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ABSTRACT
The time that students spend on assignments, i.e. time-on-
task, has been used frequently in prior research to under-
stand student affect, study habits, and course performance,
among others. The choice for how time-on-task is calculated,
however, is typically based on available data. This data can
be very coarse-grained, such as the timestamps from stu-
dents’ assignment submissions. Using coarse-grained data to
calculate time-on-task has limitations, such as not being able
to determine whether students take breaks when working on
an assignment. In this work, we analyze the differences be-
tween two time-on-task metrics, one based on coarse-grained
data—in this case, student submissions—and one based on
fine-grained data—in this case, students’ keystrokes during
an assignment. We compare these two metrics and exam-
ine how well they correlate to find out whether time-on-
task based on coarse-grained data can be an accurate metric
for understanding the time spent by students on an assign-
ment. Our results show that the correlation between the
two metrics that are supposed to measure the same under-
lying phenomena—time-on-task—is only weak to moderate.
This suggests that fine-grained data might be needed to ac-
curately estimate time-on-task.
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1. INTRODUCTION
Time-on-task—the amount of time that a student spends
actively engaged in a task—is considered as one of the most
important factors that contribute to learning and achieve-
ment [14, 30, 32]. Measuring time-on-task focuses on iden-
tifying active time that is spent on a task, instead of the
overall time that includes breaks and time spent on unre-
lated activities. Time-on-task has been measured through

various means: student self-reports [27], stopwatches [8], pe-
riodic observations [3], video recordings and eye movement
data [4], and learning management system log data [17].
While all of these can be considered as proxies for time-on-
task, accurately estimating time-on-task remains a challeng-
ing problem that deserves further attention [14,17].

In this work, we study (a) to what extent two different
types of log data—timestamped keystroke data and times-
tamped submission data from an introductory programming
course—can be used to measure students’ time-on-task and
(b) to what extent time-on-task estimates produced with
this data represent the same phenomenon. Our work is mo-
tivated by the need to distinguish between different types of
data and the time-on-task estimates that can be produced
with them. As numerous metrics have been used as proxies
for time-on-task, if these metrics are not in line with each
other, results from studies using them may not be compa-
rable. That is, differences between observed results, or even
contradictory results, could be explained to some extent by
the difference in the chosen time-on-task metric.

Some studies similar to ours include work by Kovanović
et al. [16] and Nguyen [23]. Kovanović et al. [16] built and
compared a range of time-on-task metrics for evaluating
students’ performance, highlighting methodological issues.
Nguyen [23], on the other hand, evaluated methods for iden-
tifying off-task behavior, also correlating the resulting esti-
mates with academic performance. While these studies have
used click-stream or event data from learning management
systems such as Moodle, the data in our study comes from
an introductory programming course where work on pro-
gramming assignments is logged keystroke by keystroke.

This article is structured as follows. In Section 2, we discuss
related time-on-task studies, starting with an overview of
earlier studies on time-on-task and time-on-task estimates
within learning programming, with a brief outline of studies
that have analyzed different time-on-task estimates. We de-
scribe our context, data, research questions, and metrics in
Section 3, and outline the analyses and results in Section 4.
We discuss our findings and outline future work in Section 5.

2. RELATED WORK
2.1 Measuring Time-on-Task
Early work with time-on-task often involved on-site obser-
vations (e.g. in classrooms) where coders manually recorded

Juho Leinonen, Francisco Enrique Vicente Castro and Arto Hel-
las “Fine-Grained Versus Coarse-Grained Data for Estimating Time-
on-Task in Learning Programming”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 648-653.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

648 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)



and/or timed behaviors based on a coding rubric of on-task
behaviors, also linking teacher’s behavior with students’ be-
havior (e.g. [2, 10, 15]). Over time, technology advancement
led to the now-prevalent practice of mining user interac-
tion logs from educational software used in classrooms or
technology-augmented learning activities. This has made
the analysis of user logs a vital component of more recent
learning and behavior studies, such as in predicting help-
seeking behavior [5] or assessing performance [9]. Time-on-
task studies have likewise turned to this direction. Some
examples (proxies for time-on-task in parentheses) include:
analyzing the relationship of gamified elements to time-on-
task (number of edits) [18] and comparing the impact of
different course interventions to time-on-task (online inter-
actions with peers and accessing course materials) [25]. Of
note, both in earlier and more recent time-on-task studies,
are the different measures or proxies used for time-on-task,
and the methods used for identifying or approximating off-
task activity and breaks. These are key factors that we
explore in our comparison of coarse- and fine-grained time-
on-task metrics.

In research focused on time-on-task in learning to program,
a conventional approach has been to log user interactions
within integrated development environments (see e.g. [13,
21,22,24,29]). For example, Jadud [12] used the BlueJ IDE
to capture code “snapshots” (copies of source code) when-
ever students compiled their programs, including compiler-
reported errors and related metadata. Rodrigo et al. used
BlueJ logs in combination with student surveys and observa-
tions to explore relationships between novice programmers’
achievement, debugging, and syntax errors [26].

Submission data has been used to estimate students’ total
elapsed time, the total time between a student’s first submis-
sion and last submission. Edwards et al. noted that the dif-
ference in total elapsed time between high- and low-scoring
students is only small [6]. Similarly, the time between com-
pilation events has been studied previously; Jadud observed
that students are likely to recompile quickly after encounter-
ing a syntax error, but spend more time working on code af-
ter a successful compilation [11]. Definitions of work sessions
also differ between studies. For example, Fenwick et al. [7]
considered a “work session” terminated when no events were
logged for 60 minutes. While the previous examples demon-
strate the use of time from snapshots for estimating time-
on-task, other studies in programming have explored using
event counts (similar to other fields) for building predictive
models of student achievement. For example, Ahadi et al. [1]
used assignment-specific log data that included the number
of “steps” that students took to solve each assignment for
predicting course outcomes.

The time-on-task metrics in these (and other studies, e.g. [20,
28, 31]), however, suffer from similar problems of failing to
capture the nuances around actual working time, as even
the “work sessions” may fail to account for when and how
students are working offline.

2.2 Analyzing Time-on-Task Estimates
Variations on time-on-task measures across studies and re-
search instruments make it difficult to interpret and com-
pare findings and bring into question whether or not the

different metrics are indeed measuring or evaluating similar
constructs. Some researchers have begun to explore this by
looking at the different ways that researchers estimate time-
on-task and analyzing how these estimation choices impact
conclusions drawn from these measures.

Kovanović et al. [16], for example, looked at different time-
on-task estimates from learning management system data
and examined the impacts of these across courses from dif-
ferent subject domains. Their findings suggest that strate-
gies for time-on-task estimation can have significant effects
on learning analytics models of student performance. Using
data collected from an introductory programming course,
Leinonen et al. [19] examined a family of time-on-task-related
metrics such as self-reported study time, log-based time spent
on assignments, and event counts correlated with each other
as well as course exam outcomes. They noted that while
similar metrics such as edit counts and event counts tended
to have higher correlations, exam scores were not strongly
correlated with any of the metrics, except for the number of
completed assignments.

While Leinonen et al. [19] did not analyze the impact of dif-
ferent break durations when estimating time spent on assign-
ments, different break durations have been studied by both
Kovanović et al. [16] and Nguyen [23]. Kovanović et al. and
Nguyen both used time-on-task estimates based on times-
tamp differences between two subsequent events in learning
management systems and highlight the importance of a good
time-on-task estimation strategy.

Our work builds on this prior work by looking into data from
an introductory programming course, where each keystroke
associated with a course assignment was recorded and times-
tamped. Using this fine-grained log data, we study the im-
pact of different thresholds for measuring off-task behav-
ior, contrasting the keystroke data with submission-based
data more commonly used in studies focusing on academic
achievement in learning programming.

3. METHODOLOGY
3.1 Context and Data
The data for our study comes from a 7-week introductory
programming course offered at a research first university in
Europe. The workload of the course is 5 ECTS, which cor-
responds to roughly 100 to 125 study hours. In the course,
students learn the basics of procedural and object-oriented
programming in Java. The course uses a many small assign-
ments approach, where many of the course assignments are
small, but combine to form larger programs. After working
on small assignments, students are given larger assignments
as well, where they practice the content and constructs that
they have learned earlier.

In total, the course had 147 programming assignments. The
programming assignments are worked on in an integrated
development environment (IDE), that logs keystroke data
for plagiarism detection and research purposes. On each
keystroke, the IDE collects the current timestamp and the
modification to the source code of the assignment that the
student is currently working on. Keystroke data is gathered
only from course assignments. Additionally, information on
when students submit their assignments is collected.
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Students were informed about the data gathering on the
course; our analyses included data from 137 students who
consented to the use of their data for research purposes and
who completed at least 10 assignments in the course.

3.2 Research Questions and Metrics
Our research questions are as follows:

RQ1. How do fine- and coarse-grained time-on-task metrics
differ in terms of measuring time-on-task?

RQ2. Are there differences (a) between students and (b) be-
tween assignments on how well coarse-grained time-
on-task correlates with fine-grained time-on-task?

In this study, we compare two different metrics for time-
on-task that we call coarse-grained time-on-task and fine-
grained time-on-task. The metrics are calculated for each
student for each exercise they attempted and submitted.

Coarse-grained time-on-task is calculated as the difference
between the timestamp of the first submission and the first
keystroke event for that assignment. We used the first sub-
mission instead of the last submission since some students re-
submitted assignments that they had previously completed
“just in case” right before the deadline. However, the choice
of first versus the last submission does not affect the results
considerably: in 95% of the cases, students only had a single
submission for each assignment.

Fine-grained time-on-task was calculated by computing the
differences between keystroke timestamps in the data until
the first submission of the assignment while ignoring any
differences that were greater than a break threshold that is
used to approximate off-task behavior or “outliers”. Differ-
ent values for the break threshold are explored and reported.

The key difference between the two metrics is that the fine-
grained time-on-task takes into account the breaks that stu-
dents take while working on assignments, whereas the coarse-
grained time-on-task does not. If the break threshold is ar-
bitrarily large, no breaks are removed when computing the
fine-grained time-on-task, and the two metrics are identical.

4. ANALYSES AND RESULTS
4.1 Differences Between Time-on-Task Metrics
To answer RQ1, we first analyzed different break thresh-
old values to examine how different thresholds affect the
number of distinct study sessions in the data. We define a
distinct study session as any sequence of snapshots for an
assignment between breaks in the data, where what is con-
sidered as a break depends on the break threshold. We then
examined how the choice of break threshold affects the cor-
relation between the coarse- and fine-grained time-on-task
metrics across the whole data set. The strength of the cor-
relation between the metrics can signal whether the metrics
are measuring the same phenomenon, i.e. time-on-task.

Figure 1, in Appendix, shows how having a different break
threshold for the fine-grained time-on-task affects the num-
ber of distinct study sessions for thresholds between 30 sec-
onds and 1200 seconds (i.e. 20 minutes). We see that having
a very low threshold (e.g. anything under 100 seconds) re-
sults in a very high number of study sessions compared to

having a higher break threshold (e.g. anything over 600 sec-
onds, i.e. 10 minutes). The figure only shows the number of
sessions up to a break threshold of 20 minutes since at that
point, the decrease in the number of sessions is very small.
What this essentially illustrates is that if a student takes a
short break of under 200 seconds or so, they are quite likely
to return to the task, but if the break is longer (e.g. over
10 minutes), they are not likely to return to the task soon.
Based on this, in our data, a break threshold of around 600
seconds would seem reasonable as at that point, the rate of
decrease plateaus.

Figure 2 (Appendix) shows the Pearson’s correlation coeffi-
cient between coarse- and the fine-grained time-on-task met-
rics for different break thresholds between 30 seconds and
1200 seconds (20 mins.). We first note that for all the thresh-
olds visualized in Figure 2, the correlation is weak since it
varies between 0.33 and 0.37. The figure shows that the cor-
relation increases slightly as the break threshold gets bigger,
but similar to the number of study sessions, the rate of in-
crease seems to plateau at around the 600 second (10 min.)
mark. The correlation does continue increasing beyond what
is visualized in the figure and eventually, at around 13 days,
it reaches 1, where the fine- and coarse-grained time-on-task
metrics are equal. This means that some students had a
break of around 13 days within a single assignment.

4.2 Student and Assignment-Specific Correla-
tions Between Time-on-Task Metrics

To answer RQ2a, we first calculated both time-on-task met-
rics for each student for each assignment they submitted. We
then calculated the correlation between the metrics for each
student separately, which leaves us with a single correlation
per student. We examine the distribution of these correla-
tions to understand if there are differences between students
on how much the fine- and coarse-grained time-on-task met-
rics correlate. To answer RQ2b, we calculated the correla-
tion between the coarse- and fine-grained metrics for each
assignment separately, leaving us with a single correlation
per assignment. Similar to RQ2a, we study the distribution
of these correlations to see if there are assignment-specific
differences in how well the two metrics correlate.

For analyzing student and assignment-specific differences in
how well the coarse- and fine-grained time-on-task metrics
correlate, we used a break threshold of 600 seconds (i.e. 10
minutes) for the fine-grained time-on-task metric. We chose
600 seconds as the results for RQ1 showed that in our data,
600 seconds seems like a reasonable value to consider a stu-
dent being on a break (Section 4.1).

Figure 3, in Appendix, shows the distribution of the cor-
relations between the coarse- and fine-grained time-on-task
metrics for individual students. The mean correlation is 0.47
with a standard deviation of 0.24 and the 95% confidence in-
terval is 0.43 to 0.51. We notice from the figure that there
are differences between students in how well the coarse- and
fine-grained time-on-task metrics match each other. On av-
erage, the correlation seems moderate, with most students
having a correlation between 0.2 and 0.6.

Figure 4, in Appendix, shows the distribution of the correla-
tions between the coarse- and fine-grained time-on-task met-
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rics for individual assignments. The mean correlation is 0.33
with a standard deviation of 0.21 and the 95% confidence in-
terval is 0.30 to 0.36. We notice from the figure that similar
to students, there are also differences between assignments.
Compared to the between-students analysis (RQ2a), the as-
signment distribution is slightly more centered around the
mean. Similar to the between-student analysis, the correla-
tions for the assignments are also, on average, moderate.

5. DISCUSSION
5.1 Coarse- vs Fine-Grained Time-on-Task
We observed that our coarse-grained time-on-task metric
poorly approximated our fine-grained time-on-task metric.
The coarse-grained metric imitates metrics from earlier work
where time-on-task has been calculated based on, for exam-
ple, students’ first and last submissions for an assignment [6],
while the fine-grained time-on-task metric is somewhat sim-
ilar to earlier works that utilized LMS trace data [16], al-
though considerably more fine-grained.

We propose that the fine-grained metric explored in this
work is a better metric for measuring time-on-task than a
metric that relies on coarse-grained data, but removes out-
liers to keep time-on-task values meaningful. Prior work
has suggested, for example, that large values are just ig-
nored [16]. However, if we rely on removing outliers, we are
bound to include data that is not accurate that was simply
not caught by the outlier detection. For example, if two stu-
dents both have a time-on-task estimate of two hours with
a coarse-grained time-on-task metric, it is possible that one
of them worked for ten minutes, while the other worked for
a full 120 minutes. In this case, the actual time-on-task
is drastically different, but the coarse-grained time-on-task
estimate would be the same for both.

One downside of the fine-grained time-on-task metric is that
it requires a break threshold to calculate time-on-task. De-
ciding on a good break threshold is not straightforward, and
is most likely context-dependent. This work is not the first
to note this issue: for example, both Nguyen [23] and Ko-
vanović et al. [16] examined different cut-offs for outlier de-
tection, which is similar to our work in examining different
break thresholds.

5.2 Student- and Assignment-Specific Corre-
lations

We identified student- and assignment-specific differences in
how well coarse- and fine-grained time-on-task metrics cor-
relate. This makes sense since the main difference between
the metrics is that the fine-grained metric takes the breaks
students take into account; thus, if a student does not take
many breaks while working on assignments, the difference
between the two time-on-task metrics will not be significant
compared to a student who takes long breaks within single
assignments. Here, factors such as possible previous pro-
gramming experience and study fatigue may come into play
and should be analyzed in future work.

Similarly, we found that there are differences between as-
signments in how much the two metrics correlate. Since the
course has many small assignments, but also some bigger,
more complex assignments, it makes sense that, for example,

students might take more breaks during the bigger assign-
ments compared to the smaller ones, which would have an
effect on the correlation between the two metrics.

5.3 Conclusion and Future Work
In this work, we studied how two different time-on-task met-
rics built from programming log data correlate with each
other. One of the metrics utilizes fine-grained keystroke data
and takes the breaks students take during assignments into
account by not including the breaks in its time-on-task esti-
mate. The other time-on-task metric is more coarse-grained
and includes any breaks students take during assignments
in its time-on-task estimate.

Our results show that the correlation between the two met-
rics is at best moderate, which suggests that the choice of
time-on-task metric can significantly impact the results of
studies based on time-on-task analysis. This brings into
question whether previous results that have used different
metrics for measuring time-on-task are comparable with one
another. Additionally, our results show that, at least in our
context, there are also student- and assignment-specific dif-
ferences in how much the two metrics correlate.

We acknowledge that we do not have a ground truth for time
on task, i.e., both our metrics are only proxies. As part of
our future work, we are looking into augmenting keystroke
data from the programming environment with log data from
other learning environments and self-reported time-on-task
estimates. Similarly, in this work, we examined different
break thresholds over all the data when identifying a break
threshold; in future work, we will be looking at to what
extent optimal break thresholds vary between students. We
also acknowledge that we did not analyze how time-on-task
relates to course outcomes, which has often been included in
time-on-task studies (e.g. [16,19,23]). In the future, we will
also be looking into how the studied metrics and different
break thresholds relate to course performance.
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APPENDIX
A. FIGURES

Figure 1: Number of distinct study sessions with differ-
ent thresholds for breaks for the fine-grained time-on-
task metric. The x-axis is the threshold for considering
the student to be on a break in seconds. The y-axis is
the number of study sessions in the data. Data is shown
for thresholds between 30 seconds and 1200 seconds (20
minutes).

Figure 2: The correlation between the coarse and the
fine-grained time-on-task metric with different thresholds
for breaks for the fine-grained time-on-task metric. The
x-axis is the threshold for considering the student to be
on a break in seconds. The y-axis is the Pearson corre-
lation coefficient between the coarse and the fine-grained
time-on-task metric. Data is shown for thresholds be-
tween 30 seconds and 1200 seconds (20 minutes).

Figure 3: The distribution of student-specific correlations
between the coarse- and fine-grained time-on-task met-
rics, where fine-grained time-on-task was calculated with
a 600 second break threshold. The x-axis is the Pearson
correlation coefficient and the y-axis is the density.

Figure 4: The distribution of assignment-specific corre-
lations between the coarse and the fine-grained time-on-
task metrics, where fine-grained time-on-task was calcu-
lated with a 600 second break threshold. The x-axis is
the Pearson correlation coefficient and the y-axis is the
density.
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