Check for
Updates

Seeing Program Output Improves Novice Learning Gains

Juho Leinonen
The University of Auckland
Auckland, New Zealand
juho.leinonen@auckland.ac.nz

ABSTRACT

In this article, we report results from a randomized controlled trial
where novice programmers completed code mimicking exercises
— writing and modifying code shown to them — designed to help
learn the basics of how variables work. Using a tailored code writing
system with feedback on program correctness, we conducted a two-
group design study where only one of the groups could see the
program output and feedback on the correctness of the program
they wrote, while the other group just saw feedback on correctness.
Learning gain was measured using a code-reading multiple choice
questionnaire as both a pretest and a posttest. Our data suggests
that being able to see program output leads to higher learning gains
for novices, when compared to just being able to see feedback on the
correctness of the code. For more experienced students, we observed
benefits from code mimicking in both groups, without a strong
distinction between being able to see the output and not being able
to see the output. Based on our experiment, we recommend that
environments used by novices for learning programming should
encourage — or even require — running the code before allowing
submitting the program for assessment.

CCS CONCEPTS

« Applied computing — Interactive learning environments; So-
cial and professional topics — Computing education.

KEYWORDS

automated assessment, randomized controlled trial, feedback, pro-
gram output, misconceptions, variables, novice programmer

ACM Reference Format:

Juho Leinonen, Arto Hellas, and John Edwards. 2023. Seeing Program Output
Improves Novice Learning Gains. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (ITiCSE
2023), July 8-12, 2023, Turku, Finland. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3587102.3588796

1 INTRODUCTION

Recently, there has been an emergence of studies that have explored
the use of simple syntax practice for helping novices in introductory
programming courses [9, 10, 14, 22, 26]. In simple syntax practice
tasks, students are shown code that they need mimic either by
rewriting the exact same code or by rewriting the code and adjusting
it in a marginal fashion such as changing variable values. When

ITiCSE 2023, July 8-12, 2023, Turku, Finland

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0138-2/23/07.
https://doi.org/10.1145/3587102.3588796

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Arto Hellas
Aalto University
Espoo, Finland
arto.hellas@aalto.fi

180

John Edwards
Utah State University
Logan, Utah, United States
john.edwards@usu.edu

mimicking code, students may not have been told beforehand about
the purpose of the specific syntax they are working with or what
the code that they mimic does.

The technical implementation of these studies has often differed
to some extent. One could, for example, show code that needs to be
written as is, and highlight every character that is mistyped [22].
On the other hand, it could be that students are given code and they
are told what the code outputs, and the students are then told to
recreate a program that does something similar [9, 10]. While [22]
found that the interventions did not improve learning outcomes,
the opposite was observed in [9, 14, 26]. In [22], students were
expected to simply write code that they saw, while the other studies
have often focused on also adjusting shown code. In addition, the
environments have differed to some extent between the studies
- in [14, 22], the environment did not show the program output,
while in [9, 26] the environment did show the output.

In the present work, we explore the possibility of using sim-
ple syntax practice for learning about the very basics of program-
ming, looking into the effect of the used environment. Controlling
whether students have access to program output and feedback from
automated assessment versus just the feedback from automated
assessment, we answer the following research questions:

RQ1 Given feedback from automated assessment, what is the
effect of seeing program output on the learning of novice
programmers?

RQ2 Given feedback from automated assessment, what is the
effect of seeing program output on the mental effort of novice
programmers?

RQ3 Given feedback from automated assessment, what is the
effect of seeing program output on the attitudes toward pro-
gramming of novice programmers?

This article is organized as follows. In the next section, we discuss
background on automated assessment & feedback, syntax practice,
programming misconceptions and the research gap this study tack-
les. In Section 3, we present the experimental setup of the study and
our methods. Section 4 briefly presents results from a pilot study
that informed the pivotal study, the results of which are discussed
in Section 5. We discuss the results in Section 6 and conclude the
article by answering our research questions in Section 7.

2 BACKGROUND

Many introductory programming courses rely on automated as-
sessment of programming assignments. Automated assessment is
used to provide feedback on submission correctness in a number
of ways [1, 17, 20, 29]: at the bare minimum, such systems tell
whether a program written by a student is correct or not based on,
e.g., input-output tests, but the systems can also provide feedback
on structure [8] and test coverage [11, 35]. They can also provide
functionality for setting limits on the time and instructions of the

https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0001-6502-209X
https://orcid.org/0000-0002-0882-312X
https://doi.org/10.1145/3587102.3588796
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3587102.3588796
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587102.3588796&domain=pdf&date_stamp=2023-06-30

ITiCSE 2023, July 8-12, 2023, Turku, Finland

assessed programs [12, 18, 39], and in some cases have a limited
number of submissions to curb over-reliance [7, 25]. There are
many benefits to using automated assessment, including scaling
instruction to a larger student body, allowing teachers to focus on
tasks other than manual grading, and providing more opportunities
for when and where students can work [1, 17].

Automated assessment feedback can be provided from multiple
angles. Some systems only tell the student whether the program
was correct or incorrect, omitting details, while other systems may,
e.g., provide inputs that the student should try out if something
fails in the program as well as inform the user if there are syntax
errors [1, 17, 33]. Some systems, when providing information on
the output of the program, may provide the output in a separate
window such as a tab that may need to be explicitly accessed [36]
or in a downloadable file [27].

While automated assessment systems are widely used, they also
come with a number of downsides. Automated assessment tools
may become a crutch that students rely on instead of trying to
figure out what is wrong [19], students may try to game the au-
tomated assessment systems [16], and the availability of feedback
may lead to a wheelspinning behavior — going full speed ahead
without actually progressing [3]. Indeed, there exists a small cho-
rus of researchers who have started to question the infallibility of
automated assessment of programming exercises (c.f. [2]).

The misuse of automated assessment systems and the reliance
on perhaps poorly construed feedback from them could also lead to
- or maintain - misconceptions. Even introductory concepts such as
variables and assignment can cause confusion [15, 21, 30, 34, 37]1.
As an example, the statement a = b might be understood as copying
the contents of a to b or as “creating a follower” where whatever is
assigned to b would be reflected on a as well. Having the possibility
to observe the output of a program and using that possibility could
indeed help to understand such a case. So could feedback from
an automated assessment system, however. Hence, our question —
what is the effect of running a program and seeing its output versus
Jjust being able to check the correctness of a program?

3 EXPERIMENT DESIGN

3.1 Environment

For the purposes of the study, we developed an online environment
for writing, running, and checking JavaScript code. We used the
Ace? editor as the starting point for the environment, introduced a
new function called print to the JavaScript language, and created
the functionality needed to show the output of written JavaScript
programs to the user. Basic functionality for testing the output and
the structure of the program was implemented. For example, if the
user is asked to print a variable, a check is made to ensure that the
user prints the variable instead of just printing the variable’s value.

Two operating modes were created for the environment: “Run
code” mode and “Check code” mode. In the “Run code” mode, users
have a “Run code” button which, when pressed, evaluates the writ-
ten code and shows a console with the output (given that the pro-
gram produces printed output) and any feedback from automated
assessment. In the “Check code” mode, users have a “Check code”

Perhaps also in part due to the learner’s prior experience with mathematics [21, 24, 31].
Zhttps://ace.c9.io/

181

Juho Leinonen, Arto Hellas, & John Edwards

button which evaluates the written code and shows any feedback
from automated assessment but omits the output of the program.

The automated assessment verified that the user is attempting to
perform the given task, i.e., mimic given code instead of trying to
bypass the task with simple print statements, and that the output
has the expected values. Feedback from automated assessment was
succinct. For example, if the program written by the student fails
to output an expected number, the shown feedback highlights the
issue and tells what the expected number was.

In both operating modes, when the entered program is correct,
the users see a thumbs-up emoji and the sentence “Your code is
correct!”. At this point, a “Next” button is enabled, allowing the
user to progress to the next task. The environment also provides a
safeguard, where users who get stuck for more than 90 seconds are
shown a “Skip” button that allows them to move forward. Pasting
code to the environment is disabled. If a user pastes in code, the
environment opens a dialog and shows the user a message not to
do so. When the dialog is closed, the pasted content is removed.

A screenshot of the environment is shown in Figure 1. The screen-
shot is from the “Run code” mode. In the screenshot, the user has
been given the task to mimic a given program and to create a ver-
sion of the program that prints the numbers four and two. The user
has pressed the “Run code” button and sees the program output
and the feedback: the program does not work correctly as the first
printed value was not as expected. The key difference between the
two operating modes is that in the “Check code” mode, users can
not run the program and thus can not not see the program output.
They can still get feedback by pressing the “Check code” button.

3.2 Experiment: Randomized Controlled Trial

The environment was used for an experiment where students were
learning about variables, assignment, and printing. The experiment
was conducted as a randomized controlled trial where participating
students were randomly assigned into two groups, each in one
of the two modes of the environment. The experiment consisted
of a question gauging previous programming experience, three
pretest quiz questions, five code mimicking tasks that students
solved within the environment in the mode they were assigned
to, a mental effort question [28], three posttest quiz questions, and
five questions that gauged the participants’ attitudes about the
experiment>. Other than the environment mode, the contents of
the experiment were the same for both groups. The pretest and
posttest quizzes contained code-tracing questions that asked the
students to determine the output of given programs; the programs
contained statements that have been previously found to elicit
variable-related misconceptions and were inspired by the literature
on misconceptions (briefly mentioned in Section 2). No feedback
was given on the pretest and posttest quizzes.

Each code-mimicking task showed an example program to the
student which the student then had to write in the code editor. The
tasks always included some sort of adjustment where the student
had to change what was being printed. As the objective of our study
was to determine the impact of being able to run the code and to see

3Due to space constraints, the full structure of the experiment is outlined in an online
appendix at https://osf.io/x8aym/?view_only=9ed93e0320da44e0ba512f10b357f72f

https://osf.io/x8aym/?view_only=9ed93e0320da44e0ba512f10b357f72f

Seeing Program Output Improves Novice Learning Gains

Code mimicking

The following program prints the numbers two and four on consecutive
lines.

let x 2
let y = x

print(y)
X =4
print(x)

Mimicking the above program, write a program that prints the numbers
four and two on consecutive lines. Write the program to the text editor
below.

let x = 2

lety = x

print(x)

x =4

print(y).

Program printed the following:

@ Observed the following issue:

+ The first printed value was not as expected. Printed: 2, Expected: 4

RUN CODE

You can skip the question after 90 seconds.

Figure 1: A screenshot of the programming environment. The
screenshot shows the “Run code” mode, which in addition
to the automated assessment feedback shows the program
output. The output section in the blue square is omitted for
the “Check code” mode.

the output, and as our intended study population were complete
novices, the code mimicking tasks focused on the use of variables.

The question gauging previous programming experience had
three options ranging from “No previous programming experience”
to “Plenty of previous programming experience” and a separate op-
tion for indicating that the participant was not certain. The pretest
and posttest multiple-choice questions were graded either correct
or incorrect. The mental effort question had 9 items ranging from
“Very, very low mental effort” to “Very, very high mental effort” [28].
The questions that gauged participants’ attitudes had the state-
ments (1) “I enjoyed solving the preceding code mimicking tasks”
(Enjoyed); (2) “I think that the experiment was educational” (Educa-
tional); (3) “I think that the experiment was difficult” (Difficult); (4)
“Ifeel that I improved my understanding of how computer program-
ming works” (How programming works); and (5) “I feel that I was
able to get an idea of how I was doing.” (Idea of how was doing) and
were answered using a 5-item Likert-scale survey from “Strongly
agree” to “Strongly disagree”.

3.3 Analysis

For the present study, we focus on novice programmers as our main
interest is in understanding the effects of the two environment
modes on those who have not yet learned programming and do not

182

ITiCSE 2023, July 8-12, 2023, Turku, Finland

have an intuition of how programs work from prior experience. We
define novice programmers as those who both report not having
any prior programming experience and who do not score full points
in the pretest. Most of our analyses use data from such students,
although we briefly discuss the effect of the two modes on more
experienced students for completeness in Section 5.5.

For RQ1, to analyze differences in learning between those who
were assigned into the “Run code” mode (the run code group), and
those who were assigned to the “Check code” mode (the check code
group), we compare the learning gain between students in the two
groups. Both the pretest and the posttest had three questions, where
we gave a point for each correct answer. Based on performance in
the pretest and posttest, we calculate learning gain as (posttest score
- pretest score). We then compare the distributions of learning gain
between the run and check groups using an appropriate statistical
test, determined by whether the data is normally distributed or not.

For RQ2, we examine students’ mental effort during the exper-
iment using the Paas mental effort scale [28], while for RQ3, we
examine students’ attitudes towards the intervention and program-
ming in general. For both RQ2 and RQ3, differences between the
groups are studied using Mann-Whitney U tests, as the data is ordi-
nal. When discussing effect sizes for Mann-Whitney U tests, we use
Cliff’s Delta (CD), which is a non-parametric effect size measure.

When conducting statistical tests, we report p-values of the
tests as one component among others that together contribute to
understanding of the results [41]. We do not make threshold-based
claims of statistical significance [5] and do not perform corrections
for multiple testing, which may lead to too stringent interpretation
of study outcomes [4, 32].

4 PILOT STUDY

To assess the feasibility of the experiment, we conducted a pilot
study at a mid-sized university in the United States. Participants
were drawn from the university’s CS1 course. The course instructor
(who was not an investigator in this study) sent a message to all
students inviting them to participate in the study and visit the learn-
ing platform with the environment. Participation was incentivized
using a raffle of Amazon vouchers. All student interactions were
done in compliance with an IRB-approved protocol.

In total, 29 students participated in the experiment, showing us
that the platform and the experiment worked as intended. Out of
the 29 students, 8 were novices according to our definition. Of the
8 novices, 4 were in the run code condition and 4 were in the check
code condition. We observed an average learning gain of 1.0 for
the run code condition and 0.5 for the check code condition. This
suggested that being able to run the code instead of only being able
to check the correctness of the code could potentially be beneficial
for learning. The results encouraged us to continue with running a
new study with a larger population.

5 PIVOTAL STUDY

The pivotal study was conducted in an introductory programming
course at a university in Finland. The experiment was linked to
the beginning of the course, where participants were asked to help
with research. Participation was voluntary, not incentivized, and
all interactions were done in compliance with local ethical research

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Learning Gain

‘ Pretest Posttest

Mean SD Median
Run code group 0.78 2.11 132 1.16 1.0
Check code group | 0.82 1.66 0.85 1.15 1.0

Table 1: Pretest and posttest averages as well as learning gain
means, standard deviations and medians for the check code
and run code groups in the pivotal study.

protocols. In total, 274 volunteering learners completed the experi-
ment and of these, 141 learners matched our definition of novice. Of
these, 65 were in the check code group while 76 were in the run code
group. All results and discussion in this paper, with the exception
of Section 5.5, use only the data from novice participants.

5.1 Effects on Learning for Novices

To answer RQ1, we calculated learning gain for each student as
outlined in Section 3.3. Table 1 shows pretest and posttest averages
as well as the mean, standard deviation and median of the learning
gain for both groups. No considerable difference in pretest score
is observable between the groups, which is confirmed with a (two-
sided) Mann-Whitney U test (U = 2554.0, p = 0.71,CD = —0.03).

Table 1 shows that the learning gain mean (1.32 vs 0.85) is higher
for the run code group, while the medians are the same. Shapiro-
Wilk test of normality indicated that the learning gain was not
normally distributed (stat = 0.92,p < 0.001), and thus we used
the (two-sided) Mann-Whitney U test to compare the groups. The
test suggests a difference in the learning gains of the two groups
(U = 1964.5, p = 0.03) with a small effect size (CD = 0.20).

5.2 Mental Effort

To answer RQ2, we analyzed whether there were differences in how
mentally taxing the two different conditions were for the students.
Using the Paas scale for mental effort [28], we observed no con-
siderable differences between the mental effort of the two groups
(two-sided Mann-Whitney U test, U = 1162.0, p = 0.36, CD = 0.10;
Mann-Whitney U test was chosen as the data was not normally
distributed, Shapiro-Wilk stat = 0.95, p < 0.001).

5.3 Effects on Attitudes

We proceeded to assess the effect of the experiment on students’
attitudes, answering RQ3. To study whether participating in the
experiment had different effects on students’ attitudes towards pro-
gramming, students answered five Likert-scale questions related
to their attitudes. Figure 2 shows the distribution of students’ an-
swers to the five attitude questions separately for the groups. Based
on visual analysis of the distributions, there are no considerable
differences between the groups.

To confirm this, we ran (two-sided) Mann-Whitney U tests be-
tween the groups separately for each question. The results are sum-
marized in Table 2, which also shows the means for each question
group?. The results suggest that the group might affect perceived
4We chose to include means as the medians were the same in both groups, but ac-

knowledge that the data is ordinal which should be kept in mind when interpreting
the results.

183

Juho Leinonen, Arto Hellas, & John Edwards

Bl Strongly disagree
Disagree
Neutral
W Agree
W Strongly agree
RC Enjoyed 1 . T
1
CC Enjoyed 4 | . I |
RC Educational 4 I e .
I
CC Educational - |
1
RC Difficult 1 I . .
1
CC Difficult - u . B
RC How programming works - 1 ' _
I
CC How programming works 4 | |
1
RC Idea of how was doing . .
1
CC Idea of how was doing [| , |

40%30%20% 10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentage of Responses

Figure 2: Distribution of attitude question answers for both
the run code (RC) and the check code group.

Aspect | CC RC | Uval p CD
Enjoyed 3.66 3.92 | 26175 0.52 0.06
Educational 3.92 3.96 | 2463.0 0.98 0.00
Difficult 332 3.09 | 2113.0 0.12 -0.15
How programming works | 3.40 3.61 | 2601.5 0.56 0.05
Idea of how was doing 3.31 371 29585 0.03 0.20

Table 2: Means (1 = Strongly disagree, 5 = Strongly agree) for
the attitude related questions for the check code (CC) and run
code (RC) groups as well as Mann-Whitney U test statistics
for comparison of the groups for each individual question.

difficulty of the task (albeit the effect size CD = —0.15 is small) and
influence whether one has an idea of how one is doing (albeit the
effect size CD = 0.20 is again small).

5.4 Time-on-Task

As we observed differences in learning gain but no differences in
mental effort, we also looked for differences in time-on-task be-
tween the groups. Time-on-task was measured as the time that the
learners took to complete the experiment. On average, learners in
the check code group spent 15.6 minutes on the experiment (SD=5.6
minutes), while learners in the run code group spent 14.9 minutes
on the experiment (SD=5.1 minutes). As time-on-task was not nor-
mally distributed (Shapiro-Wilk stat = 0.96,p < 0.001), we used
(two-sided) Mann-Whitney U test for examining the differences
between the groups. No considerable differences were observed
(U = 2681.0, p = 0.38,CD = —0.09).

5.5 Effects on Learning for Those With Some
Experience

To gain a more complete picture of the potential benefits of seeing
the program output, we studied differences in the groups of par-
ticipants who reported having at least some prior programming

Seeing Program Output Improves Novice Learning Gains

experience. To keep the learning gain analysis meaningful, we fo-
cused on the 67 students with prior experience who did not receive
full points from the pretest. From these, 30 were in the run code
group, while 37 were in the check code group.

The average learning gain for the run code group was 1.13 (pre-
test score average 1.33), while the average learning gain for the
check code group was 0.89 (pre-test score average 1.27). Using a
two-sided Mann-Whitney U test, we do not observe differences
between the groups (U = 502.5,p = 0.49,CD = —0.09). The same
holds for mental effort (U = 538.5, p = 0.84, CD = 0.03), enjoying
the experiment (U = 538.5, p = 0.84, CD = —0.03), considering the
experiment educational (U = 579.0,p = 0.74,CD = 0.04), feeling
that the experiment helped understand how programming works
(U = 513.5,p = 0.58,CD = —0.07), forming an idea of own per-
formance (U = 606.0,p = 0.47,CD = 0.09), and for time-on-task
(U = 635.0,p = 0.32,CD = —0.14). Similar to the experiment con-
ducted with novices, the group might have an effect on the per-
ceived difficulty of the task, where the check code group might see
the experiment as more difficult (U = 411.5, p = 0.05, CD = —0.259).

Despite not seeing major differences between the groups, we do
observe learning gains from the experiment in both groups, which
provides further evidence of the benefits of code mimicking tasks.

6 DISCUSSION

6.1 Running the Program and Seeing the
Output Aids Novices

We found that the novices in the run code group had, on average,
higher learning gains, in terms of improvement from pretest to
posttest, compared to the students in the check code group. This
observation was present in both the pilot and in the pivotal study.
This suggests that being able to run the program and see the output
of the program is beneficial for learning of novices. What is inter-
esting is that the feedback from the automated assessment, which
was available to both the run code and the check code group, could
be considered as more detailed than the program output by itself
as it includes information on both the actual and the expected out-
put. One potential explanation for this is that the act of “checking”
code is perceived differently by students than “running” code. For
example, maybe running the code encourages students to practice
simulating program execution, or perhaps running the code more
explicitly maps the outputs to the student-written source code,
thus helping the student better develop an understanding of how
the program works. Moreover, considering that the experiment
focused on variables, our results suggests that even a brief code
mimicking intervention (the whole experiment took on average
approximately 15 minutes per novice) helps learning about them
(and could potentially alleviate variable-related misconceptions).
We assessed whether there were differences between the groups
in terms of invested mental effort and time-on-task. Neither of these
showed differences between the groups, suggesting that the mental
effort needed for the task was similar for both groups, as was the
time-on-task. The latter observation in particular is highly relevant,
as one common pitfall in educational experiments that lead to better
learning outcomes is that the group with better outcomes simply
spends more time on the task — prior research has suggested that
time-on-task is one of the key contributors to learning [23, 40].

184

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Our results highlight that novices benefit from being able to run
the program and seeing the program output. One interpretation
of this result is that the program output helps novices rationalize
about the execution of the program, by allowing them to match
the outputs with the code. One could argue that an output window
could be used as a notional machine for novices, when interpreting
notional machines as pedagogical devices as discussed in [13]: the
output window provides focus and indicates control and flow and
other constructs important to understanding how a program works.

Another reason that output may improve outcomes is interest.
Instead of simply trying to find a way to pass the automated tests,
interacting with output may encourage interest in why the program
is behaving the way it is.

6.2 Experiment and Attitudes

Five questions were included in the survey that measured attitudes:
a question on enjoyment of the activity, one on perceived difficulty,
one related to educational value, one to general understanding of
how programming works, and one asking if the student felt like
they had an idea of how they were doing. None of these questions
showed a considerable difference between the groups, although
there might be some differences between the groups in difficulty
and in having an idea of how one was doing.

Considering difficulty, the experiment seems to have possibly
felt slightly more difficult for the check code group than for the
run code group (3.32 vs 3.09 mean for the question “I think that
the experiment was difficult”). This supports the idea that being
able to run and see the output of programs can potentially make
learning easier. We acknowledge however that we did not observe
differences in mental effort.

Furthermore, the run code group responded somewhat more
positively to the question on whether they had an idea of how
they were doing. This observation could indicate that being able
to run the program and see its output helps keep track of progress.
Indeed, intuitively it makes sense that feedback telling what to fix
might not give the same feeling of progression and understanding
of what is going on compared to seeing the output of the program
where incremental advancement towards the correct solution can
potentially be observed by repeatedly running the program and
observing its output between modifications to the source code.

6.3 Code Mimicking and Some Prior Experience

We studied the effect of the code mimicking task on those who
were not full novices, i.e. who had at least some prior programming
experience but did not receive a full score from the pretest. We
omitted students who received full points in the pretest from the
analysis. Our results indicate that the code mimicking practice is
beneficial for both conditions, as both had positive learning gains.

Interestingly, when compared to the novices, more advanced
programmers do not seem to benefit from being able to run the
code and to see the program output. This was observed both for
the learning gain and for perceived understanding of how they
were doing. One possible reason for this is that more experienced
students may already have a model of how programs work and
thus are able to simulate program execution without the external
help of the tool.

ITiCSE 2023, July 8-12, 2023, Turku, Finland

6.4 Benefits of Writing Practice

This study had students mimic code that they were shown and
adjust it based on given guidelines. The results provide further evi-
dence on the benefits of writing practice when learning program-
ming, which has been studied in the past [9, 10, 14, 26]. While [22]
found that the syntax practice did not help, [9, 14, 26] observed the
opposite. Although there are multiple differences in their research
methodologies and contexts, there are two interesting and seem-
ingly inconsequential aspects: (1) the environments used in [9, 26]
showed program output and the other environments did not, and (2)
the environment used in [22] provided immediate feedback (already
during typing) while the other environments did not.

In the present study, we looked into the effect of being able to see
the output or not, and suggest that the effect of immediate versus
on-demand feedback could be explored in the future. Although we
observed that novices in both conditions showed learning gains,
our results indicate an added benefit in being able to see the output.
These results can also shed some light on earlier studies that have
found that using small programming assignments can be benefi-
cial [6, 9, 38]. What if, in addition to other observed benefits such
as students starting their work earlier [6], these small assignments
increase the tendency to run the programs and consequently ob-
serve the output? If this is the case, our results strengthen the case
for using small programming assignments for novices.

6.5 Limitations

Our study has limitations, which we acknowledge here. Firstly,
students knew that they were participating in an experiment, that
data from their learning was collected, and that their behavior was
observed. This might influence their behavior, which means that we
do not know whether the results generalize to an actual classroom.

Secondly, participation was voluntary, and students in the pivotal
study were not incentivized in any way. There is a possibility of
selection bias, which again highlights the need for further studies
to assess generalizability of the results.

Thirdly, the present study focused on novice programmers and
elementary programming concepts (variables, assignment, print-
ing), which means that we do not know whether the studied code
mimicking approach would generalize to more difficult concepts.
Our results are in line with some prior studies where students have
participated in syntax practice [9, 14, 26], which have reported
benefits of such practice, and in which students have also been
given more complex topics to write. It is possible that the code
mimicking approach would work with more challenging concepts
as well, although this should be explored in future studies.

Finally, the experiment was relatively short. While we observed
larger positive learning gains in the run code group compared to
the check code group, we do not know whether the effects of the
intervention persist. At the same time, for limited interventions
targeting specific learning objectives related to e.g. variables, as was
the case in our work, it is possible that even a short intervention
with positive results could lead to longer term benefits, as the use of
variables continues after they have been introduced. We also note
that there are examples of other experiments for teaching variables
that are also relatively short (see e.g. [42]), highlighting that these
topics can be taught in a relatively short time. In our future work,

185

Juho Leinonen, Arto Hellas, & John Edwards

we are interested in replicating our study over a longer period of
time, where we look also into the persistence of the effects.

7 CONCLUSION

In this study, we investigated a potential shortcoming of automated
assessment systems that provide feedback on program correctness
but do not require that students run their code. We explored to what
extent seeing the output of a program influences learning — positive
influences on learning would make sense when one subscribes to
the idea that the output of a program is feedback.

To summarize, our research questions and their answers are
as follows. For RQ1, Given feedback from automated assessment,
what is the effect of seeing program output on the learning of novice
programmers?, we found that novices who saw program output
had better learning gains than novices who just saw feedback from
automated assessment. We hypothesize that students gain a better
understanding of flow and control, state, and causality when they
can observe the internal behavior of the program through output.
For those with some prior programming experience, the difference
in learning gain between the groups was not noticeable.

For RQ2, Given feedback from automated assessment, what is
the effect of seeing program output on the mental effort of novice
programmers?, we found no considerable differences in terms of
mental effort or time-on-task between the groups. The same holds
also for those with some prior experience.

For RQ3, Given feedback from automated assessment, what is the
effect of seeing program output on the attitudes toward programming
of novice programmers?, we found no evidence of program output
affecting enjoyment, the perceived educational value of the experi-
ment, or on forming an understanding of how programming works.
We did observe minor differences between the groups in terms of
the perceived difficulty of the task and on forming an idea of how
they were doing. In both cases, being able to run the program and
see its output had a slight positive effect, i.e. decreased perceived
difficulty and increased understanding of how the student was do-
ing. For those with some prior experience, only perceived difficulty
had any differences between the check code and run code groups.

To summarize, it appears that programming exercises — espe-
cially ones focused on code mimicking — could be less beneficial
for novices when program output is not shown. This is an action-
able finding. It highlights the need to emphasize — or even require
- running programs and observing their outputs before sending
programs for assessment. Future work could include replication of
our results with more challenging concepts and in new contexts;
exploration of the effect of on-demand versus immediate feedback;
exploration of the cognitive, theoretical underpinnings of the phe-
nomenon; and further investigation of the effects of automated
testing on computing education.

ACKNOWLEDGMENTS

We are grateful for the grant from the Ulla Tuominen Foundation
to the first author. We would also like to thank Chad Mano for
including the pilot study in his course.

REFERENCES

[1] Kirsti M Ala-Mutka. 2005. A survey of automated assessment approaches for
programming assignments. Computer science education 15, 2 (2005), 83-102.

Seeing Program Output Improves Novice Learning Gains

(2]

=

[10]

[11]

[12]

[13]

[14]

[15]

[16

[17]

[18]

[19

[20]

[21

Elisa Baniassad, Lucas Zamprogno, Braxton Hall, and Reid Holmes. 2021. STOP
THE (AUTOGRADER) INSANITY: Regression Penalties to Deter Autograder
Overreliance. In Proc. of the 52nd ACM Technical Symp. on Computer Science
Education. 1062-1068.

Joseph E Beck and Yue Gong. 2013. Wheel-spinning: Students who fail to master
a skill. In Int. conf. on artificial intelligence in education. Springer, 431-440.
Marc Buyse, SA Hurvitz, F Andre, Z Jiang, HA Burris, M Toi, W Eiermann, M-
A Lindsay, and D Slamon. 2016. Statistical controversies in clinical research:
statistical significance — too much of a good thing... Annals of Oncology 27, 5
(2016), 760-762.

Ronald P Carver. 1993. The case against statistical significance testing, revisited.
The 3. of Experimental Education 61, 4 (1993), 287-292.

Paul Denny, Andrew Luxton-Reilly, Michelle Craig, and Andrew Petersen. 2018.
Improving complex task performance using a sequence of simple practice tasks.
In Proc. of the 23rd Annual ACM Conf. on Innovation and Technology in Computer
Science Education. 4-9.

Paul Denny, Jacqueline Whalley, and Juho Leinonen. 2021. Promoting Early
Engagement with Programming Assignments Using Scheduled Automated Feed-
back. In Australasian Computing Education Conference. 88-95.

Anton Dil and Joseph Osunde. 2018. Evaluation of a tool for Java structural
specification checking. In Proc. of the 10th Int. Conf. on Education Technology and
Computers. 99-104.

John Edwards, Joseph Ditton, Dragan Trninic, Hillary Swanson, Shelsey Sullivan,
and Chad Mano. 2020. Syntax exercises in CS1. In Proc. of the 2020 ACM Conf. on
Int. Computing Education Research. 216-226.

John M Edwards, Erika K Fulton, Jonathan D Holmes, Joseph L Valentin, David V
Beard, and Kevin R Parker. 2018. Separation of syntax and problem solving in
Introductory Computer Programming. In 2018 IEEE Frontiers in Education Conf.
(FIE). IEEE, 1-5.

Stephen H Edwards and Manuel A Perez-Quinones. 2008. Web-CAT: automat-
ically grading programming assignments. In Proc. of the 13th annual Conf. on
Innovation and technology in computer science education. 328—-328.

Emma Enstrém, Gunnar Kreitz, Fredrik Niemeld, Pehr S6derman, and Viggo
Kann. 2011. Five years with kattis—using an automated assessment system in
teaching. In 2011 Frontiers in Education Conf. (FIE). IEEE, T3J-1.

Sally Fincher, Johan Jeuring, Craig S Miller, Peter Donaldson, Benedict Du Boulay,
Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis, Andreas
Miihling, Janice Pearce, and Andrew Petersen. 2020. Notional Machines in
Computing Education: The Education of Attention. In Proc. of the Working Group
Reports on Innovation and Technology in Computer Science Education. 21-50.
Adam M Gaweda, Collin F Lynch, Nathan Seamon, Gabriel Silva de Oliveira,
and Alay Deliwa. 2020. Typing exercises as interactive worked examples for
deliberate practice in cs courses. In Proceedings of the Twenty-Second Australasian
Computing Education Conference. 105-113.

John D Gould. 1975. Some psychological evidence on how people debug computer
programs. International Journal of Man-Machine Studies 7, 2 (1975), 151-182.
Derrick Higgins and Michael Heilman. 2014. Managing what we can measure:
Quantifying the susceptibility of automated scoring systems to gaming behavior.
Educational Measurement: Issues and Practice 33, 3 (2014), 36—46.

Petri Thantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppélé. 2010. Review
of recent systems for automatic assessment of programming assignments. In
Proc. of the 10th Koli calling international Conf. on computing education research.
86-93.

David Jackson and Michelle Usher. 1997. Grading student programs using ASSYST.
In Proc. of the twenty-eighth SIGCSE technical Symp. on Computer science education.
335-339.

Ville Karavirta, Ari Korhonen, and Lauri Malmi. 2006. On the use of resubmissions
in automatic assessment systems. Comp. science education 16, 3 (2006), 229-240.
Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature
review of automated feedback generation for programming exercises. ACM
Transactions on Computing Education (TOCE) 19, 1 (2018), 1-43.

Tobias Kohn. 2017. Variable evaluation: An exploration of novice programmers’
understanding and common misconceptions. In Proc. of the 2017 ACM SIGCSE
Technical Symp. on Computer Science Education. 345-350.

186

[22

(23]

[24]

[27

[28

[29]

[31

(32]

[33

(34]

[36

[37

(38]

[40

[41

[42

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Antti Leinonen, Henrik Nygren, Nea Pirttinen, Arto Hellas, and Juho Leinonen.
2019. Exploring the applicability of simple syntax writing practice for learning
programming. In Proc. of the 50th ACM Technical Symp. on Computer Science
Education. 84-90.

Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2022. Time-
on-Task Metrics for Predicting Performance. In Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education V. 1. 871-877.

Juho Leinonen, Paul Denny, and Jacqueline Whalley. 2021. Exploring the Effects
of Contextualized Problem Descriptions on Problem Solving. In Australasian
Computing Education Conference. 30-39.

Juho Leinonen, Paul Denny, and Jacqueline Whalley. 2022. A Comparison of
Immediate and Scheduled Feedback in Introductory Programming Projects. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
V. 1.885-891.

Anna Ly, John Edwards, Michael Liut, and Andrew Petersen. 2021. Revisiting Syn-
tax Exercises in CS1. In Proceedings of the 22st Annual Conference on Information
Technology Education. 9-14.

Sin Chun Ng, Steven O Choy, Reggie Kwan, and SF Chan. 2005. A web-based
environment to improve teaching and learning of computer programming in
distance education. In Int. Conf. on Web-based Learning. Springer, 279-290.
Fred GWC Paas. 1992. Training strategies for attaining transfer of problem-
solving skill in statistics: a cognitive-load approach. J. of educational psychology
84, 4 (1992), 429

José Carlos Paiva, José Paulo Leal, and Alvaro Figueira. 2022. Automated assess-
ment in computer science education: A state-of-the-art review. ACM Transactions
on Computing Education (TOCE) 22, 3 (2022), 1-40.

Ralph T Putnam, Derek Sleeman, Juliet A Baxter, and Laiani K Kuspa. 1986. A
summary of misconceptions of high school Basic programmers. J. of Educational
Computing Research 2, 4 (1986), 459-472.

Yizhou Qian and James Lehman. 2017. Students’ misconceptions and other
difficulties in introductory programming: A literature review. ACM Transactions
on Computing Education (TOCE) 18, 1 (2017), 1-24.

Priya Ranganathan, CS Pramesh, and Marc Buyse. 2016. Common pitfalls in
statistical analysis: the perils of multiple testing. Perspectives in clinical research
7, 2 (2016), 106.

Graham HB Roberts and Janet LM Verbyla. 2003. An online programming
assessment tool. In Proc. of the fifth Australasian Conf. on Computing education-
Volume 20. Citeseer, 69-75.

Teemu Sirkia and Juha Sorva. 2012. Exploring programming misconceptions: an
analysis of student mistakes in visual program simulation exercises. In Proc. of
the 12th Koli Calling Int. Conf. on Computing Education Research. 19-28.

Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jeffrey K
Hollingsworth, and Nelson Padua-Perez. 2006. Experiences with marmoset:
designing and using an advanced submission and testing system for program-
ming courses. ACM Sigcse Bulletin 38, 3 (2006), 13-17.

Thomas Staubitz, Hauke Klement, Ralf Teusner, Jan Renz, and Christoph Meinel.
2016. CodeOcean-A versatile platform for practical programming excercises in
online environments. In 2016 IEEE Global Engineering Education Conf. 314-323.
Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. 2018. Programming
misconceptions for school students. In Proc. of the 2018 ACM Conf. on Int. Com-
puting Education Research. 151-159.

Arto Vihavainen, Matti Paksula, and Matti Luukkainen. 2011. Extreme appren-
ticeship method in teaching programming for beginners. In Proc. of the 42nd ACM
technical Symp. on Computer science education. 93-98.

Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Partel. 2013.
Scaffolding students’ learning using test my code. In Proc. of the 18th ACM Conf.
on Innovation and technology in computer science education. 117-122.

Herbert] Walberg. 1988. Synthesis of research on time and learning. Educational
leadership 45, 6 (1988), 76-85.

Ronald L Wasserstein and Nicole A Lazar. 2016. The ASA statement on p-values:
context, process, and purpose. The American Statistician 70, 2 (2016), 129-133.
Albina Zavgorodniaia, Arto Hellas, Otto Seppald, and Juha Sorva. 2020. Should
explanations of program code use audio, text, or both? A replication study. In
Koli Calling’20: Proc. of the 20th Koli Calling Int. Conf. on Computing Education
Research. 1-10.

	Abstract
	1 Introduction
	2 Background
	3 Experiment Design
	3.1 Environment
	3.2 Experiment: Randomized Controlled Trial
	3.3 Analysis

	4 Pilot Study
	5 Pivotal Study
	5.1 Effects on Learning for Novices
	5.2 Mental Effort
	5.3 Effects on Attitudes
	5.4 Time-on-Task
	5.5 Effects on Learning for Those With Some Experience

	6 Discussion
	6.1 Running the Program and Seeing the Output Aids Novices
	6.2 Experiment and Attitudes
	6.3 Code Mimicking and Some Prior Experience
	6.4 Benefits of Writing Practice
	6.5 Limitations

	7 Conclusion
	Acknowledgments
	References

