
ar
X

iv
:2

41
1.

10
45

5v
1 

 [
cs

.C
Y

] 
 1

 N
ov

 2
02

4

LLM-itation is the Sincerest Form of Data: Generating Synthetic
Buggy Code Submissions for Computing Education

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Olli Kiljunen
Aalto University
Espoo, Finland

olli.kiljunen@aalto.fi

Stephen MacNeil
Temple University

Philadelphia, PA, USA
stephen.macneil@temple.edu

Sami Sarsa
University of Jyväskylä

Jyväskylä, Finland
sami.j.sarsa@jyu.fi

Arto Hellas
Aalto University
Espoo, Finland

arto.hellas@aalto.fi

ABSTRACT

There is a great need for data in computing education research.

Data is needed to understand how students behave, to train mod-

els of student behavior to optimally support students, and to de-

velop and validate new assessment tools and learning analytics

techniques. However, relatively few computing education datasets

are shared openly, often due to privacy regulations and issues in

making sure the data is anonymous. Large languagemodels (LLMs)

offer a promising approach to create large-scale, privacy-preserving

synthetic data, which can be used to explore various aspects of

student learning, develop and test educational technologies, and

support research in areas where collecting real student data may

be challenging or impractical. This work explores generating syn-

thetic buggy code submissions for introductory programming ex-

ercises using GPT-4o. We compare the distribution of test case fail-

ures between synthetic and real student data from two courses to

analyze the accuracy of the synthetic data in mimicking real stu-

dent data. Our findings suggest that LLMs can be used to generate

synthetic incorrect submissions that are not significantly different

from real student data with regard to test case failure distributions.

Our research contributes to the development of reliable synthetic

datasets for computing education research and teaching, poten-

tially accelerating progress in the field while preserving student

privacy.

CCS CONCEPTS

• Social and professional topics → Computing education.

KEYWORDS

generative AI, genAI, large languagemodels, LLMs, GPT-4o, prompt

engineering, synthetic data, submissions, data generation

1 INTRODUCTION

Computing education has witnessed a significant transformation

with the rise of large language models (LLMs) [12]. LLMs have

demonstrated remarkable capabilities in tasks relevant to comput-

ing educators and researchers, with a particular focus on their abil-

ity to solve introductoryprogramming exercises [17].More recently,

these capabilities have been demonstrated for more complex pro-

gramming tasks [18], with current state-of-the-art models appear-

ing able to solve almost all typical introductory programming ex-

ercises [43]. This ability to generate correct code solutions is well-

established, however less well explored is the potential of LLMs to

deliberately create incorrect code.

Generating incorrect solutions is a relatively unexplored area

but has many potential applications. Incorrect code solutions can

be used to create debugging exercises, which are known to be ben-

eficial for learning [50]. Additionally, they can help in generating

synthetic datasets of student submissions, which include a mixture

of correct and incorrect code. This is particularly valuable given

the scarcity of openly shared programming education datasets, which

are often constrained by strict privacy regulations and the chal-

lenges of de-identifying and anonymizing data [15, 28]. Leveraging

LLMs to create synthetic data can overcome these barriers, provid-

ing a new avenue for developing and validating educational tools

and techniques without compromising student privacy.

Building on the extensive body of literature that has established

LLMs’ capability to generate correct solutions, in this work we ex-

plore the possibility of using these models to generate incorrect

code submissions for introductory programming problems. We in-

vestigate various prompting strategies to determinewhich approaches

produce submissions that most closely resemble real student data.

Our evaluation focuses on the distribution of test case failures as

a measure of similarity between synthetic and real data. This study

encompasses two programming languages, C and Dart, and includes

data from institutions across different countries. The primary re-

search question guiding this study is:

To what extent can generative AI models be used

to generate synthetic incorrect code submissions

for introductory programming exercises?

Wemake twomain contributions in this work. First, we provide

an analysis of the capability of LLMs to generate synthetic data for

computing education research. Second, we explore the effective-

ness of prompting strategies in generating incorrect code submis-

sions that mirror typical student errors. This study contributes to

the development of reliable synthetic datasets, which can facilitate

research and teaching in computing education while preserving

student privacy.

http://arxiv.org/abs/2411.10455v1
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0002-1347-0699
https://orcid.org/0000-0003-2781-6619
https://orcid.org/0000-0002-7277-9282
https://orcid.org/0000-0001-6502-209X


Leinonen et al.

2 RELATED WORK

2.1 Bugs

Programming errors, or bugs, constitute a well studied topic in the

computing education research literature. Many studies have iden-

tified common mistakes made by novice programmers, including,

syntax errors, logic errors [16], or both [1]. Teaching students to

debug has also gained a great deal of researchers’ attention [29, 37].

Griffin’s study [21] exemplifies that the use of intentionally erro-

neous code in instruction is not, however, limited to teaching de-

bugging but is suitable to programming education more generally.

However, the research literature has, so far, only narrowly cov-

ered how to simulate programming errors made by students. Until

the emergence of LLMs, perhaps themost promising approachwas

automatic program mutation, provided by mutation analysis tools

that software engineers use in software testing. Clegg et al. [9]

found that mutant code has similar faults as code written by stu-

dents and is, thus, a good aid when designing automated grading

systems. Perretta et al. [41], on the other hand, used code mutation

for evaluating test suites written by students. They also conclude

that mutant code can simulate student code to a reasonable extent.

2.2 LLMs in Computing Education

With the introduction of generative AI, educators can now produce

high-quality, personalized learning materials at scale for their stu-

dents. These models can produce diverse explanations [35] that

students find engaging [34] and that are often rated higher in qual-

ity compared to explanations generated by peers [27]. Students and

instructors can also use the models to generate personally relevant

analogies [5, 6], programming assignments [45], and to create mul-

tiple choice questions [14, 48]. As such, generative AI has become

a legitimate source of help for many computing students [23, 43]

with over 26% of students using it on a daily basis [23].

To further support students, researchers have also developed in-

teractive systems to scaffold student’s use of generative AI in class-

room settings. This scaffolding is essential to prevent misuse [3, 26,

51] and to address challenges that some students face in effectively

prompting and interpreting responses from generative AI [23, 44].

Such systems include, for example, CodeAid [25], CodeHelp [31],

and Promptly [11]. Despite the emergence of tools that scaffold

the use of generative AI, less research has been dedicated to inves-

tigating whether generative AI can be used to simulate student be-

haviors or generate synthetic student data. Markel et al. simulated

student questions to train teaching assistants [36], highlighting a

potential area for further investigation.

2.3 Generating Synthetic Data

Synthetic data is highly useful formultiple data science related pur-

poses, including releasing privacy-preserving data in sensitive do-

mains, construction of datasets without unwanted biases present

in real world data, and augmenting scarce real world data [24].

Synthetic data generators have been studied in various fields such

as finance [2], medicine [20], and computer science [7, 38]. Like-

wise, the usefulness of synthetic data generation has been noted in

the fields of education and learning analytics [4], e.g., to evaluate

knowledge tracing models [42, 46], to train performance predic-

tion models [13, 19], and to simulate student behaviour for further

research [39, 52]. However, the focus in generating datasets has

been on numerical or categorical data, and not textual data such

as student submissions for open text or programming exercises.

Enter LLMs which excel in generating text resembling that of

humans and can be easily prompted to produce specific kinds of

texts. On their own, they already are highly versatile and capa-

ble synthetic data generators for textual data given the correct

prompts [30, 49]. As a prime example, in a recent study by Møller

et al. [38], augmenting training data of classification models with

synthetic data (using GPT-4 and LLama2) was found to outperform

augmenting it with crowdsourced data on some NLP classification

tasks, particularly on multi-class tasks or tasks with rare classes,

and to be beneficial on others although not as much as crowdsourc-

ing. They note that using LLMs directly for various tasks is mostly

inferior to using an LLM that is fine-tuned (i.e., trained further)

using synthesized data, a result echoed by Tang et al. [47] who

investigated the capabilities of LLMs for healthcare related tasks.

While it is straightforward to generate synthetic datawith LLMs,

generating data of high quality and variability can require specific

prompting strategies or knowledge enhancement [33, 40]. Evaluat-

ing the quality of generated open-ended textual data directly as op-

posed to, e.g., evaluating it through classification models, can be la-

borious, requiring manual evaluations or auxiliary models [8, 33].

3 METHODS

Our data on student test case failures is taken from two distinct

contexts, at institutions in different countries teaching different

programming languages. This diverse data allows us to better un-

derstand howwell our proposed synthetic data generation approach

might generalize to new contexts.

3.1 Context and Data

3.1.1 C Context. Our first set of data is obtained from a six-week

C programming module which is part of an introductory program-

ming course taught at the University of Auckland, a research uni-

versity located in New Zealand. The content of this six-week mod-

ule focuses on fundamental topics including basic syntax, data types,

operators, standard I/O, control structures, functions, arrays, strings

and file I/O. Students take part in weekly lab sessions, where they

complete short programming exercises and receive immediate feed-

back from an auto-grader. The module concludes with a program-

ming project, contributing 12% towards their final grade for the

course, for which students do not receive feedback until after the

submission deadline. Our data for this research includes student

submissions to this final project taken from two consecutive deliv-

eries of the course in 2016 and 2017. The data used in this study

comprises a total of 8598 submissions of which 2405 are incorrect

(i.e., do not pass all the tests) from 1751 students.

The programming project includes the requirement to imple-

ment five distinct functions of varying difficulty. Students are en-

couraged to thoroughly test their code prior to submitting it for

grading as code that does not compile is not graded, and credit is

only awarded for functions which pass all 20 of the tests in the

corresponding test suite. Table 1 lists the prototype declarations,



Generating Synthetic Buggy Code Submissions for Computing Education

Table 1: Summary of the C programming project functions from 2016 and 2017. Every function had 20 tests.

Year Prototype Declaration Description

2016 int PrimeBelow(int upper); Returns the largest prime number less than the given upper limit.

2016 void Strikeout(char *hide, char *phrase); Modifies a phrase by striking out occurrences of the word specified in hide.

2016 int KthLargest(int k, int *values, int numValues); Returns the k-th largest element from an array of integers.

2016 Rectangle BoundingRectangle(Rectangle r1, Rectangle r2); Computes the smallest rectangle that can enclose two given rectangles.

2016 int TallestVine(int seedA, int seedB, int days); Simulates the growth of vines over a specified number of days based on seed values.

2017 double AverageSheep(int *counts); Calculates the average count of sheep over a period (similar to a “rainfall” computa-
tion).

2017 int PrimeFactors(int n, int *factors); Determines the prime factors of a given integer, n.

2017 void ConnectTwo(int maze[10][10]); Modifies a 10x10 2D array to show the shortest connection between two specified
cells.

2017 void DayTrader(int *prices, int len, int *run, int *runIndex); Identifies the best run of consecutive days for maximizing return on stock prices.

2017 void AddOne(char *input, char *output); Increments an arbitrarily large numeric string storing the result in an output string.

along with brief descriptors (students and the LLM were provided

more detailed specifications), for the ten functions (five from each

year) for which we analyze student submissions and test case fail-

ures.

3.1.2 Dart Context. The second dataset comes froman online course

platform that hosts a variety of courses offered by Aalto Univer-

sity, a research university located in Finland. For this study, ten

exercises from two different courses were chosen. Both courses

use the Dart programming language. The first course is an open

online introductory programming course where participants are

typically novices without any prior programming experience. The

course teaches students basic programming concepts such as vari-

ables, printing output and reading input, conditional statements,

iteration, lists, and functions. The course is worth 2 ECTS credits

which corresponds to about 50-60 hours of workload.

The second course is an advanced programming course where

students are expected to know basic programming in some pro-

gramming language. The goal of the second course is to teach stu-

dents about developing software that supports a wide variety of

devices using Dart and Flutter. The course is worth 5 ECTS credits

which corresponds to about 135 hours of workload. As the partic-

ipants are not expected to know Dart or Flutter, the course has a

short introduction to key parts of the Dart programming language.

The introductory course is taught in Finnish while the advanced

course is taught in English. For this article, we have translated the

problem names and descriptions into English; however, the origi-

nal language was used when prompting the LLM.

Both courses can be completed fully online and containmultiple

small programming exercises embedded within the online materi-

als. The data used for this study comes from a sample of ten of

these small exercises. Table 2 shows brief descriptions of the exer-

cises used in this study. Students and the LLM were provided the

actual, more comprehensive problem descriptions. The data com-

prises a total of 44742 submissions of which 24719 are incorrect

(i.e., do not pass all the tests) from 5322 students (5063 from the

introductory course and 259 from the advanced course).

Problem description:

<Problem description>

Test cases:

<List of test cases>

Test case failure frequencies:

<List of failure frequencies for each test case>

Your task:

Please generate five incorrect solutions to this programming

problem that include one or more semantic bugs. Place the

delimiter CODE_START before every solution example

you’ll generate and CODE_END at the end of the solution

code to help me extract just the generated code. Importantly,

it should be possible to compile the incorrect solutions and

it should be possible to run unit tests for the code. When

generating the solutions, please try to follow the distribution

of failing tests given above under “Test case failure

frequencies”. Use the <Dart/C> programming language.

Figure 1: The prompts used in the study. The baseline

prompt did not include the blue and yellow highlighted

parts. The test-case-informed prompt included the blue

highlighted part on top of the baseline prompt. The

frequency-informed prompt included both the blue and yel-

low highlighted parts on top of the baseline prompt. The

bolded parts indicate variables for which content depended

on the exercise.



Leinonen et al.

Table 2: Summary of Dart Programming Exercises.

Course Exercise Description # of tests

Introductory Grade as text Ask the user for a numerical grade and print the corresponding textual description of the grade. 6

Introductory Sum of three numbers Ask the user for three numbers and then print the sum of the numbers. 2

Introductory Ask for password Write a function that takes a correct password as a parameter and then asks the user for the password
until they input the correct password.

3

Introductory Sum of positive numbers Write a function that takes in a list and returns the sum of the positive numbers in the list. 2

Introductory Authentication Ask the user for specified username and password, and print differentmessages to the user depending
on whether they input the correct username (“admin”) and/or password (“radish”).

3

Advanced Average of positives Return the average value of positive numbers in a given list (similar to the Rainfall problem). 4

Advanced Budget check Given two doubles, budget and spending, print whether the budget is okay or not. 3

Advanced Mystery function Write a function that returns a string depending on which number is passed to the function and
whether that number is divisible by 5 or 7 or both (similar to the FizzBuzz problem).

5

Advanced Sum with formula Write a function that takes in two numbers and returns the written sum formula of those two numbers
(e.g., for input 1 and 2, returns “1+2=3”).

2

Advanced Video and playlist Implement two classes, Video and Playlist. A video has a name (String) and duration in seconds
(int) and a toString method. A playlist contains a list of videos and has methods for adding videos,
checking if a video is on the playlist, and for returning the total duration of the playlist.

3

3.2 Prompting the LLM

For this study, we chose to use the GPT-4o large language model1,

which at the time of writing, was the state-of-the-art model accord-

ing to online leaderboards2. We evaluate three different prompts

to explore how prompt engineering affects the generated incorrect

solutions. The prompts used in this study are the following (for the

exact phrasing, see Figure 1).

• A baseline prompt that just asks the model to generate se-

mantically incorrect solutions to the problem.

• A test-case-informed prompt where the model is also pro-

vided the test cases for the exercise.

• A frequency-informed prompt where the model is provided

both the test cases and the frequencies of how often incor-

rect submissions fail each specific test case. In addition, the

model is instructed to try follow the distribution of the fail-

ure frequencies.

In our study, we only focus on semantic bugs. There are a few

reasons for this. Firstly, we believe that semantic bugs are more in-

teresting for potential debugging exercises. Secondly, if the code is

not syntactically correct, then it would not be possible to run the

test suite against the generated code, making it infeasible to evalu-

ate the distribution of test case failures for the generated synthetic

data. This is also why for all prompts, we explicitly tell the model

that the generated solutions should compile and that it should be

possible to run unit tests for the generated code.

When generating the submissions, for each combination of prompt,

exercise, and context, we generate five batches of five incorrect so-

lutions (i.e., 25 total for each unique combination of prompt, exer-

cise and context). This results in a total of 3 prompts × 5 batches ×

5 solutions × 10 exercises × 2 contexts = 1500 generated solutions.

1More specifically, the GPT-4o-2024-05-13 version.
2According to the LMSYS Chatbot Arena Leaderboard, accessed July 20th, 2024:
https://chat.lmsys.org/?leaderboard

3.3 Analysis

We only include incorrect submissions in our analysis. This is done

as our focus in this work is to generate incorrect synthetic solu-

tions. For all the generated synthetic submissions, as well as for

the real data used as a comparison point, we ran the unit test suites

that had been used for those exercises when they were part of the

course. For each individual unit test, we then calculated the per-

centage of cases where the solutions pass and fail the unit test, i.e.

a unit test “pass rate”. This gives us one percentage, or pass rate,

for each unit test. As there are hundreds of unit tests altogether for

the 20 exercises analyzed in this work, we calculate the minimum,

maximum, mean, and standard deviation of these unit test pass

rates for each exercise (which each comprise multiple unit tests).

This way, we can compare if the unit test pass rates between the

real and the synthetic data are different with regard to the pass

rate range (i.e., minimum and maximum), mean, and standard de-

viation.

Even though we asked the model to produce code that unit tests

could be run against, the model would sometimes produce code

that crashed. For C, there were 48 (out of 750) generated programs

that crashed when trying to run the test suite (typically due to a

segmentation fault). These were ignored in calculating the statis-

tics.

To analyze the difference between the generated synthetic data

and real data statistically, we conduct a Kruskal-Wallis H test be-

tween the test pass rates between all four distributions (real, base-

line, test-case-informed, and frequency-informed) for bothprogram-

ming languages separately. In case either of the Kruskal-Wallis H

test results suggests that the distributions are statistically signifi-

cantly different using an alpha threshold of 0.05, we conduct pair-

wise Mann-Whitney U tests between the real data and each syn-

thetic dataset separately to analyze which of the synthetic datasets

are significantly different from the real data. As we do multiple sta-

tistical comparisons, we employ the Bonferroni correction to avoid

finding spurious statistically significant differences.

https://chat.lmsys.org/?leaderboard


Generating Synthetic Buggy Code Submissions for Computing Education

Table 3: Results of the analysis. The “Real” column shows statistics for the real student data (only incorrect solutions). The

other three columns show the statistics for each of the three prompts we used. For each exercise, there weremultiple unit tests.

The range, mean, and standard deviation of the percentage of buggy solutions that pass at least one unit test are shown for

each condition (real, baseline, test-case informed, frequency-informed). In addition, the average differences (deltas) between

the real data and the synthetic data are shown for the means and standard deviations.

Real Baseline Test-case-informed Frequency-informed

Language Exercise Range ` f Range ` f Range ` f Range ` f

C Prime Below [50, 92] 81.1 12.6 [58, 100] 80.5 9.9 [50, 100] 68.8 14.7 [61, 100] 83.7 9.9

C Strikeout [29, 75] 57.5 13.1 [0, 96] 10.2 29.4 [0, 83] 9.5 25.2 [0, 96] 10.0 29.4

C Kth Largest [43, 73] 61.2 8.7 [40, 96] 66.2 19.0 [48, 83] 62.3 12.5 [56, 96] 70.0 14.8

C Bounding Rectangle [22, 74] 52.7 12.2 [0, 28] 8.4 7.6 [4, 32] 12.6 7.5 [12, 44] 22.4 9.7

C Tallest Vine [31, 49] 38.3 5.7 [4, 62] 40.2 24.0 [0, 64] 40.4 26.1 [4, 76] 50.2 29.7

C Average Sheep [15, 84] 70.8 17.4 [32, 77] 49.7 15.7 [35, 83] 53.5 18.0 [42, 88] 61.4 18.4

C Prime Factors [24, 79] 61.7 18.3 [61, 74] 69.4 4.7 [39, 87] 61.2 12.6 [52, 81] 66.7 9.4

C Connect Two [23, 59] 35.7 10.2 [20, 30] 23.5 3.3 [23, 41] 27.3 5.7 [6, 24] 8.7 5.0

C Day Trader [30, 74] 54.9 17.9 [8, 28] 11.8 5.3 [0, 12] 2.2 4.0 [16, 28] 19.8 4.2

C Add One [23, 49] 40.0 8.9 [24, 76] 50.0 19.9 [76, 80] 77.6 2.0 [44, 96] 73.0 22.4

Average deltas to real data for mean and standard deviation. 19.3 9.8 22.0 7.5 21.1 9.4

Dart Grade as text [20, 48] 38.7 9.2 [44, 72] 62.0 9.2 [44, 76] 58.0 11.3 [44, 72] 64.7 9.9

Dart Average of positives [31, 46] 38.0 6.6 [24, 64] 39.0 15.1 [24, 48] 33.0 9.9 [8, 64] 21.0 16.3

Dart Budget check [24, 38] 30.0 5.9 [12, 40] 21.3 13.2 [12, 44] 30.7 13.6 [32, 64] 49.3 13.2

Dart Sum of three numbers [1, 2] 1.5 0.5 [0, 0] 0.0 0.0 [0, 0] 0.0 0.0 [4, 4] 4.0 0.0

Dart Ask for password [2, 31] 17.3 11.9 [0, 0] 0.0 0.0 [0, 0] 0.0 0.0 [0, 0] 0.0 0.0

Dart Mystery function [0, 82] 64.2 32.1 [4, 80] 48.0 27.8 [8, 68] 44.0 20.2 [8, 52] 41.6 16.9

Dart Sum of positive numbers [1, 6] 3.5 2.5 [24, 24] 24.0 0.0 [28, 32] 30.0 2.0 [20, 28] 24.0 4.0

Dart Sum with formula [0, 0] 0.0 0.0 [0, 4] 2.0 2.0 [0, 0] 0.0 0.0 [0, 0] 0.0 0.0

Dart Authentication [24, 58] 38.0 14.5 [24, 44] 33.3 8.2 [28, 44] 34.7 6.8 [32, 72] 49.3 16.8

Dart Video and playlist [33, 71] 50.7 15.6 [16, 40] 24.0 11.3 [24, 44] 34.7 8.2 [40, 52] 45.3 5.0

Average deltas to real data for mean and standard deviation. 12.2 4.8 11.0 5.3 14.2 6.0

4 RESULTS AND DISCUSSION

The results of the analysis are shown in Table 3. Many interesting

observations can bemade based on the table. First, there seem to be

differences between exercises in how well the model can generate

incorrect solutions to the exercise. Some exercises seem hard for

themodel to solve “partially incorrectly”, i.e., to generate a bug that

allows some tests to pass. This is the case, for example, for the “Ask

for password” Dart exercise and the “Day Trader” C exercise. For

the former, the mean pass rate in the real data is 17.3%, but all the

LLM-generated incorrect solutions always fail all the tests. For the

latter, the mean pass rate in the real data is 54.9%, which is consid-

erably higher than the mean pass rate for all three prompts: 11.8%,

2.2%, and 19.8% for the baseline, test-case informed, and frequency-

informed prompts respectively. This suggests that for these two

exercises, the bugs generated by the model tend to cause most of

the tests to fail, while in the real data, student bugs are more sub-

tle and only cause part of the tests to fail. This finding is similar to

synthesized code that is aimed to be correct where it has also been

found that LLM performance is problem dependent [32].

When considering the results, the number of test cases should

be taken into account for the Dart data (all the C exercises had ex-

actly 20 test cases each). For example, the “Sum of three numbers”

and the “Sumwith formula” exercises both only had two test cases.

For both of these exercises, the tests mainly check that the student

has not hard coded the response, and thus most bugs (other than

hard coding) will cause both tests to fail concurrently. For these

two exercises, the very low ranges and means of unit test pass

rates suggest that real buggy submissions almost exclusively fail

both tests, i.e., it is very rare that one test would pass and the other

not.

Somewhat surprisingly, there do not seem to be large differences

between the different prompts in how well they work for generat-

ing synthetic incorrect submissions. This is most visible by look-

ing at the average deltas between the real data and the synthetic

data. This is confirmed for the Dart data by a Kruskal-Wallis H test

(H = 0.87, p = 0.83), which suggests that all four distributions are

statistically equivalent. However, for the C data, the results of the

Kruskal-Wallis H test (H = 28.4, p < 0.0001) suggest that at least

one distribution is significantly different from the others. Pairwise

Mann-Whitney U tests between the real data and each synthetic

dataset separately reveal that both the baseline (U = 25739.0, p <

0.0001) and the test-case-informed (U = 25036.5, p < 0.0001) syn-

thetic datasets are significantly different from the real data. How-

ever, the difference is not significant for the frequency-informed

synthetic dataset with our threshold for significance alpha = 0.05

(U = 22816.0, p = 0.07). For our study, these results imply that all



Leinonen et al.

three prompts led to “good” synthetic data for Dart (as it was not

significantly different from real data), while only the frequency-

informed prompt led to “good” synthetic data for C.

As providing test case information and failure distribution to

GPT-4o does not always appear to help it generate submissions

with more similar distributions to real data, more sophisticated

prompt engineering approaches could be a useful area to explore,

at least for the current generation of state-of-the-art models. Previ-

ouswork has found differences between student and LLM-generated

code, for example, in what constructs and keywords are used [10,

22]. In general, generating synthetic content using LLMs risksmono-

tonicity, especially if content is generated without controls aimed

at increasing the diversity of the generated content [33].

The finding that the synthetic Dart data seems to be more sim-

ilar to the real student data with regard to test case failure distri-

butions is corroborated by looking at the average deltas. For the

Dart data, the average deltas between the mean pass rates for the

real data and the synthetic data are considerably lower (12.2% for

baseline, 11.0% for test-case-informed, and 14.2% for frequency-

informed) than for the C data (19.3% for baseline, 22.0% for test-

case-informed, and 21.1% for frequency-informed). This finding is

surprising as the model has likely been trained with more C code

than Dart code since C is a vastly more common programming

language compared to Dart. This suggests that it might be harder

for the model to generate semantic bugs that are similar to bugs

found in student programs for C than for Dart. On the other hand,

the Dart exercises are less complex than the C exercises, which

could also contribute to the observation.

Two of the C exercises had diagrams in their problem descrip-

tions that were not shown to the model during prompting. For the

“Tallest Vine” exercise, this does not seem to have been a prob-

lem for the model as the mean pass rates for the synthetic data

are higher than for the real data (40.2% for baseline, 40.4% for test-

case-informed, and 50.2% for frequency-informed versus 38.3% for

real data), suggesting the model was able to generate solutions

that pass some of the tests. However, for the “Bounding Rectan-

gle” exercise, this might explain why the mean pass rates for the

synthetic data are considerably lower than for the real data (8.4%

for baseline, 12.6% for test-case-informed, and 22.4% for frequency-

informed versus 52.7% for real data).

5 LIMITATIONS

There are some limitations to this work. We only ask the model

to generate incorrect solutions. In both contexts, a large portion

of submissions pass all the tests (45% of submissions for Dart and

72% of submissions for C). Our analysis does not look at whether

the model can generate realistic correct solutions, which is left for

future research. Prior work suggests that LLMs can solve most in-

troductory programming exercises correctly [43], although LLM-

generated solutions have distinct patterns that make it possible

to distinguish them from student-generated solutions [22]. Thus,

future work should study whether LLMs can be used to generate

realistic synthetic correct solutions.

We only evaluate the similarity of the synthetic data to the real

data with regard to test case failure distributions. For example, we

do not look at constructs used in the code, what strategies are em-

ployed in the program to solve the problem, or the actual bugs in

the code.

Some of the test suites of the Dart exercises were not very com-

prehensive, only including a couple of tests. This means that some

bugs that the LLMs generate might not be captured by the test suite.

For the C exercises, two of them had diagrams in the problem de-

scriptions that were not shown to the LLM. Thus, the LLM was

not provided the same information as the students, which could

have made it more difficult for the LLM to generate the incorrect

solutions, potentially affecting the results.

6 CONCLUSIONS

We investigated the capability of generative AI models in gener-

ating synthetic incorrect code submissions to programming exer-

cises. This could be useful for creating debugging exercises for stu-

dents and for generating synthetic datasets for research purposes.

Our findings suggest that LLMs can be used to generate synthetic

incorrect submissions that are not significantly different from real

student data with regard to test case failure distributions. This pro-

vides evidence that LLMs could be used for generating satisfiably

diverse synthetic code submission data, potentially lowering barri-

ers to conducting research with such data, and making it easier to

provide students with debugging practice.

However, more research is necessary to explore the closeness of

LLM generated synthetic code submissions to that of real student

data in more detail, such as what in the code makes the test cases

fail and can the patterns in synthetic code submissions be made to

more closely resemble that of real student code submissions.

ACKNOWLEDGMENTS

This research was supported by the Research Council of Finland

(Academy Research Fellow grant number 356114).

REFERENCES
[1] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigat-

ing novice programmingmistakes in large-scale student data. In Proc. of the 46th
ACM Technical Symp. on Computer Science Education. 522–527.

[2] Samuel A Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E Tillman,
Prashant Reddy, and Manuela Veloso. 2020. Generating synthetic data in fi-
nance: opportunities, challenges and pitfalls. In Proceedings of the First ACM
International Conference on AI in Finance. 1–8.

[3] Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard – Or at Least It
Used to Be: Educational Opportunities And Challenges of AI Code Generation.
In Proc. of the 54th ACM Technical Symp. on Computer Science Education V. 1.

[4] Alan Mark Berg, Stefan T Mol, Gábor Kismihók, and Niall Sclater. 2016. The
role of a reference synthetic data generator within the field of learning analytics.
Journal of Learning Analytics 3, 1 (2016), 107–128.

[5] Seth Bernstein, Paul Denny, Juho Leinonen, LaurenKan, Arto Hellas, Matt Little-
field, Sami Sarsa, and Stephen MacNeil. 2024. "Like a Nesting Doll": Analyzing
Recursion Analogies Generated by CS Students Using Large Language Models.
In Proc. of the 2024 on Innovation and Technology in CS Education V. 1. 122–128.

[6] Seth Bernstein, Paul Denny, Juho Leinonen, Matt Littlefield, Arto Hellas, and
Stephen MacNeil. 2024. Analyzing Students’ Preferences for LLM-Generated
Analogies. In Proc. of the 2024 on Innovation and Technology in Computer Science
Education V. 2.

[7] Alessio Botta, Alberto Dainotti, and Antonio Pescapé. 2012. A tool for the gen-
eration of realistic network workload for emerging networking scenarios. Com-
puter Networks 56, 15 (2012), 3531–3547.

[8] JohnChung, Ece Kamar, and SaleemaAmershi. 2023. IncreasingDiversityWhile
Maintaining Accuracy: Text Data Generation with Large Language Models and
Human Interventions. In Proceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers). 575–593.



Generating Synthetic Buggy Code Submissions for Computing Education

[9] Benjamin Simon Clegg, Phil McMinn, and Gordon Fraser. 2021. An Empirical
Study to Determine ifMutants Can Effectively Simulate Students’ Programming
Mistakes to Increase Tutors’ Confidence in Autograding. In Proc. of the 52nd
ACM Technical Symp. on Computer Science Education. 1055–1061.

[10] Paul Denny, Hassan Khosravi, Arto Hellas, Juho Leinonen, and Sami Sarsa. 2023.
Canwe trust AI-generated educational content? comparative analysis of human
and AI-generated learning resources. arXiv preprint arXiv:2306.10509 (2023).

[11] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A Becker, and Brent N Reeves. 2024. Prompt Problems: A
new programming exercise for the generative AI era. In Proc. of the 55th ACM
Technical Symp. on Computer Science Education V. 1.

[12] Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2024. Computing Education in the Era of Generative AI. Com-
mun. ACM 67, 2 (2024), 56–67.

[13] Mohsen Dorodchi, Erfan Al-Hossami, Aileen Benedict, and Elise Demeter. 2019.
Using synthetic data generators to promote open science in higher education
learning analytics. In 2019 IEEE Int. Conf. on Big Data. IEEE, 4672–4675.

[14] Jacob Doughty, Zipiao Wan, Anishka Bompelli, Jubahed Qayum, Taozhi Wang,
Juran Zhang, Yujia Zheng, Aidan Doyle, Pragnya Sridhar, et al. 2024. A compar-
ative study of AI-generated (GPT-4) and human-crafted MCQs in programming
education. In Proc. of the 26th Australasian Computing Education Conf. 114–123.

[15] John Edwards, Kaden Hart, Raj Shrestha, et al. 2023. Review of CSEDM Data
and Introduction of Two Public CS1 Keystroke Datasets. J. of Educational Data
Mining 15, 1 (2023), 1–31.

[16] Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. 2018. CommonLogic Er-
rors Made by Novice Programmers. In Proc. of the 20th Australasian Computing
Education Conf. ACM, New York, NY, USA, 83–89.

[17] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Australasian Computing Education
Conf. ACM, New York, NY, USA, 10–19.

[18] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A. Becker. 2023. My AI Wants to Know if This Will Be
on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In Proc.
of the 25th Australasian Computing Education Conf. ACM, 97–104.

[19] Brendan Flanagan, Rwitajit Majumdar, and Hiroaki Ogata. 2022. Fine Grain Syn-
thetic Educational Data: Challenges and Limitations of Collaborative Learning
Analytics. IEEE Access 10 (2022), 26230–26241.

[20] Akshay Goel, Almog Gueta, Omry Gilon, Chang Liu, Sofia Erell, Lan Huong
Nguyen, Xiaohong Hao, Bolous Jaber, Shashir Reddy, Rupesh Kartha, et al.
2023. Llms accelerate annotation for medical information extraction. In Ma-
chine Learning for Health (ML4H). PMLR, 82–100.

[21] Jean M. Griffin. 2019. Designing Intentional Bugs for Learning. In Proc. of the
2019 Conf. on United Kingdom & Ireland Computing Education Research.

[22] Muntasir Hoq, Yang Shi, Juho Leinonen, Damilola Babalola, Collin Lynch,
Thomas Price, and Bita Akram. 2024. Detecting ChatGPT-generated code sub-
missions in a CS1 course using machine learning models. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1. 526–532.

[23] Irene Hou, Sophia Mettille, Owen Man, Zhuo Li, Cynthia Zastudil, and Stephen
MacNeil. 2024. The Effects of Generative AI on Introductory Students’ Help-
Seeking Preferences. In Australasian Computing Education Conference.

[24] James Jordon, Lukasz Szpruch, Florimond Houssiau, Mirko Bottarelli, Giovanni
Cherubin, Carsten Maple, Samuel N Cohen, and Adrian Weller. 2022. Synthetic
Data–what, why and how? arXiv preprint arXiv:2205.03257 (2022).

[25] Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Zachary Henley,
Paul Denny, Michelle Craig, and Tovi Grossman. 2024. Codeaid: Evaluating a
classroom deployment of an llm-based programming assistant that balances stu-
dent and educator needs. In Proceedings of the CHI Conference on Human Factors
in Computing Systems. 1–20.

[26] Sam Lau and Philip Guo. 2023. From “Ban It Till We Understand It” to “Re-
sistance is Futile”: How University Programming Instructors Plan to Adapt as
More Students Use AI Code Generation and Explanation Tools such as ChatGPT
and GitHub Copilot. In Proc. of the 2023 ACM Conf. on Int. Computing Education
Research - Vol. 1. ACM, 106–121.

[27] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein,
Joanne Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explana-
tions Created by Students and Large Language Models. In Proc. of the 2023 Conf.
on Innovation and Technology in Computer Science Education V. 1. 124–130.

[28] Juho Leinonen, Petri Ihantola, and Arto Hellas. 2017. Preventing keystroke
based identification in open data sets. In Proc. of the Fourth (2017) ACM Con-
ference on Learning @ Scale. 101–109.

[29] Chen Li, Emily Chan, Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero.
2019. Towards a Framework for Teaching Debugging. In Proc. of the Twenty-First
Australasian Computing Education Conf. 79–86.

[30] Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin. 2023. Synthetic data
generation with large language models for text classification: Potential and lim-
itations. arXiv preprint arXiv:2310.07849 (2023).

[31] Mark Liffiton, Brad E Sheese, Jaromir Savelka, and Paul Denny. 2023. Codehelp:
Using large language models with guardrails for scalable support in program-
ming classes. In Proc. of the 23rd Koli Calling Int. Conf. on Computing Education
Research.

[32] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is
Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. Advances in Neural Information Process-
ing Systems 36 (2024).

[33] Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and
HaoboWang. 2024. On LLMs-Driven Synthetic Data Generation, Curation, and
Evaluation: A Survey. arXiv preprint arXiv:2406.15126 (2024).

[34] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using Code
Explanations Generated by Large Language Models in a Web Software Devel-
opment E-Book. In Proc. of the ACM Technical Symp. on Computing Science Edu-
cation. ACM, 6 pages.

[35] Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and Zi-
heng Huang. 2022. Generating Diverse Code Explanations Using the GPT-3
Large Language Model. In Proc. of the 2022 ACM Conf. on Int. Computing Educa-
tion Research - Volume 2. ACM, 37–39.

[36] Julia M Markel, Steven G Opferman, James A Landay, and Chris Piech. 2023.
GPTeach: Interactive TA training with GPT-based students. In Proc. of the Tenth
ACM Conf. on Learning @ Scale. 226–236.

[37] Renée McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Si-
mon, Lynda Thomas, and Carol Zander. 2008. Debugging: a review of the liter-
ature from an educational perspective. Computer Science Education 18, 2 (2008),
67–92.

[38] Anders Giovanni Møller, Arianna Pera, Jacob Dalsgaard, and Luca Aiello. 2024.
The Parrot Dilemma: Human-Labeled vs. LLM-augmented Data in Classifica-
tion Tasks. In Proceedings of the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume 2: Short Papers). 179–192.

[39] Yaneth Moreno, Anthony Montero, Francisco Hidrobo, and Saba Infante. 2023.
Synthetic DataGenerator for an E-Learning Platform in a BigData Environment.
In Int. Conf. in Information Technology and Education. Springer, 431–440.

[40] Jeiyoon Park, Chanjun Park, and Heuiseok Lim. 2024. ChatLang-8: An LLM-
Based Synthetic Data Generation Framework for Grammatical Error Correction.
arXiv preprint arXiv:2406.03202 (2024).

[41] James Perretta, Andrew DeOrio, Arjun Guha, and Jonathan Bell. 2022. On the
use of mutation analysis for evaluating student test suite quality. In Proc. of the
31st ACM SIGSOFT Int. Symp. on Software Testing and Analysis. 263–275.

[42] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami,
Leonidas J Guibas, and Jascha Sohl-Dickstein. 2015. Deep knowledge tracing.
Advances in neural information processing systems 28 (2015).

[43] James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves,
and Jaromir Savelka. 2023. The Robots Are Here: Navigating the Generative AI
Revolution in Computing Education. In Proc. of the 2023 Working Group Reports
on Innovation and Technology in Computer Science Education. ACM, 108–159.

[44] James Prather, Brent Reeves, Juho Leinonen, Stephen MacNeil, Arisoa S Randri-
anasolo, Brett Becker, Bailey Kimmel, Jared Wright, and Ben Briggs. 2024. The
Widening Gap: The Benefits and Harms of Generative AI for Novice Program-
mers. arXiv preprint arXiv:2405.17739 (2024).

[45] Sami Sarsa, Paul Denny, ArtoHellas, and Juho Leinonen. 2022. Automatic Gener-
ation of Programming Exercises and Code Explanations Using Large Language
Models. In Proc. of the 2022 ACM Conf. on Int. Computing Education Research -
Volume 1. ACM, 27–43.

[46] Sami Sarsa, Juho Leinonen, ArtoHellas, et al. 2022. Empirical Evaluation of Deep
Learning Models for Knowledge Tracing: Of Hyperparameters and Metrics on
Performance and Replicability. Journal of Educational Data Mining 14, 2 (2022).

[47] Ruixiang Tang, Xiaotian Han, Xiaoqian Jiang, and Xia Hu. 2023. Does synthetic
data generation of llms help clinical textmining? arXiv preprint arXiv:2303.04360
(2023).

[48] AndrewTran, Kenneth Angelikas, Egi Rama, ChikuOkechukwu,DavidH Smith,
and Stephen MacNeil. 2023. Generating multiple choice questions for comput-
ing courses using large language models. In 2023 IEEE Frontiers in Education
Conference (FIE). IEEE, 1–8.

[49] Stefan Sylvius Wagner, Maike Behrendt, Marc Ziegele, and Stefan Harmeling.
2024. The Power of LLM-Generated Synthetic Data for Stance Detection in
Online Political Discussions. arXiv preprint arXiv:2406.12480 (2024).

[50] Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. 2021. Novice Re-
flections on Debugging. In Proc. of the 52nd ACM Technical Symp. on Computer
Science Education. ACM, New York, NY, USA, 73–79.

[51] Cynthia Zastudil, Magdalena Rogalska, Christine Kapp, Jennifer Vaughn, and
Stephen MacNeil. 2023. Generative ai in computing education: Perspectives of
students and instructors. In IEEE Frontiers in Education Conference. IEEE, 1–9.



Leinonen et al.

[52] Chen Zhan, Oscar Blessed Deho, Xuwei Zhang, Srecko Joksimovic, andMaarten
de Laat. 2023. Synthetic data generator for student data serving learning ana-
lytics: A comparative study. Learning Letters (2023).


	Abstract
	1 Introduction
	2 Related Work
	2.1 Bugs
	2.2 LLMs in Computing Education
	2.3 Generating Synthetic Data

	3 Methods
	3.1 Context and Data
	3.2 Prompting the LLM
	3.3 Analysis

	4 Results and Discussion
	5 Limitations
	6 Conclusions
	Acknowledgments
	References

