
Comparing Code Explanations Created by
Students and Large Language Models

Juho Leinonen
University of Auckland
Auckland, New Zealand

juho.leinonen@auckland.ac.nz

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Stephen MacNeil
Temple University

Philadelphia, PA, United States
stephen.macneil@temple.edu

Sami Sarsa
Aalto University
Espoo, Finland

sami.sarsa@aalto.fi

Seth Bernstein
Temple University

Philadelphia, PA, United States
seth.bernstein@temple.edu

Joanne Kim
Temple University

Philadelphia, PA, United States
joanne.kim@temple.edu

Andrew Tran
Temple University

Philadelphia, PA, United States
andrew.tran10@temple.edu

Arto Hellas
Aalto University
Espoo, Finland

arto.hellas@aalto.fi

ABSTRACT
Reasoning about code and explaining its purpose are fundamental
skills for computer scientists. There has been extensive research
in the field of computing education on the relationship between a
student’s ability to explain code and other skills such as writing and
tracing code. In particular, the ability to describe at a high-level of
abstraction how code will behave over all possible inputs correlates
strongly with code writing skills. However, developing the exper-
tise to comprehend and explain code accurately and succinctly is a
challenge for many students. Existing pedagogical approaches that
scaffold the ability to explain code, such as producing exemplar code
explanations on demand, do not currently scale well to large class-
rooms. The recent emergence of powerful large language models
(LLMs) may offer a solution. In this paper, we explore the potential
of LLMs in generating explanations that can serve as examples to
scaffold students’ ability to understand and explain code. To evalu-
ate LLM-created explanations, we compare them with explanations
created by students in a large course (𝑛 ≈ 1000) with respect to
accuracy, understandability and length. We find that LLM-created
explanations, which can be produced automatically on demand, are
rated as being significantly easier to understand and more accurate
summaries of code than student-created explanations. We discuss
the significance of this finding, and suggest how such models can
be incorporated into introductory programming education.

CCS CONCEPTS
• Social and professional topics→ Computing education; •Com-
puting methodologies→ Natural language generation.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0138-2/23/07.
https://doi.org/10.1145/3587102.3588785

KEYWORDS
natural language generation, code comprehension, GPT-3, CS1,
code explanations, resource generation, large language models

ACM Reference Format:
Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein,
Joanne Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Expla-
nations Created by Students and Large Language Models. In Proceedings
of the 2023 Conference on Innovation and Technology in Computer Science
Education V. 1 (ITiCSE 2023), July 8–12, 2023, Turku, Finland. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3587102.3588785

1 INTRODUCTION
The ability to understand and explain code is an important skill for
computer science students to develop [7, 29, 44]. Prior computing
education research tends to suggest that proficiency at explaining
code develops for novices after lower-level code tracing skills and
is a prerequisite for higher-level code writing skills [22, 37]. After
graduating, students will also be expected to explain their code to
hiring managers during job interviews, explain code to their peers
as they onboard new teammembers, and explain code to themselves
when they first start working with a new code base. However,
students struggle to explain their own code and the ability to explain
code is a difficult skill to develop [20, 38]. These challenges are
further compounded by the fact that the ability to explain code is
not always explicitly included as a learning objective in CS courses.

Learning by example is an effective pedagogical technique, often
employed in programming education [2, 48]. However, generat-
ing good examples for certain kinds of resources, such as code
explanations, can be time-consuming for instructors. While learn-
ersourcing techniques could be used to generate code explanations
efficiently by directly involving students in their creation [21, 32],
there are known issues relating to quality when learning content
is sourced from students [1, 9]. In search of a remedy to this prob-
lem, researchers have explored the potential of ‘robosourcing’ (i.e.,
using AI-based generators to create content or scaffold content
creation by humans) learning materials [11, 36], including code

ar
X

iv
:2

30
4.

03
93

8v
1

 [
cs

.C
Y

]
 8

 A
pr

 2
02

3

https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0003-2781-6619
https://orcid.org/0000-0002-7277-9282
https://orcid.org/0000-0001-5767-1057
https://orcid.org/0000-0001-7646-2373
https://orcid.org/0000-0002-0094-1113
https://orcid.org/0000-0001-6502-209X
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3587102.3588785

explanations [24, 25]. At this stage, very little is known about how
the quality of AI-generated code explanations compare with code
explanations created by instructors or by students, and whether
they could be used as a replacement for either.

We compare the quality of learnersourced code explanations
against robosourced code explanations to examine the potential of
large language models (LLMs) in generating explanations for stu-
dents to use as examples for learning. We used LLMs to create code
explanations of three functions, and we asked students to create
explanations of the same functions. We then measured students’
perceptions of the quality of explanations from both sources. To
aid in the interpretation of our results, we elicit from students the
characteristics of a code explanation that they find most useful. The
following two research questions have guided this work:

RQ1 To what extent do code explanations created by students
and LLMs differ in accuracy, length, and understandability?

RQ2 What aspects of code explanations do students value?

Our results show that the code explanations generated by LLMs
and by students are equivalent in terms of ideal length, but that
the LLM-generated explanations are perceived as more accurate
and easier to understand. Although there are benefits for students
in being actively involved in producing their own explanations,
we conclude that LLM-generated explanations can serve as good
examples for students in early learn-by-example contexts and can
be a viable alternative for learnersourced code explanations.

2 RELATEDWORK
2.1 Code Comprehension
Code comprehension skills are important for helping programming
students understand the logic and functionality behind code snip-
pets [39]. Programmers can employ various code comprehension
strategies that give them flexibility in the ways they comprehend
programming concepts [43]. Some strategies include trace execu-
tion [6], explanations [31], and notional machines [15]. These strate-
gies take time and vary in effectiveness between students [17]. Re-
gardless, students may face roadblocks, including logical errors [12]
and syntactical errors [10] when trying to understand code.

Top-down and bottom-up learning are two approaches to learn-
ing that focus on the big picture and the details, respectively [47].
Top-down learning starts with the high-level concept and works
its way down to the specifics, while bottom-up learning begins
with the details and gradually works up to the high-level [40]. Both
approaches can be useful when teaching complex topics, as they
provide a way for learners to understand the whole concept by
understanding its parts. In computer science and programming,
these two approaches can be used to help learners understand the
fundamentals of coding and programming [34].

2.2 Pedagogical Benefits of Code Explanations
Explanations are vital teaching resources for students. Explanations
help students develop their understanding of how a code snippet ex-
ecutes [27], which can help students improve their reasoning about
writing their own code [29]. They also reduce stress by breaking
down complex concepts [14].

Early approaches for code explanation, such as the BRACElet
project, provided students with ‘explain-in-plain-English’ type ques-
tions to encourage students to explain the purpose of their code at
a higher level of abstraction [46]. This process of explaining one’s
own code provided both short and long-term learning benefits for
students [29, 42]. In large classrooms, the process of explaining
code can also be a collaborative activity where peers explain code
to each other. This process can be more informal, such as in the
case of pair programming when students explain their code and
their thought process to a partner as they write their code [16].

Even though explaining code is an important skill and previous
work has explored code explanation tasks, students are rarely ex-
posed to example code explanations, especially ones created by their
peers. Having easily available example code explanations could help
expose students to code explanations, which could support learn-
ing to explain their own code. Having the instructor create such
explanations is a time-consuming task. In big classrooms, it would
be hard to find the time to provide personalized explanations for
students [41]. Thus, studying if such explanations could be created
at scale with the help of LLMs is a relevant research topic.

2.3 Large Language Models in CS Education
The recent emergence of AI-based code generation models has
sparked considerable interest within the field of computing edu-
cation research [3]. Initial studies in this area have primarily fo-
cused on evaluating the performance of these models when solving
programming problems commonly encountered in introductory
courses. A seminal study in this field, entitled “The Robots are
Coming” [13], utilized the Codex model and a private repository
of programming problems drawn from high-stakes summative as-
sessments. The results of the study indicated that the solutions
generated by Codex scored approximately 80% on the assessments,
surpassing the performance of three-quarters of students when
compared to historical course data. Similar work involving a public
dataset of programming problems found that Codex produced cor-
rect solutions on its first attempt approximately half of the time,
increasing to 80% when repeated attempts and minor adjustments
to the input prompt were allowed [8].

In addition to evaluating performance, a complementary body of
research has investigated the potential of AI-based code-generation
models to generate learning resources. For example, Sarsa et al. ex-
plored various prompts and approaches for using the Codex model
to generate code explanations and programming exercises, finding
that it frequently produced novel and high-quality resources [36].
However, their evaluation was conducted solely by experts and did
not involve the use of resources by students in a practical setting.
MacNeil et al. used the GPT-3 model to generate explanations of
short code fragments which then were presented to students in
an online e-book alongside the corresponding code [24]. Although
their evaluation was conducted on a small scale with approximately
50 participants, students found the explanations to be useful when
they chose to engage with them. However, as the authors noted,
this engagement was lower than anticipated, and the students were
not involved in the creation of either the code examples or the
accompanying explanations.

The current study makes a unique contribution by directly com-
paring code explanations generated by students with those gen-
erated by AI models. While prior research has demonstrated that
LLMs can produce explanations of code that are deemed high-
quality by both experts and novices, this is the first study to inves-
tigate how students evaluate code explanations generated by their
peers in comparison to those generated by AI models.

3 METHOD
3.1 Context and Data
Our data for this study was collected in a first-year programming
course at The University of Auckland. Approximately 1000 students
were enrolled in the course in 2022 when our study was conducted.

3.1.1 Data collection. The data was collected during two separate
lab sessions, each of which ran over a one-week period. At the
time of the first lab, when the data collection began, the course
had covered the concepts of arithmetic, types, functions, loops and
arrays in the C programming language. The data collection followed
the ethical guidelines of the university.

During the first lab, Lab A, students were shown three function
definitions and were asked to summarize and explain the intended
purpose of each function. During the second lab, Lab B, which was
conducted two weeks after the first, students were shown a random
sample of four code explanations for the functions in Lab A. Some
of these code explanations were selected from the explanations
generated by students during Lab A, and some were generated
by the large language model GPT-3 [4]. Students were asked to
rate the explanations with respect to accuracy, understandability
and length. At the end of Lab B, students were invited to provide
an open-response answer to the following question: “Now that
you have created, and read, lots of code explanations, answer the
following question about what you believe are the most useful
characteristics of a good code explanation: What is it about a code
explanation that makes it useful for you?”

Figure 1 lists the three functions that were shown to students
in Lab A. Each function includes a single loop that processes the
elements of an array that is passed as input to the function, and has
a name that is representative of the algorithm being implemented.
For each of the three functions, students were asked to summarize
and explain the intended purpose of the function. Specifically, they
were asked to: “look at the name of the function, the names of the
variables being used, and the algorithm the function implements
and come up with a short description of what you believe is the
intended purpose of the function”.

3.1.2 Data sampling. Figure 2 provides an overview of the process
used to sample the code explanations used in Lab B. Students who
participated in generating code explanations in Lab A submitted
963 explanations for each of the three functions. For each of the
functions, we stratified the code explanations into three categories
based on their word length: 10th percentile, 10-90th percentile and
90th percentile. From each of these three categories, we randomly
selected three explanations, resulting in nine explanations for each
of the three functions. To these 27 student-generated explanations,
we added 27 explanations created by GPT-3, by generating nine
explanations for each of the three functions. For Lab B, each student

was shown four explanations selected at random from the pool of
54 explanations. They were asked to rate each of these with respect
to the following three questions (each on a 5-point scale):

• This explanation is easy to understand (5-items: Strongly
disagree, Disagree, Neutral, Agree, Strongly agree)

• This explanation is an accurate summary of the code (5-
items: Strongly disagree, Disagree, Neutral, Agree, Strongly
agree)

• This explanation is the ideal length (5-items: Much too short,
A little too short, Ideal, A little too long, Much too long)

3.1.3 Analyses. To answer RQ1 and to quantify differences be-
tween student-created and LLM-generated code explanations, we
compared student responses to the Likert-scale questions between
the two sources of code explanations.

As Likert-scale response data is ordinal, we used the non-para-
metric Mann–Whitney U test [26] to test for differences in Likert-
scale question data between student and LLM code explanations.We
tested: (1) whether there was a difference in the code explanations
being easy to understand; (2) whether there was a difference in the
code explanations being accurate summaries of the code; and (3)
whether there was a difference in the code explanations being of
ideal length. Further, we (4) studied the actual length of the code
explanations to form a baseline on whether the lengths of code
explanations differed between students and GPT-3, which could
help interpret other findings.

Altogether, we conducted four Mann–Whitney U tests. To ac-
count for the multiple testing problem, we used Bonferroni cor-
rected 𝑝 < 0.05/4 as the threshold of statistical significance. Fol-
lowing the guidelines of [45] and the broader discussion in [35], we
use 𝑝 values as only one source of evidence and outline supporting
statistics including two effect sizes – Rank-Biserial (RBC) Correla-
tion [19] and Common-Language Effect Size (CLES) [28] – when
presenting the results of the study.

To answer RQ2, i.e., examine what aspects of code explanations
students value, we conduct a thematic analysis of 100 randomly
selected student responses to the open-ended question “What is it
about a code explanation that makes it useful for you?”.

4 RESULTS
4.1 Descriptive Statistics
Overall, a total of 954 students participated in the activity where
they assessed the quality of code explanations. The averages and
medians for the responses, where Likert-scale responses have been
transformed to numeric values, are shown in Table 1, accompanied
with the mean code explanation length for both student-created
code explanations and LLM-generated code explanations.

Figure 3 further outlines the distribution of the responses, sepa-
rately color coding the different responses and allowing a visual
comparison of the different response values, which the numerical
overview shown in Table 1 complements.

4.2 Differences in Quality of Student- and
LLM-Generated Code Explanations

Mann-Whitney U tests were conducted to study for differences be-
tween the student- and LLM-generated code explanations. We used

int LargestValue(int values[], int length)
{
 int i, max;

 max = values[0];
 for (i = 1; i < length; i++) {
 if (values[i] > max) {
 max = values[i];
 }
 }

 return max;
}

int CountZeros(int values[], int length)
{
 int i, count;

 count = 0;
 for (i = 0; i < length; i++) {
 if (values[i] == 0) {
 count++;
 }
 }

 return count;
}

double AverageNegativeValues(int values[], int length)
{
 int i, sum, count;
 i = 0;
 sum = 0;
 count = 0;

 while (i < length) {
 if (values[i] < 0) {
 sum = sum + values[i];
 count++;
 }
 i++;
 }

 return (double)sum / count;
}

Figure 1: The three function definitions, as presented to students in Lab A. Students were asked to construct a short description
of the intended purpose of each function.

Lab A

3

9~1000~1000~1000

3 33 3 33 3 3

AverageNegativeValues

CountZeros

LargestValue

AverageNegativeValues

CountZeros

LargestValue

99

27 27

Lab B
4

GPT-3
student

generated
explanations

evaluating
explanations

length
sampling

language model
generated
explanations

Figure 2: Overview of the generation and sampling of code
explanations. In Lab B, each student was allocated four code
explanations to evaluate, selected at random from a pool of
54 code explanations (half of which were generated by stu-
dents in Lab A, and half of which were generated by GPT-3.)

two-sided tests, assessing for differences in the code explanations
being easy to understand, accurate summaries of the shown code,
and of ideal length. We further looked for differences between the
actual length (in characters) of the code explanations.

The results of the statistical tests are summarized in Table 2.
Overall, we observe statistically significant differences between the
student- and LLM-generated code explanations in whether they are
easy to understand and in whether they are accurate summaries
of the code. As per Bonferroni correction, there is no statistically
significant difference in student-perceptions of whether the code
explanations were of ideal length, and there is no statistically sig-
nificant difference in the actual length of the code explanations.

Table 1: Descriptive statistics of student responses on code
explanation quality. The responses that were given using a
Likert-scale have been transformed so that 1 corresponds to
‘Strongly disagree’ and 5 corresponds to ‘Strongly agree’.

Student-generated LLM-generated
Mean Median Mean Median

Easy to understand 3.75 4.0 4.12 4.0
Accurate summary 3.78 4.0 4.0 4.0
Ideal length 2.75 3.0 2.66 3.0
Length (chars) 811 738 760 731

Table 2: Mann-Whitney U test results from two-sided com-
parisons in the quality of the student- and LLM authored
code explanations. The𝑈 −𝑣𝑎𝑙 stands for theMann-Whitney
U test U value, 𝑝 outlines the probability (uncorrected) that
the responses come from the distribution, 𝑅𝐵𝐶 is the Rank-
Biserial Correlation of the data, and 𝐶𝐿𝐸𝑆 provides the
Common-Language Effect Size.

U-val 𝑝 𝑅𝐵𝐶 𝐶𝐿𝐸𝑆

Easy to understand 1421596.0 3.010 · 10−31 0.206 0.397
Accurate summary 1568575.5 2.866 · 10−12 0.123 0.438
Ideal length 1860870.5 0.025 -0.040 0.520
Length (chars) 1779386.0 0.764 0.006 0.497

Overall, interpreting the common language effect size (CLES)
fromTable 2, the proportion of student-generated and LLM-generated
code explanation pairs where the student-generated code expla-
nation is easier to understand is approximately 40%, while the
proportion of pairs where the LLM-generated code explanation is
easier to understand is approximately 60%. Similarly, the proportion
of student-generated and LLM-generated code explanation pairs
where the student-generated code explanation is a more accurate
summary is approximately 44%, while the proportion of pairs where
the LLM-generated code explanation is a more accurate summary
is approximately 56%. Although these differences are statistically

Figure 3: Distribution of student responses on LLM and student-generated code explanations being easy to understand and
accurate summaries of code.

significant (and visible, as seen in Figure 3), the effect sizes can be
considered weak (𝑅𝐵𝐶 < 0.3).

4.3 Examples of Good and Bad Explanations
from GPT-3 and Students

Our quantitative results suggest that LLM-generated explanations
were more accurate and easier to understand than those gener-
ated by students. In the thematic analysis related to what students
value in code explanations, we found that the LLM-generated and
student-generated explanations varied in different thematic quali-
ties. These include differences in levels of accuracy, completeness,
abstraction, and expert vocabulary used. In an open-ended response,
most students described a good explanation as one that “succinctly
summarized the function of the code by describing what its inputs
[and outputs] are,” illustrated “how the code works in coding terms
but also explains what the code is trying to achieve in basic English
terms,” and was “nice and simple but still has a good amount of
length to describe the whole code.”

Next, to illustrate the types of explanations that GPT-3 and stu-
dents created, we present four example explanations that differ
in terms of student-perceived quality – the highest- and lowest-
rated LLM- and student-created explanations for the LargestValue
function. The examples were ranked based on the average between
accuracy and understandability.

The following LLM-generated explanation was rated the highest
(understandability = 4.2, accuracy = 4.5, length = 3.5):

“This code snippet finds the largest value in an integer
array. It starts by assuming that the first value in
the array is the largest. It then loops through the
remaining values in the array, comparing each value
to themax. If a value is larger than themax, it becomes
the new max. This process is repeated until all values
in the array have been checked. The largest value is
then returned.”

The following LLM-generated explanation was rated the lowest
(understandability = 4.1, accuracy = 3.7, length = 2.0):

“This code snippet returns the largest value in an
array of integers.”

The following student-created explanation received the highest
evaluations (understandability = 4.2, accuracy = 4.5, length = 3.6):

“The function LargestValue, finds the largest integer
value in the input array, and outputs that value as
type int. It takes two inputs:

* values - an integer array
* length - the length of that array (number of elements
inside the array)

It sets the first integer value in the array as the original
‘max’ value (largest integer in the array) and then
scans through the input array (left to right), checking
to find if there is a larger integer value, which if found
it stores in it’s output integer variable - ‘max’, which
is returned at the end of the function.”

The following student-generated explanation received the lowest
ratings (understandability = 3.3, accuracy = 3.3, length = 1.6):

“to find the largest value within the array”

Students preferred explanations that had both information re-
lated to what the function is and how it operates being described
in a line-by-line format. Many students also agreed that a good
explanation explains the inputs and outputs of the code.

Bad explanations were characterized as those that missed some
details of the code while either being too long or too short. For
example, an explanation may state at a high level the purpose of
the code, but not go into detail about what data structures were
used, or what inputs are given to the function.

Interestingly, we found that all of the LLM-generated explana-
tions started out with the statement “This code snippet” or “The
purpose of this code snippet” while the student generated explana-
tions differed more. This was partially due to the prompting of the
LLM, where it was asked to explain the purpose of “the following
code snippet”. However, most of the explanations by both students

and the LLM generally followed a similar structure: function’s pur-
pose, analysis of the code, and finally the return output.

4.4 Characterizing Code Explanations
In the thematic analysis (n=100), we found that students were al-
most evenly split between focusing on specific (n=57) and generic
(n=65) aspects of the code with some students’ responses including
both. When focusing on specific aspects of code students described
the need for a line-by-line explanation (21%). Students also focused
on even lower-level details like the names of variables, the input
and output parameters (36%), and defining terms (8%). Some stu-
dents asked for additional aspects that were rarely included in code
explanations. For example, students requested examples, templates,
and the thought process behind how the code was written.

Students commented extensively about the qualities that make
a good explanation. Length was an important aspect with 40% of
the students commenting explicitly on the length of an explanation.
However, there was no clear consensus about the exact length
that was ideal. Instead, comments tended to focus on efficiency;
conveying the most information with the fewest words. Students
appeared to rate short explanations low, even when the explanation
was to the point and might be something that a teacher would
appreciate. This may be partly due to such explanations giving them
little or no additional information that was not already obvious in
the function, e.g. the function name. Students, them being novices,
likely preferred more detailed explanations since it helps them
better learn and understand what is actually going on in the code.

5 DISCUSSION
5.1 Differences Between Student- and

LLM-Created Code Explanations
Github Copilot and similar tools have made code comprehension
an even more important skill by shifting the focus from writing
code to understanding the purpose of code, evaluating whether the
code generated is appropriate, and modifying the code as needed.
However, it is also possible that LLMs can not only help students
to generate code, but also help them understand it by creating code
explanations which can be used as code comprehension exercises.

We found that the code explanations created by GPT-3 were rated
better on average in understandability and accuracy compared to
code explanations created by students. This suggests that LLM-
created code explanations could be used as examples on courses
with the goal of supporting students in learning to read code. There
were no differences in either perceived or actual length of student-
and LLM-created code explanations, so the increased ratings are
not due to the LLM creating longer (or shorter) explanations.

We believe that code explanations created by LLMs could be a
helpful scaffolding for students who are at the stage where they
can understand code explanations created by the LLM but are not
yet skilled enough to create code explanations of their own. LLM-
created code explanations could also be used as examples that could
help students craft code explanations of their own.

One downside mentioned in previous work is potential over-
reliance on LLM support [5, 13]. One way to combat over-reliance
on LLM-created code explanations would be to monitor student
use of this type of support (e.g., giving students a limited number

of tokens [30] that would be used as they request explanations
from an LLM) to limit student use of, or reliance, on these tools.
For example, students could get a fixed number of tokens to start
with and use up tokens by requesting explanations – and then earn
tokens by writing their own hand-crafted code explanations.

5.2 What Do Students Value in Code
Explanations?

We found in our thematic analysis that students expressed a prefer-
ence for line-by-line explanations. This is also the type of explana-
tion that LLMs seem to be best at creating [36]. This finding was
somewhat surprising as prior work on ‘explain-in-plain-English’
code explanation tasks has typically rated ‘relational’ responses
– short, abstract descriptions of the purpose of the code – higher
than ‘multi-structural’ – line-by-line – responses. This suggests that
there might be a mismatch between instructor and student opin-
ions on what makes a good explanation. It might even be that some
prior work has “unfairly” rated student multi-structural explana-
tions lower since students might have possibly been able to produce
the more abstract relational explanations, but were thinking longer,
more detailed explanations are “better” and thus produced those
types of explanations.

In the thematic analysis, we also observed that the LLM-created
explanations closely followed a standard format. It is possible that
showing students LLM-created explanations could help them adopt
a standard format for their own explanations, which would possibly
help make better explanations. This would be similar to prior work
that has shown that templates can help designers frame better
problems [23] and writers write better emails [18].

5.3 Limitations
There are limitations to our work, which we outline here. First,
related to generalizability, the students in our study were novices.
This might affect both the types of explanations they create as well
as how they rate the explanations created by their peers and GPT-3.
For example, prior work has found differences in how students
and instructors rate learnersourced programming exercises [33].
It is possible – even likely – that more advanced students, or e.g.
instructors, could create code explanations that would be rated
higher than the explanations created by GPT-3. Novices might also
value different types of explanations than more advanced students:
for example, it is possible that once students get more experience,
they will start valuing more abstract, shorter explanations.

Related to the code being explained, we only provided students
correct code in this study. An interesting avenue of future work
is evaluating student and LLM performance in explaining and de-
tecting bugs in incorrect code. The functions being explained were
also relatively simple. Future work should study explanations for
more varied and complex functions.

In this exploratory work, we only looked at student percep-
tions on the quality of the explanations. Future work should study
whether there are differences in student learningwhen using student-
and LLM-created code explanations.

We acknowledge that we analyzed the data in aggregate, i.e.,
some students might have only seen LLM-created explanations
and some only student-created ones. We did a brief analysis of

the data for students who saw two LLM-created explanations and
two student-created explanations, and observed similar effects as
reported in this study, and thus believe aggregating over all students
is methodologically valid.

Lastly, we used the davinci-text-002 version of GPT-3. A newer
version, davinci-text-003, was released in November 2022. Using the
newer LLM-model would likely yield at least similar performance,
if not better.

6 CONCLUSION
In this work, we presented a study where students created code
explanations and then evaluated their peers’ code explanations
as well as code explanations created by GPT-3. We found that
students rated the code explanations created by GPT-3 higher in
both accuracy and understandability, even though there were no
differences in the perceived or actual length of the student and LLM-
created code explanations. Further, we found that students preferred
detailed explanations over concise high-level explanations.

Our results suggest that LLM-created code explanations are good,
and thus could be useful for students who are practicing code read-
ing and explaining. We argue that these skills are becoming even
more relevant with the advent of large language model based AI
code generators such as GitHub Copilot as the role of software de-
velopers in the future will increasingly be to evaluate LLM-created
source code instead of writing code from scratch.

ACKNOWLEDGMENTS
We are grateful for the grant from the Ulla Tuominen Foundation
to the first author.

REFERENCES
[1] Solmaz Abdi, Hassan Khosravi, Shazia Sadiq, and Gianluca Demartini. 2021.

Evaluating the Quality of Learning Resources: A Learnersourcing Approach.
IEEE Transactions on Learning Technologies 14, 1 (2021), 81–92.

[2] Siti-Soraya Abdul-Rahman and Benedict du Boulay. 2014. Learning programming
via worked-examples: Relation of learning styles to cognitive load. Computers in
Human Behavior 30 (2014), 286–298. https://doi.org/10.1016/j.chb.2013.09.007

[3] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proc. of the 54th ACM Technical Symposium on Computer Science Education V. 1.
ACM, 500–506.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[6] Bas Cornelissen, Andy Zaidman, and Arie van Deursen. 2011. A Controlled
Experiment for Program Comprehension through Trace Visualization. IEEE
Transactions on Software Engineering 37, 3 (2011), 341–355.

[7] Kathryn Cunningham, Yike Qiao, Alex Feng, and Eleanor O’Rourke. 2022. Bring-
ing "High-Level" Down to Earth: Gaining Clarity in Conversational Programmer
Learning Goals. In Proc. of the 53rd ACM Technical Symposium on Computer
Science Education V. 1 (Providence, RI, USA) (SIGCSE 2022). ACM, 551–557.

[8] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring prompt engineering for solving CS1 problems using natural language.
In Proc. of the 54th ACM Technical Symposium on Computer Science Education V. 1.
1136–1142.

[9] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2009. Quality of Student
Contributed Questions Using PeerWise. In Proc. of the Eleventh Australasian
Conf. on Computing Education - Volume 95 (Wellington, New Zealand) (ACE ’09).
Australian Computer Society, Inc., AUS, 55–63.

[10] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All Syntax Errors
Are Not Equal. In Proc. of the 17th ACMAnnual Conf. on Innovation and Technology

in Computer Science Education (Haifa, Israel) (ITiCSE ’12). ACM, New York, NY,
USA, 75–80. https://doi.org/10.1145/2325296.2325318

[11] Paul Denny, Sami Sarsa, Arto Hellas, and Juho Leinonen. 2022. Robosourcing
Educational Resources–Leveraging Large Language Models for Learnersourcing.
arXiv preprint arXiv:2211.04715 (2022).

[12] Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. 2018. Common logic
errors made by novice programmers. In Proc. of the 20th Australasian Computing
Education Conf. 83–89.

[13] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Australasian Computing Education
Conf. ACM, 10–19.

[14] Jean M. Griffin. 2016. Learning by Taking Apart: Deconstructing Code by Read-
ing, Tracing, and Debugging. In Proc. of the 17th Annual Conf. on Information
Technology Education. ACM, 148–153.

[15] Philip J Guo. 2013. Online python tutor: embeddable web-based program vi-
sualization for cs education. In Proc. of the 44th ACM technical symposium on
Computer science education. 579–584.

[16] Brian Hanks, Sue Fitzgerald, Renée McCauley, Laurie Murphy, and Carol Zander.
2011. Pair programming in education: a literature review. Computer Science
Education 21, 2 (2011), 135–173. https://doi.org/10.1080/08993408.2011.579808

[17] Regina Hebig, Truong Ho-Quang, Rodi Jolak, Jan Schröder, Humberto Linero,
Magnus Ågren, and Salome Honest Maro. 2020. How do Students Experience
and Judge Software Comprehension Techniques?. In Proc. of the 28th Int. Conf.
on Program Comprehension. 425–435.

[18] Julie S Hui, Darren Gergle, and Elizabeth M Gerber. 2018. Introassist: A tool
to support writing introductory help requests. In Proc. of the 2018 CHI Conf. on
Human Factors in Computing Systems. 1–13.

[19] Dave S Kerby. 2014. The simple difference formula: An approach to teaching
nonparametric correlation. Comprehensive Psychology 3 (2014), 11–IT.

[20] Teemu Lehtinen, Aleksi Lukkarinen, and Lassi Haaranen. 2021. Students Struggle
to Explain Their Own Program Code. In Proc. of the 26th ACM Conf. on Innovation
and Technology in Computer Science Education V. 1. ACM, 206–212.

[21] Juho Leinonen, Nea Pirttinen, and Arto Hellas. 2020. Crowdsourcing Content
Creation for SQL Practice. In Proc. of the 2020 ACM Conf. on Innovation and
Technology in Computer Science Education. 349–355.

[22] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship between Explaining, Tracing and Writing Skills in Introductory
Programming. SIGCSE Bull. 41, 3 (2009), 161–165.

[23] Stephen MacNeil, Zijian Ding, Kexin Quan, Thomas j Parashos, Yajie Sun, and
Steven P Dow. 2021. Framing Creative Work: Helping Novices Frame Better
Problems through Interactive Scaffolding. In Creativity and Cognition. 1–10.

[24] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in a web software development
e-book. In Proc. of the 54th ACM Technical Symposium on Computer Science
Education V. 1. 931–937.

[25] StephenMacNeil, Andrew Tran, DanMogil, Seth Bernstein, Erin Ross, and Ziheng
Huang. 2022. Generating Diverse Code Explanations Using the GPT-3 Large
Language Model. In Proc. of the 2022 ACM Conf. on Int. Computing Education
Research - Volume 2. ACM, 37–39.

[26] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60.

[27] Samiha Marwan, Nicholas Lytle, Joseph Jay Williams, and Thomas Price. 2019.
The Impact of Adding Textual Explanations to Next-Step Hints in a Novice
Programming Environment. In Proc. of the 2019 ACM Conf. on Innovation and
Technology in Computer Science Education. ACM, 520–526.

[28] Kenneth O McGraw and Seok P Wong. 1992. A common language effect size
statistic. Psychological bulletin 111, 2 (1992), 361.

[29] Laurie Murphy, Sue Fitzgerald, Raymond Lister, and Renée McCauley. 2012.
Ability to ’explain in Plain English’ Linked to Proficiency in Computer-Based
Programming. In Proc. of the Ninth Annual Int. Conf. on Int. Computing Education
Research. ACM, 111–118.

[30] Henrik Nygren, Juho Leinonen, Nea Pirttinen, Antti Leinonen, and Arto Hellas.
2019. Experimenting with model solutions as a support mechanism. In Proc. of
the 1st UK & Ireland Computing Education Research Conf. 1–7.

[31] Steve Oney, Christopher Brooks, and Paul Resnick. 2018. Creating Guided Code
Explanations with Chat.Codes. Proc. ACM Hum.-Comput. Interact. 2, CSCW,
Article 131 (nov 2018), 20 pages. https://doi.org/10.1145/3274400

[32] Nea Pirttinen, Vilma Kangas, Irene Nikkarinen, Henrik Nygren, Juho Leinonen,
and Arto Hellas. 2018. Crowdsourcing programming assignments with Crowd-
Sorcerer. In Proc. of the 23rd Annual ACM Conf. on Innovation and Technology in
Computer Science Education. 326–331.

[33] Nea Pirttinen and Juho Leinonen. 2022. Can Students Review Their Peers?
Comparison of Peer and Instructor Reviews. In Proc. of the 27th ACM Conf. on
Innovation and Technology in Computer Science Education Vol 1.

https://doi.org/10.1016/j.chb.2013.09.007
https://doi.org/10.1145/2325296.2325318
https://doi.org/10.1080/08993408.2011.579808
https://doi.org/10.1145/3274400

[34] Margaret M. Reek. 1995. A Top-down Approach to Teaching Programming.
In Proc. of the Twenty-Sixth SIGCSE Technical Symposium on Computer Science
Education. ACM, 6–9.

[35] Kate Sanders, Judy Sheard, Brett A Becker, Anna Eckerdal, and Sally Hamouda.
2019. Inferential statistics in computing education research: A methodological
review. In Proc. of the 2019 ACM conf. on int. comp. education research. 177–185.

[36] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models. In Proc. of the 2022 ACM Conf. on Int. Computing Education Research -
Volume 1. ACM, 27–43.

[37] Judy Sheard, Angela Carbone, Raymond Lister, Beth Simon, Errol Thompson,
and Jacqueline L. Whalley. 2008. Going SOLO to Assess Novice Programmers. In
Proc. of the 13th Annual Conf. on Innovation and Technology in Computer Science
Education. ACM, 209–213.

[38] Simon and Susan Snowdon. 2011. Explaining Program Code: Giving Students the
Answer Helps - but Only Just. In Proc. of the Seventh Int. Workshop on Computing
Education Research. ACM, 93–100.

[39] Leigh Ann Sudol-DeLyser, Mark Stehlik, and Sharon Carver. 2012. Code Com-
prehension Problems as Learning Events. In Proc. of the 17th ACM Annual Conf.
on Innovation and Technology in Computer Science Education. ACM, 81–86.

[40] Ron Sun, Edward Merrill, and Todd Peterson. 2000. Knowledge Acquisition Via
Bottom-up Learning. Knowledge-Based Systems (2000), 249–291.

[41] Zahid Ullah, Adidah Lajis, Mona Jamjoom, Abdulrahman Altalhi, Abdullah Al-
Ghamdi, and Farrukh Saleem. 2018. The effect of automatic assessment on
novice programming: Strengths and limitations of existing systems. Computer

Applications in Engineering Education 26, 6 (2018), 2328–2341.
[42] Arto Vihavainen, Craig S Miller, and Amber Settle. 2015. Benefits of self-

explanation in introductory programming. In Proc. of the 46th ACM Technical
Symposium on Computer Science Education. 284–289.

[43] A. Von Mayrhauser and A.M. Vans. 1995. Program comprehension during soft-
ware maintenance and evolution. Computer 28, 8 (1995), 44–55.

[44] Wengran Wang, Yudong Rao, Rui Zhi, Samiha Marwan, Ge Gao, and Thomas W.
Price. 2020. Step Tutor: Supporting Students through Step-by-Step Example-
Based Feedback. In Proc. of the 2020 ACM Conf. on Innovation and Technology in
Computer Science Education. ACM, 391–397.

[45] Ronald L Wasserstein and Nicole A Lazar. 2016. The ASA statement on p-values:
context, process, and purpose. The American Statistician 70, 2 (2016), 129–133.

[46] Jacqueline L.Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins,
P. K. Ajith Kumar, and Christine Prasad. 2006. An Australasian Study of Reading
and Comprehension Skills in Novice Programmers, Using the Bloom and SOLO
Taxonomies. In Proc. of the 8th Australasian Conf. on Computing Education -
Volume 52. Australian Computer Society, Inc., AUS, 243–252.

[47] Honglin Wu, Fu Zhang, Jingwei Cheng, and Ke Wang. 2019/11. Determine
Teaching Content using a Bottom-up Approach. In Proc. of the 2nd Int. Conf. on
Humanities Education and Social Sciences (ICHESS 2019). Atlantis Press, 597–600.

[48] Rui Zhi, Thomas W. Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes,
and Min Chi. 2019. Exploring the Impact of Worked Examples in a Novice
Programming Environment. In Proc. of the 50th ACM Technical Symposium on
Computer Science Education. ACM, 98–104.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Code Comprehension
	2.2 Pedagogical Benefits of Code Explanations
	2.3 Large Language Models in CS Education

	3 Method
	3.1 Context and Data

	4 Results
	4.1 Descriptive Statistics
	4.2 Differences in Quality of Student- and LLM-Generated Code Explanations
	4.3 Examples of Good and Bad Explanations from GPT-3 and Students
	4.4 Characterizing Code Explanations

	5 Discussion
	5.1 Differences Between Student- and LLM-Created Code Explanations
	5.2 What Do Students Value in Code Explanations?
	5.3 Limitations

	6 Conclusion
	Acknowledgments
	References

