers Hall, Dennis Kibler, Etienne Wenger, and Chris Truxaw. 1989. Exploring

the Episodic Structure of Algebra Story Problem Solving. Cognition and Instruction
6, 3 (1989), 223–283.

[23] James Hiebert. 1982. The position of the unknown set and children’s solutions of

verbal arithmetic problems. J. Research in Mathematics Ed. 13, 5 (1982), 341–349.

[24] Matthew Inglis and Adrian Simpson. 2004. Mathematicians and the Selection

Task. In Proceedings of the 28th Conf. of the International Group for the Psychology
of Mathematics Education, Vol. 3. 89 – 96. https://eric.ed.gov/?id=ED489556

[25] Philip N. Johnson-Laird and Peter C. Wason. 1970. A theoretical analysis of

insight into a reasoning task. Cognitive Psychology 1, 2 (1970), 134–148.

[26] Ioannis Karvelas, Annie Li, and Brett A. Becker. 2020. The Effects of Compilation

Mechanisms and Error Message Presentation on Novice Programmer Behavior. In

Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New

York, NY, USA, 759–765.

[27] Peter J. Kincaid, Robert P. Fishburne Jr., Richard L. Rogers, and Brad S. Chissom.

1975. Derivation Of New Readability Formulas (Automated Readability Index, Fog

Count And Flesch Reading Ease Formula) For Navy Enlisted Personnel. Institute
for Simulation and Training 56 (1975), 48 pages. https://stars.library.ucf.edu/

istlibrary/56

[28] Walter Kintsch. 1998. Comprehension: A Paradigm for Cognition. Cambridge

University Press, New York.

[29] Kenneth R Koedinger and Mitchell J Nathan. 2004. The real story behind story

problems: Effects of representations on quantitative reasoning. The journal of the
learning sciences 13, 2 (2004), 129–164.

[30] Juho Leinonen, Leo Leppänen, Petri Ihantola, and Arto Hellas. 2017. Compar-

ison of time metrics in programming. In Proceedings of the 2017 acm Conf. on
international computing education research. 200–208.

[31] Anne Bovenmyer Lewis and Richard E. Mayer. 1987. Students’ miscomprehension

of relational statements in arithmetic word problems. Journal of Educational
Psychology 79, 4, 363–371.

[32] Ellie Lovellette, John Matta, Dennis Bouvier, and Roger Frye. 2017. Just the Num-

bers: An Investigation of Contextualization of Problems for Novice Programmers.

In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (Seattle, Washington, USA) (SIGCSE ’17). Association for Computing

Machinery, New York, NY, USA, 393–398.

[33] K. I. Manktelow and J. St B. T. Evans. 1979. Facilitation of reasoning by realism:

Effect or non-effect? British Journal of Psychology 70, 4 (1979), 477–488.

[34] RainaMason and Carolyn Seton. 2020. Assessing International Students: The Role

of Cognitive Load. In Proceedings of the Twenty-Second Australasian Computing
Education Conf. (Melbourne, VIC, Australia) (ACE’20). Association for Computing

Machinery, New York, NY, USA, 160–166.

[35] Davin McCall and Michael Kölling. 2019. A New Look at Novice Programmer

Errors. ACM Trans. Comput. Educ. 19, 4, Article 38 (July 2019), 30 pages.

[36] Matthew D Moran. 2003. Arguments for rejecting the sequential Bonferroni in

ecological studies. Oikos 100, 2 (2003), 403–405.
[37] Mitchell J. Nathan, Walter Kintsch, and Emilie Young. 1992. A Theory of Algebra-

Word-Problem Comprehension and Its Implications for the Design of Learning

Environments. Cognition and Instruction 9, 4 (1992), 329–389.

[38] Ronald H. Nowaczyk. 1984. The relationship of problem-solving ability and

course performance among novice programmers. International Journal of Man-
Machine Studies 21, 2 (1984), 149–160.

[39] George Pòlya. 1971. How to Solve It (2 ed.). Princeton University Press.

[40] James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa, Alani

Peters, Zachary Albrecht, and Krista Masci. 2019. First Things First: Providing

Metacognitive Scaffolding for Interpreting Problem Prompts. In Proc. of the 50th
ACM Technical Symposium on Computer Science Education (Minneapolis, MN,

USA) (SIGCSE ’19). ACM, New York, NY, USA, 531–537.

[41] Kurt Reusser. 1988. Problem solving beyond the logic of things: contextual effects

on understanding and solving word problems. Instr Sci 17 (1988), 309–338.
[42] Anthony Robins. 2019. Novice programmers and introductory programming. In

The Cambridge Handbook of Computing Education Research, Sally Fincher and

Anthony Robins (Eds.). Cambridge University Press, Cambridge, UK, Chapter 12,

327–376.

[43] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.

2015. Do We Know How Difficult the Rainfall Problem Is?. In Proceedings of the
15th Koli Calling Conf. on Computing Education Research (Koli, Finland) (Koli
Calling ’15). Association for Computing Machinery, New York, NY, USA, 87–96.

[44] Ben Shneiderman and Richard Mayer. 1979. Syntactic/semantic interactions in

programmer behavior: A model and experimental results. International Journal
of Computer and Information Sciences 8 (1979), 219–238.

[45] Elliot Soloway. 1986. Learning to program= learning to construct mechanisms

and explanations. Commun. ACM 29, 9 (1986), 850–858.

[46] John Sweller. 1988. Cognitive Load During Problem Solving: Effects on Learning.

Cognitive Science 12, 2 (1988), 257–285.
[47] P. C. Van Duyne. 1974. Realism and Linguistic Complexity in Reasoning. British

Journal of Psychology 65, 1 (1974), 59–67.

[48] Peter C. Wason and Philip N. Johnson-Laird. 1972. Psychology of Reasoning:
Structure and Content. Harvard University Press, Cambridge, MA.

[49] Peter C. Wason and Diana Shapiro. 1971. Natural and contrived experience in a

reasoning problem. Quarterly J. of Experimental Psychology 23, 1 (1971), 63–71.

[50] Svetlana Yarosh and Mark Guzdial. 2008. Narrating Data Structures: The Role of

Context in CS2. J. Educ. Resour. Comput. 7, 4, Article 6 (Jan. 2008), 20 pages.

https://www.frontiersin.org/article/10.3389/fpsyg.2015.00348
https://eric.ed.gov/?id=ED489556
https://stars.library.ucf.edu/istlibrary/56
https://stars.library.ucf.edu/istlibrary/56

	Abstract
	1 Introduction
	2 Related Work
	2.1 Context, Cognition and Problem Solving
	2.2 Context is Helpful
	2.3 Context is Harmful
	2.4 Context has No Effect

	3 Research Methods
	3.1 Participants and Timing
	3.2 Method
	3.3 Problem Descriptions

	4 Results
	4.1 Correctness of First Submissions
	4.2 Time on Task
	4.3 Common Errors

	5 Discussion
	5.1 Threats to Validity

	6 Conclusions
	References

