
Open IDE Action Log Dataset from a CS1 MOOC

Juho Leinonen
∗

University of Helsinki
juho.leinonen@helsinki.fi

ABSTRACT
Studying students’ time-related behavior is a common re-
search topic within educational data mining. One way to
study time-related behavior is by collecting log data from the
use of pedagogical tools or systems. In computer science in
particular, such data has often been collected from students’
use of integrated development environments (IDEs). In this
work, we present and openly release a dataset containing
IDE logs from an introductory programming MOOC. The
dataset contains information on when actions in the IDE
were performed in relation to deadlines over the different
parts of the course. One exceptional aspect of the dataset
is that part of the logs have been gathered at the keystroke
level, allowing for fine-grained insight into the learning pro-
cess. In addition to the IDE logs themselves, the dataset
has information on whether students included in the data
passed the course. This can facilitate further research that
analyzes how time-related behavior correlates with perfor-
mance in introductory programming courses.

Keywords
open data, IDE logs, log data, integrated development envi-
ronment, CS1, keystroke data, programming process data,
learning analytics, educational data mining

1. INTRODUCTION
One recurring research theme in educational data mining is
studying student time-related behavior such as earliness of
work [4, 6, 12, 15, 17], procrastination [9, 10, 18], and time-
on-task [13, 14, 21]. Studies in this area typically utilize
logs gathered from pedagogical tools or learning manage-
ment systems. In computer science educational data mining
(CSEDM) in particular, studying logs from integrated de-
velopment environments (IDEs) has been common [8].

In this work, we present and make publicly available a data-
set [16] containing IDE logs from an introductory program-

∗Part of the work conducted while at Aalto University.

ming massive open online course (MOOC). The logs contain
information on actions students perform in the IDE while
working on course exercises. Notably, the data does not
contain source code etc. and can be thought of as “meta-
data” related to the students’ learning processes. Such data
has potential, for example, in developing time management
based interventions, for example, by following the IDE-based
learning analytics process model by Hundhausen et al. [7].

The data presented here is partly at the keystroke level,
which allows for a fine-grained look into students’ learn-
ing [11]. This data contributes to the growing body of open
IDE log datasets [1,3,5], which can both support future re-
search utilizing IDE logs and help replicate earlier findings;
lack of replication has been noted as a major challenge in
computing education research [8].

2. CONTEXT
The context of the data is a massive open online course
(MOOC) on introductory programming (CS1). The pro-
gramming language used in the course is Java. The course
is split into seven parts, where each individual part intro-
duces a few new programming concepts to the students. The
concepts covered in the course are typical CS1 topics, begin-
ning with variables, conditionals, loops and lists, which are
followed by methods, parameters, classes and objects.

The course uses online materials. In the online material,
concepts are introduced with examples that focus on how
the concepts can be used in programs. The introduction of
the concept (“theory part”) is followed by a couple of exer-
cises where students are expected to practice the concept.
Each part has a few larger exercises at the end of the mate-
rial that typically combine earlier concepts and the new con-
cepts introduced in the respective part of the course. The
course uses the many small exercises approach [2,22], where
students work on anywhere from ten to thirty exercises in
each part of the course.

Exercises in the course are completed using an integrated
development environment (IDE) with the custom Test My
Code -plugin [23]. While exercise descriptions are found in
the online material, students can download exercise tem-
plates directly into the IDE. The templates typically con-
tain boilerplate code, and in some cases some starter code.
The exercises are accompanied by instructor-created unit
test suites that students can test their program against di-
rectly in the IDE. When students believe their code to be

J. Leinonen. Open IDE Action Log Dataset from a CS1 MOOC. In B. Akram, T. Price, Y. Shi, P. Brusilovsky, and S. Hsiao, editors, Proceedings of the 6th Educational Data Mining in Computer Science Education (CSEDM) Workshop, pages 88–91, Durham, United Kingdom, July 2022.
© 2022 Copyright is held by the author(s). This work is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.



correct, they can submit their program from the IDE to the
automated assessment system used in the course. The sys-
tem often includes a few additional “hidden tests” that are
not included in the unit test suite in the IDE to validate
that students have not just written code that is hard-coded
to pass the unit test suite used for local code evaluation in
the IDE. Since students could run the instructor-created unit
tests locally on their computer (not logged), there are likely
many students who only have a single submission event for
each exercise (they only submit after the tests pass locally).

Each part of the course has a deadline after which students
can no longer submit their program for evaluation nor get
the points for the exercises of that part. They can continue
working on the exercise after the deadline if they so desire;
however, events that occur after the deadline are not in-
cluded in the data. The first four parts of the course had
the same deadline to allow students to join the course late.
For the fifth, sixth and seventh part of the course, the dead-
lines were one, two and three weeks later (compared to the
deadline for the first four parts), respectively. The course
was released 42 days before the deadline of the first four
parts, so there are students who worked close to when the
course was released and others who worked closer to the
deadlines. Since the course is a MOOC, some of the stu-
dents who started later might have only heard about the
course after it was released, so starting closer to the dead-
lines might not indicate procrastination.

In addition to the exercises, there were three online exams.
The online exams were completed in the IDE similar to
course exercises with the exception that there was a time
limit of two hours to complete all exercises of the exam from
the time when the student started the exam. The three ex-
ams were situated at different points in the course. The
first exam was at the beginning of the third part and cov-
ered topics from parts 1 and 2. The second exam was at
the beginning of part 5 and covered the previous four parts.
The third exam was at the end of part 7 and covered all
course topics.

Passing the course was determined based on both points
received from the exercises (55% of the total points) and
points received from three online exams (45% of the total
points). Students could receive 8% of the points by complet-
ing every exercise in each of the seven parts of the course
(except for the first part, where they could get only 7% of
the points). The three exams were worth 10%, 15% and
20% of the points. Students had to receive a total of 51% or
more of the total course points in order to pass the course.
In addition, students were required to receive at least half of
the points from the last exam in order to pass the course, re-
gardless of any other points received. Some students might
not have many IDE logs even if they passed the course as it
is possible they partly worked offline in which case the logs
were never sent to the server, or they might have disabled
logging intermittently.

The IDE used in the course collects data from the students’
programming process. Only data from students who con-
sented for their data to be used for research is included in
the dataset. Additionally, students could turn logging on
and off at will within the IDE.

Event type Event count

text insert 19,652,100
text remove 5,582,299
text paste 166,601
focus gained 1,427,004
focus lost 1,383,954
run 323,749
submit 52,602

total 28,588,309

Table 1: Number of each type of event in the data.

Figure 1: A few example rows of the IDE log data.

The data collection followed the guidelines of the univer-
sity that organized the course, country level guidelines for
ethical research1, and applicable legislation. The dataset
contains only metadata about the learning process and no
direct contributions from students (such as source code or
keys pressed), which is a deliberate choice to preserve the
privacy of the students included in the data.

3. DATASET DESCRIPTION
The dataset contains two files, IDE_logs.csv and passed.csv.
IDE_logs.csv contains IDE action logs from the course and
passed.csv contains information on whether the student
passed the course.

The IDE logs consist of 1) a student identifier (identifier
matches passed.csv), 2) which of the seven parts and 3)
which exercise was the event related to, 4) information on
which event happened (brief explanations of the events be-
low), 5) a timestamp, and 6) how long before the deadline
the event happened (in seconds). There is one row in the
data for each event that was logged. The part and exercise
identifiers are sequential: for example, exercise “5” means
that it was the fifth exercise (in the material) for the specific
part of the course2. The data is not in the ProgSnap2 [20]

1In particular, ethical review for research is only
needed in specific cases, which our research does not
fall under. See https://tenk.fi/en/ethical-review/
ethical-review-human-sciences for details (accessed July
20th 2022).
2Students could complete exercises in any order they wished,
so it is possible to have events from a latter exercise before
even starting an earlier exercise.



Figure 2: Distribution of logged actions per student.

programming snapshot format as the ProgSnap2 format re-
quires sharing the source code (“CodeStateID” is a required
column for ProgSnap2), which we are unable to share at this
time due to privacy concerns.

There are seven types of events in the data which are as
follows.

• text insert – text was added into the IDE (at the key-
stroke level)

• text remove – text was removed from the IDE

• text paste – text was pasted into the IDE

• focus gained – the IDE gained focus (student clicked
into the IDE)

• focus lost – the IDE lost focus (student clicked away
from the IDE)

• run – student executed their program

• submit – student submitted their program

The data has a total of 28,588,309 rows (i.e. logged IDE
actions) from a total of 473 students. The mean number of
events per student is 60,440 (with a standard deviation of
61,228 and a median of 50,810). The number of each type of
event in the data is outlined in Table 1. A few example data
rows are shown in Figure 1 and the distribution of logged
actions per student is visualized in Figure 2.

The passed.csv has one row for each student. The only
columns are a student identifier and“passed”where the value
is either True (student passed the course) or False (student
did not pass the course).

Both IDE_logs.csv and passed.csv can be found here:
https://doi.org/10.5281/zenodo.6903968

4. POTENTIAL RESEARCH QUESTIONS
There are many research questions that could be studied
utilizing this type of data. As the data does not contain
the source code or source code related information such as
compilation status or correctness, the main type of research
that the data is useful for is related to students’ behavior in
IDEs. Here, we outline a few potential research questions
and areas where such data could be used.

One stream of research that can utilize this type of log data
is studies related to student time-on-task. Recent works
have, for example, examined how the granularity of data
affects time-on-task estimates [13] and how time-on-task es-
timates derived from log data correlate with students’ per-
formance [14]. Potential research questions that remain are,
for example, how individual students’ times-on-task differ
between exercises – is it always the same students who spend
a lot of time on exercises, or are the exercise-specific differ-
ences between students in how much time they spend on the
exercise?

Another common area of research in computing education
where the data could be used is studying student time man-
agement such as how early (or late) students work on ex-
ercises, and procrastination. Prior work has found correla-
tions between starting early and performing better in the
course [6, 12]. Future work in this area could study, for ex-
ample, whether time management related behavior varies
across the course and how well can log-derived time man-
agement metrics predict student performance in the course.
Additionally, one could try clustering the data to try identify
whether there are clear student subpopulations with differ-
ent time-related behavioral patterns, for example, try repli-
cate prior work studying “tinkerers”, “movers”, and “stop-
pers” [19].

Lastly, a relatively under-explored aspect of student work is
examining at what time of the day students work on ex-
ercises, and how this correlates with performance in the
course. A recent study by Zavgorodniaia et al. [24] clustered
students based on when they were working in an IDE and
found clusters that roughly correspond to different “chrono-
types”, i.e. people’s propensity to sleep at certain times of
day and correspondingly, be alert at other times.

There are two main limitations related to the data. First,
there is the possibility of self-selection bias as only data from
students who both chose to allow action logging within the
IDE and who consented to their data being used for research
is included. It is possible that students who chose to do so
differ from other students in the course. Second, the data
does not include the source code or e.g. an AST representa-
tion of it. As part of our future work, we are exploring ways
of sharing source code and code states while preserving the
privacy of the students who have supplied the data.

Altogether, there are multiple research directions where IDE
action logs could be utilized. Releasing this dataset openly
hopefully facilitates future research in this area.



5. REFERENCES
[1] CodeBench dataset.

https://codebench.icomp.ufam.edu.br/dataset/.
Accessed: 2022-06-23.

[2] J. M. Allen, F. Vahid, A. Edgcomb, K. Downey, and
K. Miller. An analysis of using many small programs
in cs1. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, pages
585–591, 2019.

[3] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting.
Blackbox: A large scale repository of novice
programmers’ activity. In Proceedings of the 45th
ACM technical symposium on Computer science
education, pages 223–228, 2014.

[4] P. Denny, J. Whalley, and J. Leinonen. Promoting
early engagement with programming assignments
using scheduled automated feedback. In Australasian
Computing Education Conference, pages 88–95, 2021.

[5] J. Edwards. Computer Programming Keystroke Data.
https:

//dataverse.harvard.edu/dataverse/cskeystrokes,
2022.

[6] S. H. Edwards, J. Snyder, M. A. Pérez-Quiñones,
A. Allevato, D. Kim, and B. Tretola. Comparing
effective and ineffective behaviors of student
programmers. In Proceedings of the fifth international
workshop on Computing education research workshop,
pages 3–14, 2009.

[7] C. D. Hundhausen, D. M. Olivares, and A. S. Carter.
IDE-based learning analytics for computing education:
a process model, critical review, and research agenda.
ACM Transactions on Computing Education (TOCE),
17(3):1–26, 2017.

[8] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler,
J. Börstler, S. H. Edwards, E. Isohanni, A. Korhonen,
A. Petersen, K. Rivers, et al. Educational data mining
and learning analytics in programming: Literature
review and case studies. In Proceedings of the 2015
ITiCSE on Working Group Reports, pages 41–63.
2015.

[9] A. M. Kazerouni, S. H. Edwards, T. S. Hall, and C. A.
Shaffer. DevEventTracker: Tracking development
events to assess incremental development and
procrastination. In Proceedings of the 2017 ACM
Conference on Innovation and Technology in
Computer Science Education, pages 104–109, 2017.

[10] A. M. Kazerouni, S. H. Edwards, and C. A. Shaffer.
Quantifying incremental development practices and
their relationship to procrastination. In Proceedings of
the 2017 ACM Conference on International
Computing Education Research, pages 191–199, 2017.

[11] J. Leinonen. Keystroke Data in Programming Courses.
PhD thesis, University of Helsinki, 2019.

[12] J. Leinonen, F. E. V. Castro, and A. Hellas. Does the
early bird catch the worm? earliness of students’ work
and its relationship with course outcomes. In
Proceedings of the 26th ACM Conference on
Innovation and Technology in Computer Science
Education V. 1, pages 373–379, 2021.

[13] J. Leinonen, F. E. V. Castro, and A. Hellas.
Fine-grained versus coarse-grained data for estimating

time-on-task in learning programming. In Proceedings
of The 14th International Conference on Educational
Data Mining (EDM 2021). The International
Educational Data Mining Society, 2021.

[14] J. Leinonen, F. E. V. Castro, and A. Hellas.
Time-on-task metrics for predicting performance. In
Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education V. 1, pages 871–877,
2022.

[15] J. Leinonen, P. Denny, and J. Whalley. A comparison
of immediate and scheduled feedback in introductory
programming projects. In Proceedings of the 53rd
ACM Technical Symposium on Computer Science
Education V. 1, pages 885–891, 2022.

[16] J. Leinonen and A. Hellas. IDE Action Log Dataset
from a CS1 MOOC, July 2022.

[17] L. Leppänen, J. Leinonen, and A. Hellas. Pauses and
spacing in learning to program. In Proceedings of the
16th Koli Calling International Conference on
Computing Education Research, pages 41–50, 2016.

[18] F. D. Pereira, E. H. Oliveira, D. B. Oliveira, A. I.
Cristea, L. S. Carvalho, S. C. Fonseca, A. Toda, and
S. Isotani. Using learning analytics in the Amazonas:
understanding students’ behaviour in introductory
programming. British journal of educational
technology, 51(4):955–972, 2020.

[19] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, and
R. Simmons. Conditions of learning in novice
programmers. Journal of Educational Computing
Research, 2(1):37–55, 1986.

[20] T. W. Price, D. Hovemeyer, K. Rivers, G. Gao, A. C.
Bart, A. M. Kazerouni, B. A. Becker, A. Petersen,
L. Gusukuma, S. H. Edwards, and D. Babcock.
ProgSnap2: A flexible format for programming
process data. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in
Computer Science Education, pages 356–362, 2020.

[21] J. Spacco, P. Denny, B. Richards, D. Babcock,
D. Hovemeyer, J. Moscola, and R. Duvall. Analyzing
student work patterns using programming exercise
data. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, pages
18–23, 2015.

[22] A. Vihavainen, M. Paksula, and M. Luukkainen.
Extreme apprenticeship method in teaching
programming for beginners. In Proceedings of the 42nd
ACM technical symposium on Computer science
education, pages 93–98, 2011.

[23] A. Vihavainen, T. Vikberg, M. Luukkainen, and
M. Pärtel. Scaffolding students’ learning using Test
My Code. In Proceedings of the 18th ACM conference
on Innovation and technology in computer science
education, pages 117–122, 2013.

[24] A. Zavgorodniaia, R. Shrestha, J. Leinonen, A. Hellas,
and J. Edwards. Morning or evening? an examination
of circadian rhythms of cs1 students. In 2021
IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering Education
and Training (ICSE-SEET), pages 261–272. IEEE,

2021.




