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ABSTRACT

Time-on-task is one key contributor to learning. However, how time-
on-task is measured often varies, and is limited by the available data.
In this work, we study two different time-on-task metrics—derived
from programming process data—for predicting performance in an
introductory programming course. The first metric, coarse-grained
time-on-task, is based on students’ submissions to programming
assignments; the second, fine-grained time-on-task, is based on the
keystrokes that students take while constructing their programs.
Both types of time-on-task metrics have been used in prior work,
and are supposedly designed to measure the same underlying fea-
ture: time-on-task. However, previous work has found that the
correlation between these two metrics is not as high as one might
expect. We build on that work by analyzing how well the two
metrics work for predicting students’ performance in an introduc-
tory programming course. Our results suggest that the correlation
between the fine-grained time-on-task metric and both weekly exer-
cise points and exam points is higher than the correlation between
the coarse-grained time-on-task metric and weekly exercise points
and exam points. Furthermore, we show that the fine-grained time-
on-task metric is a better predictor of students’ future success in the
course exam than the coarse-grained time-on-task metric. We thus
propose that future work utilizing time-on-task as a predictor of
performance should use as fine-grained data as possible to measure
time-on-task if such data is available.
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1 INTRODUCTION

Predicting how students will perform in the future is a common
topic in learning analytics and educational data mining as well as
in the computing education research domain [1, 4, 7, 11, 14, 16,
26, 31, 32]. Predicting students’ future success can, for example,
allow instructors to proactively deploy interventions to help strug-
gling students. Many contemporary courses collect a variety of data
about students’ working processes, which can be utilized for pre-
dicting performance. For example, collecting log data from learning
management systems and integrated development environments
has become popular in recent years [16].

One aspect of learning that has been found to correlate with
performance is time-on-task, defined as the time a student spends
actively engaged in a learning task. It has been suggested that in-
creasing students’ time-on-task could lead to improved learning re-
sults [34]. However, there is no widely agreed-upon solution or prac-
tice on how time-on-task should be calculated, which is typically
dependent on the data available to researchers conducting time-
on-task-related studies. There has been some prior work that has
evaluated different ways of measuring time-on-task [19, 23, 24, 27],
where the authors point out the issue of different measurement
methods possibly leading to dissimilar results. For example, Ko-
vanovic et al. [19] found that the approach taken to compute time-
on-task affected the fit of models used to predict performance.
Similarly, Nguyen [27] found that taking into account individual
and task-specific differences as well as the stage of the learning
process can increase performance of prediction models that utilize
time-on-task.

In this work, we investigate the relationship between time-on-
task and students’ performance in an introductory programming
course. Our work is inspired by earlier work comparing two granu-
larities for estimating time-on-task, coarse-grained time-on-task and
fine-grained time-on-task [23]. The fine-grained one takes breaks
students take within their learning into account while the coarse-
grained metric does not. Both approaches (taking and not taking
breaks into account) have been used in other prior work (e.g. [9,
10, 24, 29]). In this article, we contribute to the earlier research by
studying how the two time-on-task metrics correlate with both stu-
dents’ exam points and weekly exercise points, and by evaluating
to what extent the two time-on-task metrics work for predicting
whether students will get a passing grade in the course exam.

This work is organized as follows. In the next section, we provide
background on time-on-task and predicting students’ performance.
We then outline the context of the study as well as our research
questions and approach in Section 3. We present our results in
Section 4, which we further discuss in Section 5. Lastly, in Section 6,
we finish with a recap of our research questions and their answers.
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2 BACKGROUND

In this section, we first present background on time-on-task and
how it has been calculated in previous work. Then, we go over prior
work that has predicted academic performance with data collected
from integrated development environments (IDEs) as the data used
in this study also comes from an IDE. Lastly, we go over prior work
that has utilized time-on-task for predicting performance which is
the main aspect of the present work.

2.1 Time-on-Task

Prior work has used time-on-task to understand student affect,
how students engage with learning materials, and its impact on
learning outcomes. We describe in this subsection different ways
that time-on-task has been studied and/or defined from varying
perspectives such as in education research, and more specifically
in CS education.

The early studies on time-on-task often relied on external ob-
servers who manually kept track of whether students are actively
engaged on the task. In Good and Beckerman’s study, for example,
coders observed and categorized US sixth-grade students’ involve-
ment in-class activities (e.g. definitely involved, inattention, misbe-
havior, etc.) [12]. They found that students were more involved
(i.e. spent more time-on-task) in activities that are more structured
and demanded active responses, as opposed to instances of indi-
vidual activities or assignments. This partly aligns with Anderson
and Scott’s findings [3]: they found that teaching methods that
delegate students to manage their use of time are associated with
high levels of time-on-task, but only for those students with more
positive academic self-concepts. In contrast, methods that foster
“two-way” communication (teacher-directed but with student par-
ticipation) are associated with high levels of time-on-task for all
types of students.

Kounin and Gump [18] identified the impact of the continuity
of signal systems on time-on-task. They define signal systems as
information, materials, or behavior settings that guide students’ be-
haviors and activities in classrooms. They found from observations
of classroom activities that high-continuity behavior settings (e.g.
engaging in construction activities) have “holding power”, enable
a variety of behaviors, contain clear indicators of student accom-
plishment, and are also impacted by pacing. Classroom activities
and teaching behaviors that have holding power, are paced by the
teacher and promote continuity of signal systems are associated
with high levels of time-on-task.

Advances in educational technology have enabled the now-
widespread practice of utilizing log data collected in educational
software used in classrooms or technology-augmented learning ac-
tivities (e.g. Intelligent Tutoring Systems (ITS)) to calculate time-on-
task. This is perhaps even more common within computer science
education research compared to other education research as using
the computer—which allows easy logging of learning activities—is
at the core of learning to program. In studies related to learning
to program, a typical approach is to log user interactions within
integrated development environments (IDEs) [16].

Some examples of prior studies that have calculated time-on-
task from IDE log data include, for example, Edwards et al.s work
on studying behaviors of high and low-performing students [9].

They found that the difference in the total elapsed time between
first and last submissions of high and low-performing students
was generally small. Leinonen et al. [24] compared different time
metrics—including IDE-based ones—and studied their relationships.
They found that data from one source (e.g. the IDE) tends to corre-
late strongly with other data from the same source, and less strongly
with data from other sources. Fagerholm and Hellas [10] studied
differences in productivity, as measured by time-on-task, between
students in a programming course and found large differences in
productivity of students. Part of the difference was explained by
previous programming experience, however.

2.2 Predicting Academic Performance with IDE
Data

Research on predicting academic success is on the increase [14].
One major goal of such research is to allow instructors to detect
students who are at risk of performing poorly (e.g. dropping out of
the course) so that the instructor could deploy an intervention [35]
to help those students.

As mentioned in the previous subsection, in modern program-
ming courses, it is common that log data about students’ learning
processes is collected [16, 21]. This can facilitate predicting stu-
dents’ performance. To this end, Hundhausen et al. [15] propose
a framework for IDE-based learning analytics, where data about
students’ programming process is first collected in the IDE and ana-
lyzed for patterns, and then used to design and deliver interventions
to students directly within the IDE.

Indeed, other previous work has found that data collected from
IDEs can be used to predict how students will perform [1, 8, 13, 17,
22,25]. Ahadi et al. [1] used data collected from an introductory pro-
gramming course to predict students’ success and found that using
data from just the first week of the course was enough to accurately
predict future success. Another approach employed by previous
work has been deriving more complex metrics from IDE data to
predict success; for example, Jadud’s Error Quotient (EQ) [17] is a
measure of how much students struggle on syntax while construct-
ing programs and can be calculated from IDE logs. EQ has been
found to correlate with exam scores [17], although its performance
for predicting success seems to be context-specific [30]. Similarly,
Leinonen et al. [25] constructed typing profiles based on IDE data to
predict students’ success and found that students’ typing patterns
in course assignments were somewhat indicative of their future
performance in the course exam.

2.3 Using Time-on-Task for Predicting
Performance

In addition to the IDE metrics in the previous subsection, researchers
have calculated time-on-task from log data for performance pre-
diction. For example, Kovanovi¢ et al. [19] examined different ap-
proaches for calculating time-on-task based on learning manage-
ment system logs, and studied how the different approaches com-
pare for predicting student performance. The authors found that
the choice of how time-on-task is calculated can have significant
effects on how well it explains performance. Similarly, Nguyen [27]
utilized time-on-task to predict academic performance and found
that taking individual, time, and task differences into account can



increase the performance of prediction models. Alamri et al. [2]
found that time-on-task was a good predictor of performance, and
emphasize that it is lightweight and thus easy to implement on
many different types of courses.

The relationship between time-on-task and performance has
been studied also within introductory programming. Leinonen et
al. [24] explored the correlations between different time metrics and
found that the time that students’ were actively engaged on the task
correlated with exam scores. Similarly, Pereira et al. [29] found that
time spent in the IDE in a CS1 course was one of the most important
features for predicting performance. Carter et al. [6] developed a
predictive model they coined the “Normalized Programming State
Model” (NPSM). The model represents different possible states of
students’ programming process: for example, whether students
are currently debugging or editing the program. They examined
how the amount of time spent in the different states of the model
relate to students’ performance and found that this explained 36%
of the variance in students’ grades. In a later study they found that
students’ paths in the model also correlate with performance [5].

3 METHODOLOGY
3.1 Context and Data

The course under study is an introductory programming course
(CS1) organized at a research-oriented university in Finland. The
course uses Java as the programming language and expects that
students have no prior programming experience. The main goal
of the course is to teach students the principles of object-oriented
programming. Students are first familiarized with variables, condi-
tional statements, and loops; then functions, function definitions,
and parameters; after which students start practicing using objects
and dividing responsibilities to different classes such as separating
the (textual) UI and logic of the program.

The course lasts for seven weeks and utilizes a many-small-
exercises approach. New exercises are released weekly and students
have approximately a week to work on the exercises of a specific
week. There were a total of 147 exercises over the duration of the
seven-week course. The course has two exams: a midterm exam
on the third week and a final exam at the end of the course. Both
exams are computer-based and include tasks that are similar to the
exercises students have completed over the course. The course grade
emphasizes the weekly exercises with 70% of the grade coming from
successfully completed exercises and 30% of the grade coming from
the exams (10% from the midterm and 20% from the final exam). In
order to successfully pass the course, students have to receive at
least 70% of the combined points available from the exercises and
the exams as well as get at least 50% of the points from the final
exam.

Within the course, students use an Integrated Development En-
vironment (IDE) with the TestMyCode plugin [36] to download
exercises and to submit them for automated assessment. The exer-
cises are accompanied by a unit test suite that students can freely
use to evaluate their progress in the exercise. Once all the tests pass
in the test suite, students are prompted to submit their work for
grading. Students are allowed to submit exercises multiple times;
however, this rarely happens due to students preferring to evaluate

progress with the local test suite. In addition to handling exer-
cise downloads and submissions, the IDE collects data about the
students’ programming process. The IDE collects every keystroke
students take while they are working on course exercises, the times-
tamp of those keystrokes, as well as a timestamped snapshot of the
program when students submit their work for assessment. In this
study, we used data from 132 students who agreed for their data
be used for research, had completed at least ten exercises in the
course, and had data available from both the exam and the IDE.

3.2 Metrics and Research Questions

In this work, we examine two metrics derived from programming
process data: coarse-grained time-on-task and fine-grained time-on-
task. Additionally, we study the relationship between these two
metrics, weekly exercise points, and exam points. Below are the
definitions of the variables used in this study:

e Coarse-grained time-on-task: The time elapsed between
the first keystroke and the first submission of the exercise.
This is calculated separately for each exercise.

¢ Fine-grained time-on-task: The sum of latencies between
keystrokes until the first submission of the exercise with all
breaks of ten minutes and longer removed. This is calculated
separately for each exercise.

o Exercise points: The points that students received for ex-
ercises of a specific week of the course. This is calculated
separately for each week of the course.

e Exam points: The points that students received for the final
exam at the end of the course. Students had to receive at
least 10 out of 20 points to pass the course (regardless of
exercise points).

The only difference between the coarse and the fine-grained
time-on-task metrics is that the fine-grained time-on-task metric
accounts for breaks that students took in their programming pro-
cess as it does not include any breaks students took that lasted for
ten minutes or more. The choice of setting the threshold for not
including a break at ten minutes is based on previous work [23].
The time-on-task is only calculated until the first submission since
in our context, students typically have a single submission for each
exercise as they are allowed to evaluate their progress on the exer-
cise by running local unit tests; thus, any subsequent submissions
typically are result of some rare outlier situation.

3.3 Research Questions
Our research questions (RQs) for this study are the following:

RQ1. How do the fine-grained and the coarse-grained time-on-
task metrics correlate with students’ exam points and weekly
exercise points?

RQ2. To what extent can students’ performance in the course
exam be predicted based on the fine-grained and the coarse-
grained time-on-task metrics?

3.4 Research Methods

For research question 1, we computed the Pearson correlation coef-
ficients between the different metrics. We calculated correlations
separately for individual weeks of the course and over the whole



course. In the weekly correlation analysis, we summed the times-on-
task of that week’s assignments together to compute the correlation
between the sums and weekly exercise points. Similarly, for the
correlation analysis of the whole course, we summed the times-on-
task of all the exercises of the course and computed the correlation
between the sums and exam points.

For research question 2, we examined three different machine
learning models to predict students’ performance in the course
using either coarse or fine-grained times-on-task as predictors. The
three chosen machine learning models are random forest, logistic
regression, and a majority classifier as a baseline to which we can
compare the performance of the other two approaches. We chose
random forest and logistic regression as they have been used in prior
student performance prediction studies [14], typically perform quite
well, and are from two different machine learning model families
with random forest being a decision tree-based ensemble model
and logistic regression being a regression-based model.

For the prediction task, the features used as predictors are the
exercise-specific times-on-task with min-max normalization. The
variable being predicted is a binary variable that represents whether
the student received at least half of the points from course final
exam, which was a requirement to pass the course. 103 students
out of the 132 received at least half of the points. This means that
the baseline majority classifier will always predict that a student
will get over half of the points in the exam.

For training the models, we employed nested cross-validation
with four folds for both the inner and outer loops using Scikit-
learn [28]. In ordinary cross-validation, data is split into k folds,
and the performance of the model is evaluated using each fold once
as a test set and taking the average of the scores. Nested cross-
validation is useful when the hyperparameters of the ML models
need to be tuned. In nested cross-validation, the data is first split in
an outer loop to k folds. Then, the training data (all folds except the
one left as a test set) is again split into k folds (where k can differ
from the outer loop) in the inner loop. The inner cross-validation
is used to tune the hyperparameters of the models, while the outer
cross-validation is used to evaluate the performance of the models.
When tuning the hyperparameters, we optimized for accuracy and
used a grid search over the hyperparameter space!.

Since there were 147 exercises in the course, and thus 147 features
(time-on-task per exercise), and only 132 students, we used feature
selection to prune the number of features used in the prediction
task. We used the SelectKBest? feature selection from Scikit-learn
with chi-squared scoring to select the twelve best features (since
V147 ~ 12). The feature selection selected the same features for
both time-on-task metrics. Five exercises from week 1, one from
week 2, one from week 3, three from week 4, and two from week 6
out of the 147 total exercises were selected.

To evaluate how well the models performed in the prediction
task, we calculated four different evaluation metrics. The four cho-
sen metrics were accuracy, ROC-AUC, F1 score, and Matthews

!For random forest, the hyperparameter space was: n_estimators: [50, 100, 200],
max_depth: [10, 20, None], min_samples_split: [2, 5, 10], min_samples_leaf: [1, 2,
4], and default Scikit-learn values for the rest of the parameters. For logistic regression,
the hyperparameter space was: solver: [“Ibfgs”, “liblinear”], C: [100, 10, 1.0, 0.1, 0.01],
and default Scikit-learn values for the rest of the parameters.
Zhttps://scikit-learn.org/stable/modules/generated/sklearn feature_selection.
SelectKBest.html

Table 1: Pearson correlation coefficients between the weekly
metrics. The time-on-task metrics for a week are sums of the
times-on-task for that week’s exercises.

Coarse ToT Fine ToT

Coarse ToT
Fine ToT 0.31 (p=1.3e-19)

Exercise points  0.03 (p=0.39) 0.35 (p=1.6e-25)

Table 2: Pearson correlation coefficients between the met-
rics over the whole course. The time-on-task metrics for the
course are sums of the times-on-task for all the exercises of
the course.

Coarse ToT Fine ToT

Coarse ToT
Fine ToT 0.50 (p=8.6e-10)

Exam points  0.23 (p=0.007) 0.51 (p=3.7e-10)

correlation coefficient (MCC). Brief definitions of the metrics are
as follows:

e Accuracy. Accuracy represents how many students were
correctly classified. The value ranges from 0 to 1 with 0
meaning none of the students were correctly classified and
1 meaning that all of the students were correctly classified.

e ROC-AUC. ROC-AUC is the area under the receiver oper-
ating characteristic curve. It represents how well the model
performs with different classification thresholds. The value
ranges from 0.5 to 1 where a higher value means that the
model performed better.

o F1 score. The F1 score is the harmonic mean of precision
(fraction of correctly identified students out of all identified
students) and recall (fraction of correctly identified students
out of all students who should have been identified). The
value ranges from 0 to 1 where a higher value means that
the model performs better.

e Matthews correlation coefficient (MCC). MCC is calcu-
lated with the two-by-two confusion matrix of true and
false positives and negatives and works well for imbalanced
datasets. The value ranges from -1 to 1 where a value of 0
means that the model’s performance was equal to random
guessing. The closer that MCC is to 1 (all students classified
correctly) or -1 (all students classified incorrectly), the better
(since in the negative case, the model’s predictions could be
simply reversed).

4 RESULTS
4.1 Correlation Analysis

Table 1 shows the correlation between the two time-on-task metrics
and weekly exercise points. From the table, we can see that the
correlation between the coarse and the fine-grained time-on-task
metric when summed for individual weeks is statistically significant
(p-value = 1.3e-19) but weak (r = 0.31). Additionally, we can see
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Table 3: Prediction results when predicting students’ perfor-
mance with the coarse-grained time-on-task. MCC for the
majority vote is not defined due to division by zero.

Accuracy ROC-AUC F1 MCC

Random forest 0.87 0.91 0.66 0.58
Logistic regression 0.79 0.74 0.09 0.10
Majority vote (baseline) 0.78 0.5 0.0 -

Table 4: Prediction results when predicting students’ perfor-
mance with the fine-grained time-on-task. MCC for the ma-
jority vote is not defined due to division by zero.

Accuracy ROC-AUC F1 MCC

Random forest 0.93 0.97 0.82 0.80
Logistic regression 0.91 0.96 0.78 0.75
Majority vote (baseline) 0.78 0.5 0.0 -

that the coarse-grained time-on-task does not statistically signifi-
cantly correlate with the weekly exercise points (p = 0.39), while
the correlation between the fine-grained time-on-task and weekly
exercise points is statistically significant (p = 1.6e-25) albeit weak
(r = 0.35).

Table 2 shows the correlation between the time-on-task metrics
and final exam points. We can observe that when summed over
the whole course, the correlation between the fine-grained and
the coarse-grained time-on-task metric is moderate (r = 0.50) and
statistically significant (p = 8.6e-10). The correlation between the
coarse-grained time-on-task and exam points is weak (r = 0.23) but
statistically significant (p = 0.007). For the fine-grained time-on-
task, the correlation with exam points is moderate (r = 0.51) and
statistically significant (p = 3.7e-10).

4.2 Prediction Analysis

Table 3 shows the results of the prediction task when using the
coarse-grained times-on-task as predictors. The results show that
using the coarse-grained time-on-task to predict success with the
logistic regression model is not feasible as the scores for all the
evaluation metrics (accuracy, ROC-AUC, F1 and MCC) are very low.
The random forest model shows some promise, achieving better
results compared to logistic regression, although the accuracy of
the model is only nine percentage points higher than the accuracy
for the baseline majority classifier.

Table 4 shows the results of the prediction task when using the
fine-grained times-on-task as predictors. Compared to the previous
case of using the coarse-grained times-on-task, we see that the
results have improved significantly. The performance of the logistic
regression model and the random forest model are now similar. Both
achieve very high scores in all of the studied metrics, and perform
significantly better compared to the majority vote classifier.

5 DISCUSSION

5.1 Relationship Between Time-on-Task and
Performance

In the correlation analysis performed for RQ1, we found that the
correlation between the coarse-grained and the fine-grained time-
on-task is lower than one might expect. Similar findings of different
time-on-task metrics not correlating strongly have been reported in
prior work [19, 23]. Both metrics are supposed to measure the same
feature, time-on-task, but our results suggest this might not be the
case. Both types of time-on-task metrics have been used previously
(see e.g. [9, 19, 24]). However, it is possible that the metrics are
measuring different things as noted in prior work [9, 19, 24]. Our
fine-grained time-on-task metric differs from the coarse-grained
metric only in that it takes breaks into account, removing any breaks
that last over 10 minutes from the time-on-task. Thus, perhaps the
fine-grained time-on-task metric should be referred to as “time-in-
IDE” while the coarse-grained time-on-task should be referred to as,
for example, “work span”. If metrics that actually measure different
things fall under the same umbrella, results related to those metrics
can be unreliable. Hence, when comparing results between different
studies, researchers should carefully consider the metrics used in
the studies and ponder whether the studies are truly comparable.

We saw that in both the weekly and the whole course data, the
fine-grained time-on-task correlated more strongly with perfor-
mance compared to the coarse-grained time-on-task. For example,
for the weekly data, we found that the correlation for the fine-
grained time-on-task and weekly exercise points was an order of
magnitude stronger (r = 0.31 vs r = 0.03) and that the correlation
between the coarse-grained metric and weekly points was not even
statistically significant. Similarly, considering the data for the whole
course, while both metrics correlated statistically significantly with
exam points, the correlation was two times stronger for the fine-
grained metric (r = 0.5 vs r = 0.23). However, while the relationship
between performance and time-on-task was stronger for the fine-
grained metric, there could be other uses for the coarse-grained
metric.

5.2 Predicting Success with Time-on-Task

Based on the results of RQ2, we saw that in addition to correlating
more strongly with performance, the fine-grained time-on-task also
worked better for predicting students’ success in the exam. Interest-
ingly, we saw that logistic regression seemed to suffer more from
using the coarse-grained features compared to random forest. This
suggests that random forest was able to better leverage the coarse-
grained features. However, both models performed considerably
better with the fine-grained features.

Overall, the performance of the models for predicting success
is impressive. This highlights previous findings on how important
time-on-task is for learning [2, 29, 34]. Considering predicting stu-
dents’ success, time-on-task could be useful in at least two ways.
Firstly, as prior work has shown, more time engaged in educational
activities tends to increase performance [34, 37]. On the other hand,
it is possible that some of the performance of the models is due to
the models learning that excessive time spent on exercises can be
an indicator of struggling. For example, Jadud’s Error Quotient [17],



which measures how much students struggle with syntax, has been
found to be a good predictor of performance in some contexts [30];
and presumably, students who struggle a lot with syntax will work
longer on the task on average compared to students who do not
struggle with syntax.

The assignments chosen by the feature selection provide some
insight into how the models discriminate between at-risk students
and those not at risk of failing the exam. We found that the selected
assignments included ones where students practice concepts that
some students commonly struggle with. For example, we found that
many of the assignments were those that are more mathematical
or heavy on logic (e.g. conditions). This could be related to some
students having a more extensive background in mathematics than
others, or the students’ perceptions on mathematics [33]. Similarly,
some of the selected assignments involved different exceptions such
as the null pointer exception and the index-out-of-bounds exception,
which are common struggles for students and require students to
carefully read the material before attempting the exercise if they
do not have prior background in programming.

5.3 Limitations

There are some limitations to our study, which we outline here.
Firstly, we only evaluated machine learning models using time-on-
task features as predictors. Thus, our results only shed light on
the performance of the two time-on-task metrics studied in this
work for predicting performance, but not on how well time-on-
task in general works for the prediction task compared to other
types of features. It is possible that a simpler model based on, for
example, the number of submissions would perform as well or
better; although this would be contrary to prior work [20]. Another
problem related to the chosen features is the relative simplicity of
the predicted target variable. Future work should evaluate model
performance with a more complex target variable; for example
predicting course grade instead of a binary at-risk status.

Another limitation is the real-world applicability of the machine
learning models. We used data from all exercises of the course to
build the models, and thus e.g. interventions made based on the
models could only be deployed near the end of the course?, at which
point it could be too late to provide at-risk students enough support
to help them pass the exam. However, our main point in this work
was to compare the two time-on-task metrics for prediction and
not build a realistic prediction model that could be used already
early in the course, which is part of our future work. In addition,
prior work has found that time-on-task from the first week of a
course can be a good predictor [2]. The features that were selected
by the feature selection in this study included many features from
the first weeks of the course; for example, five out of the twelve
chosen features were from the first week, and ten out of twelve
from the first four weeks, suggesting that the models did not solely
focus on predicting success based on exercises that are situated
near the end of the course.

Lastly, one of the main findings of this work is that the data used
to build time-on-task metrics matters, and thus it is possible that

31n our case, at the end of the sixth week of the seven week course, since two assign-
ments of the sixth week were selected by the feature selection. No assignments from
the seventh week were selected.

the results of our study are specific to our particular context, and
that different results would be observed in other contexts.

6 CONCLUSIONS

In this work, we studied the relationship between time-on-task
and performance. We examined this with two different time-on-
task metrics that were based on prior work [23] that we call fine-
grained time-on-task and coarse-grained time-on-task. The difference
between the two metrics is that the fine-grained time-on-task does
not include breaks (of ten or more minutes) students take in its
time-on-task estimate while the coarse-grained time-on-task metric
includes these breaks. Additionally, the fine-grained time-on-task
metric requires more fine-grained log data to build whereas the
coarse-grained time-on-task metric only requires information on
when students begin and end work on an exercise. Next, we revisit
our research questions and answer them.

RQ1. How do the fine-grained and the coarse-grained time-on-
task metrics correlate with students’ exam points and weekly
exercise points?

Answer: We found that the fine-grained time-on-task metric corre-

lates more strongly with both weekly exercise points and
exam points. The fine-grained time-on-task metric had a
weak (r = 0.35) correlation with weekly points and a moder-
ate (r = 0.51) correlation with exam points. For the coarse-
grained metric, the correlation with weekly points was not
statistically significant and the correlation with exam points
was weak (r = 0.23).

RQ2. To what extent can students’ performance in the course
exam be predicted based on the fine-grained and the coarse-
grained time-on-task metrics?

Answer: We discovered that—similar to the correlation analysis—the

fine-grained time-on-task metric also worked better for pre-
dicting students’ success in the course final exam. We pre-
dicted whether students will get a passing grade in the exam
with a random forest classifier, a logistic regression classi-
fier, and a majority vote classifier (used as a baseline). Using
coarse-grained time-on-task features, the logistic regression
classifier performed almost on par with the baseline major-
ity classifier, and the random forest classifier had moderate
results, while with the fine-grained features, both models
achieved results that were significantly better compared to
the baseline majority vote classifier.

Altogether, our results suggest that future work that utilizes time-
on-task for performance prediction should use as fine-grained data
as possible to measure time-on-task if such data is available. Addi-
tionally, the high performance of the prediction models provides
support for the notion that time-on-task is an important aspect of
learning. Future work should further study how time-on-task can
best be utilized for predicting students’ performance, and especially
focus on models that only use data collected early in the course
so that interventions such as additional help could be deployed to
struggling students promptly. In addition, while the present work
focused on predicting performance, an interesting aspect could be
to seek to predict future time-on-task based on present time-on-task
estimates.
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