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ABSTRACT
How students are assessed has a powerful effect on their strategies
for studying and their learning. When designing assessments, in-
structors should consider how different approaches for providing
feedback to students could encourage positive learning behaviours.
One such design is the use of interim deadlines that enable stu-
dents to receive and respond to feedback. This is used to encourage
students to start early and thus reduce the negative effects of pro-
crastination. If multiple submissions are allowed, penalty schemes
can be included to encourage students to reflect deeply on the
feedback they receive, rather than developing an over-reliance on
autograders. In this work we describe two approaches to feedback
used over two consecutive semesters for a final project in a large in-
troductory programming course. In both semesters, the complexity
and structure of the final project was similar and students received
identical instruction. In the first instance of the course students
could submit their work prior to two scheduled interim deadlines,
after which they would receive automated feedback, before meet-
ing a final third deadline. In the second instance, students received
automated feedback immediately upon submission but with increas-
ing penalties to discourage excessive submissions. In both cases,
the ability to receive automated feedback – both scheduled and
immediate – was designed to encourage early participation with
the project. Under the two feedback schemes, we observed different
patterns of behaviour – particularly for the lower performing stu-
dents. We explore the benefits and drawbacks of the two schemes
and consider implications for future project grading.
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1 INTRODUCTION
Giving students feedback in introductory programming courses
is important for their learning [27]. In traditional introductory
programming courses, students typically receive feedback for their
project work sometime after the deadline for the project has passed.
Such feedback is often produced manually by markers or teaching
assistants, and can take considerable time and effort to produce.
When feedback is only received by students after the due date, and
no revisions are allowed, it limits their opportunity to learn since
there is no incentive to improve solutions based on the feedback.

One common feedback method utilized in contemporary pro-
gramming courses is to give students automated feedback and
marks generated by an autograder [1, 22]. The adoption of auto-
graders at least in some part has been pragmatically motivated by
large classes and growing enrolments in computing degrees and
courses. Assessment structures that use autograders have the ad-
vantage that they allow for more than one submission and allow
students to receive immediate feedback. The feedback provided
can then be used by students to change and improve their solu-
tions. Such assessment models provide genuine feedback and follow
the ideology of assessment for learning [41]. How and when feed-
back is given is known to affect student behaviour. Prior work
has found that students are more likely to submit work close to
deadlines [14, 29]. Arguably, this is an undesirable behaviour that
negatively affects student performance.

When choosing how students are graded and how feedback is
given, one aspect instructors often consider is adoptingmechanisms
that influence student behaviours in a positive way. For example,
as some students procrastinate on assignments and their perfor-
mance is negatively affected as a result [21], some studies have
focused on influencing students’ time management with explicit
interventions such as reminder emails [15]. Another option is to
include fixed interim deadlines where students receive early feed-
back on their programs and can adjust their solutions before the
assessment’s final deadline [14]. Instructors can also choose to let
students receive immediate feedback based on autograders [27].
However, immediate unlimited feedback from autograders can re-
sult in over-reliance on the feedback [3]. Some solutions that have
been proposed in order to reduce reliance on automated feedback
are: submission limits [1], timers [30], or penalties for excessive sub-
missions [3]. Nevertheless, there is no consensus on how feedback
should be given to students in a way that maximises the benefits
while avoiding problems related to over-reliance.
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In this experience report, we present results from two iterations
of an introductory programming course where two different ap-
proaches to automated feedback were trialed. In the first approach,
there were two interim optional deadlines at which point students
would receive automated feedback on work they had submitted.
In the second approach, students could access immediate feedback
with increasing penalties being applied for multiple submissions
to curb over-reliance on the autograder. Our primary goal in this
work is to understand how different schemes for giving feedback
affect students’ behaviour, and to especially focus on how at-risk
students are affected, since prior work has found that such effects
might be more pronounced for lower performing students [24].

2 RELATEDWORK
Many traditional computer programming feedback mechanisms
limit the opportunity for students to learn from the feedback. Provid-
ing learners with useful, actionable feedback is considered critical
to learning and is known to affect engagement and performance [35,
p. 1930]. Moreover, this feedback must be timely and detailed in
order for it to have any real educational value [35]. Consequently, it
is not sufficient to consider only the nature of the feedback provided
in response to an assignment – as educators we must also consider
how the feedback can be used by students [34].

2.1 Feedback mechanisms
The first time a novice encounters feedback on their programs is
usually when dealing with cryptic feedback, from an interpreter
or compiler, on syntax [12]. As a result there is a growing body of
research into the provision of improved and easy to understand er-
ror messages [4, 13]. Another type of immediate and automatically
generated feedback that novices may encounter is in the form of
output from unit tests. This type of feedback has been shown to help
novice programmers write specification compliant and function-
ally correct code [8, 9]. However other researchers have reported
that while novices find this type of feedback helpful for improving
their code they also find unit test output difficult to interpret [40].
Some researchers have examined software metrics [6, 28] as an
alternative feedback mechanism but found that novices struggle to
interpret metric-based feedback [28].

Automated feedback systems, or autograders [11, 16, 17, 32], are
reported to be convenient for students and provide useful process
data for instructors [23, 36]. Students generally view automated
feedback systems positively [19] and the benefits of such systems
are well documented [38]. While autograders are acknowledged
to be a valuable tool for managing assessments in large classes,
there are downsides to their use. In a recent paper “STOP THE
(AUTOGRADER) INSANITY”, Baniassad et al. highlight the issue
of student over-reliance on autograders [3]. Students tend to use
such systems as a crutch frequently submitting and using the auto-
mated feedback to guide their work rather thinking for themselves:
“students tweak and submit as often as they can and predominantly
rely on autograder feedback to direct their work. Ultimately, they
are learning the grader, not learning the concepts” [3, p. 1062]. To
mitigate this, the authors explored a penalty scheme where marks
were deducted if a new submission resulted in a lower grade than a
previous submission. The intent was to motivate students to test

their own solutions rather than relying on the autograder feedback
alone [3]. The authors reported that while the penalty scheme did
cause some anxiety for students, it resulted in them testing their
own solutions rather than always relying on the autograder.

2.2 Effects of feedback on behaviour
Procrastination [10, 21] and poor time management [39] have been
identified as key problems for novice programmers and are in-
dicative of inadequate self-regulatory skills [33]. There has been
some research into the efficacy of interventions designed to re-
duce procrastination. Regular automated emails reminding stu-
dents of impending deadlines were shown to have some limited
success [15]. One study found that time management related visual-
isations mostly helped lower performing students, and that specific
visualisations could even have adverse effects [24].

Most educators believe that encouraging students to start work
early improves performance and research supports this [2, 18, 20,
42]. However, other research has shown that the time a student
starts has very little effect on assessment outcomes [31]. Overall,
there is more evidence supporting the premise that starting an
assessment early has a positive influence on performance.

A number of interventions have been reported that provide as-
sessment structures that encourage students to start early and work
consistently. The use of mandatory staged problem solving ses-
sions was found to result in engaged students who started their
programming assignments earlier [42]. Irwin and Edwards used an
energy bar, similar to those found in mobile games, in an effort to
get students to spread their work out over the entire period of a
programming assessment [26]. Students could submit their work
for automated feedback as many times as they wished but each sub-
mission resulted in a loss of energy which would slowly regenerate
over time. The goal of this gaming mechanism was to encourage
students to begin their work earlier, however in practice students
simply made fewer submissions. A similar mechanism was used by
Indriasari et al. to influence students to complete peer code reviews
ahead of a deadline [25]. Spacco et al. allowed students to submit
their program code for testing, but in doing so they would consume
a ‘token’ which would regenerate after 24 hours [37]. Both the
energy bar and token systems were designed to limit the frequency
with which students could submit to the autograder, yet students
retained the freedom to submit at any time. Bouvier et al. describe
a different approach, involving ‘overnight feedback’, for encour-
aging students to start early [5]. Students received feedback on a
fixed schedule, once per night, over the course of a programming
assignment. The authors report that students found the feedback
helpful, and observed that fewer late submissions were made after
the final deadline.

A recent paper on text comprehension examined two different
assessment feedback scheduling approaches [7]. The assessment
involved reading some text and then answering 12 questions about
the text. Students were randomly allocated into one of three groups:
no feedback (a control group), immediate feedback, or delayed feed-
back. Students in the immediate feedback group received feedback
on a by-question basis whereas the delayed feedback group received
feedback only after a block of four questions had been completed.
They found that both groups of students who received feedback



read the text faster than the control group because the students
knew they would have the opportunity to correct their answers
based on the feedback and resubmit. The authors also reported that
while feedback enhanced answer accuracy, there was no advantage
in delayed feedback over immediate feedback. While this study is
not situated in the context of novice programming, its findings are
interesting and relevant to the mechanisms explored here.

In this paper, we describe our experiences using both a scheduled
feedback system (where students receive feedback only if they sub-
mit their work prior to fixed scheduled deadlines) and an immediate
feedback system (where students receive feedback instantly when
submitting their work, but accrue penalties for over-reliance on
the autograder). While both types of feedback have been utilised
in prior studies, our work is novel in comparing the two types
in two subsequent iterations of the same course, which can help
in understanding their effects on students’ submission behaviour.
We compare the two approaches to see when students choose to
make their submissions under each feedback system, and we ex-
plore these effects in detail for ‘at-risk’ students who have failed
an earlier module in the course. We also report differences in stu-
dent perceptions of the two approaches by looking at data from
end-of-course satisfaction surveys.

3 METHODS
3.1 Course context
We explore the submission behaviour of students working on an
end-of-course programming project in the final weeks of a 12-week
introductory course. This course is a compulsory course taken by
students in the first-year of an engineering program at a mid-sized
urban university in Australasia. We compare two offerings of the
same course in consecutive years (2019 and 2020), in both cases
taught by the same instructor. We first briefly describe the nature
of the programming projects, and then compare the two different
feedback approaches – scheduled and immediate – used for the
projects in each year.

3.2 Projects: text-based, grid-based
The end-of-course project contributes 12% towards a students’ final
grade and uses the C programming language. In both 2019 and
2020, students had 20 days to complete the project from the time
that it was published. In both years the project was an ASCII text-
based console program, which simulated a unique variation of
some common strategy puzzle game involving a 2-dimensional
grid. In 2019, the project involved implementing a version of the
game Sokoban1, in which a character moves around a grid and
pushes objects to position them. In 2020, the game was a version of
the sliding block puzzle Rush Hour2, in which vehicles are moved
to make way for a goal vehicle to leave the grid. Figure 1 shows
screenshots of the ASCII-based interface for these two projects.

The projects in both years were of a similar level of difficulty,
and both offerings were taught by the same instructor. Key dates for
the two projects are shown in Table 1. In both years, students could
receive feedback on their projects before the final deadline andmake
resubmissions. In 2019, two interim deadlines were scheduled, and
1https://en.wikipedia.org/wiki/Sokoban
2https://en.wikipedia.org/wiki/Rush_Hour_(puzzle)

Figure 1: Examples showing the two ASCII-based projects. A
game inspired by Sokoban (left) and Rush Hour (right)

Table 1: Key dates and deadlines for each project

Feedback Event Date & Time Day
Project published 7 Oct 0

Scheduled Interim deadline #1 19 Oct 1:00pm 12
(2019) Interim deadline #2 24 Oct 7:00am 17

Final deadline 27 Oct 11:59pm 20
Project published 11 Oct 0

Immediate Grading period begins 27 Oct 1:00pm 16
(2020) Final deadline 31 Oct 11:59pm 20

students could receive feedback on their work at the time of those
deadlines. In 2020, students could receive immediate feedback on
their work during a ‘grading period’ which lasted for about 5 days.
Each project was divided into smaller tasks which could be graded
independently, and if all tasks were completed successfully then
the program would behave as specified. We now describe the two
different feedback approaches used for each project.

3.3 Feedback schemes
3.3.1 Scheduled feedback. In 2019, two interim deadlines were
set prior to the final project deadline. Students could submit their
project – in any state of completion – to an online grading tool.
Submitting work prior to these interim deadlines was optional
(ungraded), but students who did would receive automated feedback
on the work they submitted as soon as the interim deadline was
reached. We refer to this approach as scheduled feedback, given
that the feedback was generated only at the scheduled time of the
interim deadlines.

When automated feedback was generated, each task (out of the
10 tasks for the project) was graded independently, and students
received feedback by email that indicated what proportion of the
test cases they passed for each task. Syntax errors and runtime
errors were also highlighted on the report when applicable. The
same test cases were used for these interim deadlines as for the
final deadline.

3.3.2 Immediate feedback. In 2020, an automated grading tool was
used to provide feedback to students, however it provided feedback
immediately at the time code was submitted. Students could submit
any task, one at a time, and receive feedback on the task in the form



Figure 2: Submission patterns of students in the 2019 course (left; scheduled feedback) and 2020 course (right; immediate
feedback). The two red bars denote the interim deadlines in 2019. The x-axis represents time, with vertical lines denoting
midnight (the rightmost vertical line on each plot is the final deadline). Each row illustrates the submission behaviour of
one student (a horizontal line connects their earliest and latest submission), sorted chronologically based on their earliest
submission. Hatch marks on the right side of each plot denote students that ultimately failed the project.

of the proportion of test cases that passed, as before. To discourage
students from over-reliance on this immediate feedback tool, two
strategies were used. Firstly, it was only available for a short period,
in the five days prior to the final project deadline. Secondly, a
penalty scheme was introduced whereby the first two submissions
for any task incurred no penalty, but every subsequent submission
incurred an additional 10% penalty (up to a maximum of 70%).

3.4 Data analysis
Our analysis includes data for all students who made at least one
project submission. In 2019, a total of 952 students submitted a
project whereas in 2020, 918 students submitted a project. All of
the submissions that students made were timestamped and we use
these times to generate a visualisation of the submission behaviours
across the two years. In addition, we use the final score that each
student earned on the project to understand how submission times
correlate with project performance.

We are also interested in the cohort of students who are deemed
‘at-risk’ of failing the course. The 12-week course is taught in two
modules (6 weeks each), and we use student performance on the
first module to identify at-risk students. All students who failed (i.e.
scored <50%) on the first module are classified as at-risk. A total of
85 students in the 2019 course, and 65 students in the 2020 course,
are in this category.

Finally, we examine data from end-of-course surveys to explore
how students perceived the scheduled and immediate feedback. In
both courses, students were invited to complete an end-of-course
teaching satisfaction survey in line with standard institutional pol-
icy. On each survey, students read and responded to 10 statements
regarding course satisfaction using a 5-point Likert-scale, and could
provide open-ended comments to describe aspects of the course

they found helpful or require improvement. We examine quanti-
tative scores for the question “I received helpful feedback on my
learning progress”, and we look at responses to the open-ended
questions for any statements related to project feedback.

4 EXPERIENCES WITH SCHEDULED AND
IMMEDIATE FEEDBACK

4.1 Students’ submission behaviour
Figure 2 shows students’ submission patterns for the 2019 (sched-
uled feedback) and the 2020 (immediate feedback) courses. The left
side of the figure shows the patterns for the 2019 course with the
two optional interim feedback deadlines (shown in red) and the
right side shows the patterns for the 2020 course where immediate
feedback with penalties was available. Time increases going to the
right, and each vertical line denotes midnight. Each row of the
figures represents the submission behaviour of a single student in
the course. All submissions are shown as individual dots, and to
ease visibility, the left most (i.e. earliest) and rightmost (i.e. latest)
submissions for each student are connected by a horizontal line. In
both figures, students have been sorted chronologically, based on
the time of their earliest submission. The short horizontal hatch
marks next to the lines on the very right of each figure denote the
students who failed the project, i.e. scored less than 50%.

From Figure 2, it is evident that the optional interim feedback
deadlines affected students’ submission behaviour. For the 2019
course, where these optional feedback deadlines were available,
there’s a clear stair-like pattern that shows many students submit-
ting their work very close to the deadlines, and very few submitting
their work immediately after such a deadline. In contrast, for the



●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

200 250 300 350 400

0
20

40
60

80
10

0

First submission time (hours after file upload enabled)

Fi
na

l P
ro

je
ct

 M
ar

k

(a) 2019 course
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(b) 2020 course

Figure 3: At-risk students’ earliest submissions plotted against their final project marks. The x-axis shows the time (with
respect to when the autograder was enabled) when the student first submitted their project for feedback. The y-axis shows
final project marks. In 2019 (left; scheduled feedback), there were two optional interim feedback deadlines. In 2020 (right;
immediate feedback) students received feedback immediately.

2020 course with immediate feedback, we see a less prominent stair-
like pattern, indicating that students tended to make submissions
that were spread more evenly over the course of the day.

Looking at the hatch marks that represent students who failed
the project, we see a very clear pattern that students who initially
submitted their work closer to the final deadline were more likely
to fail the project in both courses. Interestingly, in the 2019 course,
we see that almost no students who utilized the first of the interim
deadlines ended up failing the project. This pattern is less prominent
in 2020, where several students who submitted during the first 24
hours of the grading period still ended up failing the project.

Another pattern visible in the figures is that activity for the 2020
course seems more sparse. This is due to the fact that less time tends
to elapse for students in 2020 between the very first and the very
last submission they make. This is expected, given that students in
2020 received feedback immediately and could therefore attend to
any issues straight away. They could work on the project until it
was solved correctly. In comparison, issues highlighted by the first
interim deadline for students in 2019 did not need to be addressed
until the next interim deadline.

4.2 Feedback approach and at-risk students
We are particularly concerned about how the feedback approaches
might affect at-risk students. Thus, we examined submission pat-
terns and final project marks for students deemed to be at-risk
based on having failed the first module in the course. These stu-
dents are at high risk of failing the course, given that course grades
are based on a combination of the first and second module results.

Figure 3 plots the time at which at-risk students first submitted
their programs for feedback and the final marks they ultimately
received for the project.

From Figure 3 we see that, similar to the data for the whole stu-
dent population shown in Figure 2, the submission behaviour of the
at-risk students was clearly influenced by the interim deadlines. We
see three vertical bands on the plot, with the rightmost band being
the most dense. This illustrates that although some at-risk students
submitted prior to the first and the second interim deadlines, most
students in this category made their very first submission (and thus
received no feedback they could use to improve their work) just
prior to the final deadline.

Of primary interest is the relationship between starting (and sub-
mitting) work early and subsequent performance. This relationship
is clearer in the 2019 course – the mean project mark for students
who submitted prior to the first and second interim deadline (the
left and middle bands in Figure 3a) is 72.7% and 69.5%. In compari-
son, the mean score for students who only submitted prior to the
final deadline is 40.2%. In the 2020 data, the relationship is less clear.
However, one interesting observation is that there is a sizeable
group of students near the bottom right of Figure 3b who received
a score of 0 (or near 0) for the project.

One interpretation of these findings is that the scheduled feed-
back approach is more helpful for at-risk students. As with other
immediate feedback schemes (e.g. [26]), the desired change in be-
haviour is implicit. Students take on the responsibility of managing
their own time, and must determine for themselves when to start
their work so that enough time is left to respond to the feedback



they receive. On the other hand, the scheduled interim deadlines
send a much more explicit signal around timing – students must
start early enough to meet the scheduled deadlines if they want to
receive feedback. Given the evidence that at-risk students perform
much better when they do receive such feedback, approaches that
more explicitly encourage them to start earlier may be advisable.

4.3 Student perceptions of feedback
In the preceding sections we focused on submission patterns and
their relationship to project outcomes. In both courses, students
completed an end-of-course satisfaction survey, and examining the
responses to this survey reveals an interesting difference in the way
students perceived the scheduled and immediate feedback.

On each survey, students read and responded to statements re-
garding course satisfaction. These statements included one related
to ‘feedback’ specifically: “I received helpful feedback on my learn-
ing progress”. Traditionally, this is one of the lowest scoring state-
ments for courses in the studied context. Indeed, it was the second
lowest scoring statement on both surveys despite the fact that the
automated approaches we explored do provide feedback to stu-
dents that would not ordinarily be available in the course. The final
question was an ‘overall’ assessment of the course: “Overall, I was
satisfied with the quality of this course”.

There was a marked difference in student responses to the ‘feed-
back’ question across the two courses. For the 2019 course (sched-
uled feedback), 287 students responded to the survey and the per-
centage of responses that were in agreement, neutral or in disagree-
ment with the ‘feedback’ statement was 87.5%, 8.4% and 4.2%. In
comparison, for the 2020 course (immediate feedback), 250 students
responded and the percentage of responses that were in agree-
ment, neutral or in disagreement with the ‘feedback’ statement was
71.7%, 19.6% and 8.7%, indicating much lower levels of satisfaction.
Some of this may be due to negative perceptions of the penalty
scheme used in 2020 as prior work has found that students perceive
submission-limiting approaches negatively [26]. However, given
that they could request feedback on a task-by-task basis, and re-
ceived two non-penalised submissions for each task, the amount of
feedback available without penalty was greater than for students
in 2019. It is also possible that some of this effect is due to fewer
in-person interactions in 2020 due to the COVID-19 pandemic, how-
ever the ‘overall’ course satisfaction scores are similar in both years
(92.3% agreement vs 89.2% agreement in 2019 and 2020 respectively).
Therefore, it may be that the scheduled feedback provided in 2019
had amore pronounced impact on students’ perceptions of feedback
provided in the course.

This is further supported by the open-ended feedback provided
by students on the course satisfaction surveys in both years. In
2019, around 5% of students (14 out of 287) wrote a comment that
explicitly mentioned the usefulness of the scheduled feedback for
the project. In 2020, only 2 students (fewer than 1%) provided com-
ments to this effect, and these two comments identified the project
as only one assessed activity where immediate feedback was use-
ful (i.e. “The instantaneous feedback for the labs was really helpful.
Likewise with the project” ). In contrast, the comments provided in
2019 were much more enthusiastic about the value of the scheduled
feedback. Several comments indicated that the feedback helped
students improve their final mark for the project:

• “I really like the early feedback... It was really helpful inmaking
sure all my code worked correctly.”

• “i really liked how you gave us the opportunity to submit
projects early, really helped me figure out where i went wrong
and where to improve”

• “really liked the early submission thing since I thought my
code was fine.”

4.4 Limitations
In addition to the different feedback approaches, there were other
factors that may have influenced students’ project outcomes and
perceptions in 2019 and 2020. For example, although the two course
offerings were similar in 2019 and 2020, using the same course
material and taught by the same instructor, there were slight dif-
ferences between the projects. In 2019, there were ten tasks in the
project, and all ten tasks were graded at the same time (students
would submit a single file prior to an interim deadline to receive
feedback on all tasks they had attempted). In 2020, there were only
seven tasks in the project, and students could grade these tasks
separately (essentially submitting the relevant functions one at a
time). However, the complexity of the project and the expectation
of the time that students should spend on the project was similar
across both years. This is empirically supported by the fact that the
distribution of final project marks were almost identical across the
two years. The mean (and SD) scores for the projects in 2019 and
2020 were 86.8% (21.6) and 88.7% (20.5), respectively.

Additionally, students in the 2019 course were not affected by the
COVID-19 pandemic, whereas students in the 2020 course experi-
enced some disruption to in-person teaching, as approximately half
of the semester was conducted online. Nevertheless, the similarities
in project scores shown above suggests this may not have been a
significant factor.

5 CONCLUSIONS
In this work, we report our observations on student submission
behaviours in two courses where different approaches to feedback
were employed. In the first approach, students could submit work
early to meet two optional interim deadlines. As soon as these
scheduled deadlines passed, the authors of any submissions received
automated feedback on their work. In the second approach, students
could submit work at any time and receive immediate feedback,
but with increasing penalties to discourage excessive submissions.

We found that both the whole student population, and students
at high risk of failing, exhibited markedly different submission pat-
terns for the two feedback approaches. When immediate feedback
was available, submissions were more evenly spread out over time,
whereas students worked very closely to the published deadlines
when feedback was scheduled. Interestingly, student perceptions
of the scheduled feedback approach were more positive. In both
cases, the later a student made their first submission, the more
likely they were to fail the project. These results highlight the need
to find better ways of encouraging students to start work early. In
particular, future work should seek to identify interventions that
are effective at nudging a greater proportion of at-risk students
towards starting work earlier.



ACKNOWLEDGMENTS
We are grateful for the grant by the Media Industry Research Foun-
dation of Finland which partially funded this work.

REFERENCES
[1] Kirsti M Ala-Mutka. 2005. A survey of automated assessment approaches for

programming assignments. Computer science education 15, 2 (2005), 83–102.
[2] Tapio Auvinen. 2015. Harmful Study Habits in Online Learning Environments

with Automatic Assessment. In 2015 International Conf. on Learning and Teaching
in Computing and Engineering. 50–57.

[3] Elisa Baniassad, Lucas Zamprogno, Braxton Hall, and Reid Holmes. 2021. STOP
THE (AUTOGRADER) INSANITY: Regression Penalties to Deter Autograder
Overreliance. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education. 1062–1068.

[4] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler error messages
considered unhelpful: The landscape of text-based programming error message
research. In Proceedings of theWorking Group reports on Innovation and Technology
in Computer Science Education. 177–210.

[5] Dennis Bouvier, Ellie Lovellette, and John Matta. 2021. Overnight Feedback
Reduces Late Submissions on Programming Projects in CS1. In Australasian
Computing Education Conf. 176–180.

[6] Brent J. Bowman and William A. Newman. 1990. Software Metrics as a Program-
ming Training Tool. J. Syst. Softw. 13, 2 (Oct. 1990), 139–147.

[7] Carmen Candel, Eduardo Vidal-Abarca, Raquel Cerdán, Marie Lippmann, and
Susanne Narciss. 2020. Effects of timing of formative feedback in computer-
assisted learning environments. J. of Computer Assisted Learning 36, 5 (2020),
718–728.

[8] Rachel Cardell-Oliver. 2011. How can software metrics help novice programmers?.
In Proceedings of the Thirteenth Australasian Computing Education Conf.-Volume
114. 55–62.

[9] Rachel Cardell-Oliver, Lu Zhang, Rieky Barady, You Hai Lim, Asad Naveed, and
Terry Woodings. 2010. Automated feedback for quality assurance in software
engineering education. In 2010 21st Australian Software Engineering Conf. IEEE,
157–164.

[10] Sophie H. Cormack, Laurence A. Eagle, and Mark S. Davies. 2020. A large-scale
test of the relationship between procrastination and performance using learning
analytics. Assessment & Evaluation in Higher Education 45, 7 (2020), 1046–1059.

[11] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Codewrite: supporting student-driven practice of java. In Proceedings of the 42nd
ACM technical symposium on Computer Science Education. 471–476.

[12] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Understanding the Syntax Barrier for Novices. In Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science Education.
Association for Computing Machinery, New York, NY, USA, 208–212.

[13] Paul Denny, James Prather, and Brett A Becker. 2020. Error message readability
and novice debugging performance. In Proceedings of the 2020 ACM Conf. on
Innovation and Technology in Computer Science Education. 480–486.

[14] Paul Denny, Jacqueline Whalley, and Juho Leinonen. 2021. Promoting Early
Engagement with Programming Assignments Using Scheduled Automated Feed-
back. In Australasian Computing Education Conf. 88–95.

[15] Stephen H Edwards, Joshua Martin, and Clfford A Shaffer. 2015. Examining
classroom interventions to reduce procrastination. In Proceedings of the 2015
ACM Conf. on Innovation and Technology in Computer Science Education. 254–
259.

[16] Stephen H Edwards and Krishnan Panamalai Murali. 2017. CodeWorkout: short
programming exercises with built-in data collection. In Proceedings of the 2017
ACM Conf. on Innovation and Technology in Computer Science Education. 188–193.

[17] Stephen H Edwards and Manuel A Perez-Quinones. 2008. Web-CAT: automati-
cally grading programming assignments. In Proceedings of the 13th annual conf.
on Innovation and technology in computer science education. 328–328.

[18] Stephen H Edwards, Jason Snyder, Manuel A Pérez-Quiñones, Anthony Allevato,
Dongkwan Kim, and Betsy Tretola. 2009. Comparing effective and ineffective be-
haviors of student programmers. In Proceedings of the fifth international workshop
on Computing education research workshop. 3–14.

[19] Tommy Färnqvist and Fredrik Heintz. 2016. Competition and feedback through
automated assessment in a data structures and algorithms course. In Proceedings
of the 2016 ACMConf. on Innovation and Technology in Computer Science Education.
130–135.

[20] James B Fenwick Jr, Cindy Norris, Frank E Barry, Josh Rountree, Cole J Spicer,
and Scott D Cheek. 2009. Another look at the behaviors of novice programmers.

ACM SIGCSE Bulletin 41, 1 (2009), 296–300.
[21] Yoshiko Goda, Masanori Yamada, Hiroshi Kato, Takeshi Matsuda, Yutaka Saito,

and Hiroyuki Miyagawa. 2015. Procrastination and other learning behavioral
types in e-learning and their relationship with learning outcomes. Learning and
Individual Differences 37 (2015), 72–80.

[22] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of recent systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli calling international conf. on computing education
research. 86–93.

[23] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,
and Daniel Toll. 2015. Educational data mining and learning analytics in pro-
gramming: Literature review and case studies. Proceedings of the 2015 ITiCSE on
Working Group Reports (2015), 41–63.

[24] Kalle Ilves, Juho Leinonen, and Arto Hellas. 2018. Supporting self-regulated
learning with visualizations in online learning environments. In Proceedings of
the 49th ACM Technical Symposium on Computer Science Education. 257–262.

[25] Theresia Devi Indriasari, Andrew Luxton-Reilly, and Paul Denny. 2021. Improving
Student Peer Code Review Using Gamification. In Australasian Computing Edu-
cation Conference (Virtual, SA, Australia) (ACE ’21). Association for Computing
Machinery, New York, NY, USA, 80–87.

[26] Michael S Irwin and Stephen H Edwards. 2019. Can Mobile Gaming Psychol-
ogy Be Used to Improve Time Management on Programming Assignments?. In
Proceedings of the ACM Conf. on Global Computing Education. 208–214.

[27] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature
review of automated feedback generation for programming exercises. ACM
Transactions on Computing Education (TOCE) 19, 1 (2018), 1–43.

[28] Pardha Koyya, Lee Young, and Jeong Yang. 2013. Feedback for Programming
Assignments Using Software-Metrics and Reference Code. ISRN Software Engi-
neering (2013).

[29] Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2021. Does
the Early Bird Catch the Worm? Earliness of Students’ Work and its Relationship
with Course Outcomes. In Proceedings of the 26th ACM Conf. on Innovation and
Technology in Computer Science Education V. 1. 373–379.

[30] Samiha Marwan, Joseph Jay Williams, and Thomas Price. 2019. An evaluation of
the impact of automated programming hints on performance and learning. In
Proceedings of the 2019 ACM Conf. on International Computing Education Research.
61–70.

[31] Keir Mierle, Kevin Laven, Sam Roweis, and Greg Wilson. 2005. Mining student
CVS repositories for performance indicators. ACM SIGSOFT Software Engineering
Notes 30, 4 (2005), 1–5.

[32] Nick Parlante. 2007. Nifty Reflections. SIGCSE Bull. 39, 2 (June 2007), 25–26.
[33] James Prather, Brett A. Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and

LaurenMargulieux. 2020. What DoWe ThinkWe ThinkWeAre Doing?: Metacog-
nition and Self-Regulation in Programming. In Proceedings of the 2020 ACM
Conf. on International Computing Education Research. ACM, New York, NY, USA,
12 pages.

[34] A. Ramaprasad. 1983. On the definition of feedback. Behavioral Science 28, 1
(1983), 4–13.

[35] Paul Ramsden. 1992. Learning to Teach in Higher Education. Routledge, London.
[36] Jaime Spacco, Paul Denny, Brad Richards, David Babcock, David Hovemeyer,

James Moscola, and Robert Duvall. 2015. Analyzing student work patterns using
programming exercise data. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education. 18–23.

[37] Jaime Spacco, Davide Fossati, John Stamper, and Kelly Rivers. 2013. Towards im-
proving programming habits to create better computer science course outcomes.
In Proceedings of the 18th ACM Conf. on Innovation and technology in computer
science education. 243–248.

[38] Claudia Szabo, Nickolas Falkner, Antti Knutas, and Mohsen Dorodchi. 2018.
Understanding the effects of lecturer intervention on computer science student
behaviour. In proceedings of the 2017 ITiCSE conf. on working group reports. 105–
124.

[39] Rebecca Vivian, Katrina Falkner, and Nickolas Falkner. 2013. Computer science
students’ causal attributions for successful and unsuccessful outcomes in pro-
gramming assignments. In Proceedings of the 13th Koli Calling International Conf.
on Computing Education Research. 125–134.

[40] Jacqueline L Whalley and Anne Philpott. 2011. A unit testing approach to build-
ing novice programmers’ skills and confidence. In Proceedings of the Thirteenth
Australasian Computing Education Conf., Vol. 114. 113–118.

[41] Dylan Wiliam. 2011. What is assessment for learning? Studies in educational
evaluation 37, 1 (2011), 3–14.

[42] Salla Willman, Rolf Lindén, Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, and
Tapio Salakoski. 2015. On study habits on an introductory course on program-
ming. Computer Science Education 25, 3 (2015), 276–291.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Feedback mechanisms
	2.2 Effects of feedback on behaviour

	3 Methods
	3.1 Course context
	3.2 Projects: text-based, grid-based
	3.3 Feedback schemes
	3.4 Data analysis

	4 Experiences with Scheduled and Immediate Feedback
	4.1 Students' submission behaviour
	4.2 Feedback approach and at-risk students
	4.3 Student perceptions of feedback
	4.4 Limitations

	5 Conclusions
	Acknowledgments
	References

