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Abstract
There is a great need for data in computing education research.
Data is needed to understand how students behave, to train models
of student behavior to optimally support students, and to develop
and validate new assessment tools and learning analytics tech-
niques. However, relatively few computing education datasets are
shared openly, often due to privacy regulations and issues in mak-
ing sure the data is anonymous. Large language models (LLMs) offer
a promising approach to create large-scale, privacy-preserving syn-
thetic data, which can be used to explore various aspects of student
learning, develop and test educational technologies, and support
research in areas where collecting real student data may be chal-
lenging or impractical. This work explores generating synthetic
buggy code submissions for introductory programming exercises
using GPT-4o. We compare the distribution of test case failures be-
tween synthetic and real student data from two courses to analyze
the accuracy of the synthetic data in mimicking real student data.
Our findings suggest that LLMs can be used to generate synthetic
incorrect submissions that are not significantly different from real
student data with regard to test case failure distributions. Our re-
search contributes to the development of reliable synthetic datasets
for computing education research and teaching, potentially accel-
erating progress in the field while preserving student privacy.

CCS Concepts
• Social and professional topics → Computing education; •
Computing methodologies→ Artificial intelligence; • Soft-
ware and its engineering → Software testing and debugging.
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1 Introduction
Computing education has witnessed a significant transformation
with the rise of large language models (LLMs) [13]. LLMs have
demonstrated remarkable capabilities in tasks relevant to comput-
ing educators and researchers, with a particular focus on their
ability to solve introductory programming exercises [18]. More
recently, these capabilities have been demonstrated for more com-
plex programming tasks [20], with current state-of-the-art models
appearing able to solve almost all typical introductory program-
ming exercises [47]. This ability to generate correct code solutions
is well-established, however less well explored is the potential of
LLMs to deliberately create incorrect code.

Generating incorrect solutions is a relatively unexplored area
but has many potential applications. Incorrect code solutions can
be used to create debugging exercises, which are known to be ben-
eficial for learning [54]. Additionally, they can help in generating
synthetic datasets of student submissions, which include a mixture
of correct and incorrect code. This is particularly valuable given the
scarcity of openly shared programming education datasets, which
are often constrained by strict privacy regulations and the chal-
lenges of de-identifying and anonymizing data [16, 30]. Leveraging
LLMs to create synthetic data can overcome these barriers, provid-
ing a new avenue for developing and validating educational tools
and techniques without compromising student privacy.

Building on the extensive body of literature that has established
LLMs’ capability to generate correct solutions, in this work we ex-
plore the possibility of using thesemodels to generate incorrect code
submissions for introductory programming problems. We investi-
gate various prompting strategies to determine which approaches
produce submissions that most closely resemble real student data.
In our prior work, we established that LLMs can generate buggy
solutions that follow bug distributions reported in literature [37].
However, this prior work did not utilize real student data, relying
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only on the frequency of specific bugs in the generated code and
not comparing the synthetic data to real student data.

In this follow-upwork, we compare the LLM-generated synthetic
data to real student data. Our evaluation focuses on the distribution
of test case failures as a measure of similarity between synthetic and
real data. This study encompasses two programming languages,
C and Dart, and includes data from institutions across different
countries. The primary research question guiding this study is:

To what extent can generative AI models be used
to generate synthetic incorrect code submissions for
introductory programming exercises?

We make two main contributions in this work. First, we provide
an analysis of the capability of LLMs to generate synthetic data for
computing education research. Second, we explore the effectiveness
of prompting strategies in generating incorrect code submissions
that mirror typical student errors. This study contributes to the
development of reliable synthetic datasets, which can facilitate
research and teaching in computing education while preserving
student privacy.

2 Related Work
2.1 Bugs
Programming errors, or bugs, constitute a well studied topic in the
computing education research literature. Many studies have iden-
tified common mistakes made by novice programmers, including,
syntax errors, logic errors [17], or both [1]. Teaching students to
debug has also gained a great deal of researchers’ attention [32, 41].
Griffin’s study [23] exemplifies that the use of intentionally er-
roneous code in instruction is not, however, limited to teaching
debugging but is suitable for programming education more gener-
ally.

However, the research literature has, so far, only narrowly cov-
ered how to simulate programming errors made by students. Until
the emergence of LLMs, perhaps the most promising approach was
automatic program mutation, provided by mutation analysis tools
that software engineers use in software testing. Clegg et al. [10]
found that mutant code has similar faults as code written by stu-
dents and is, thus, a good aid when designing automated grading
systems. Perretta et al. [45], on the other hand, used code mutation
for evaluating test suites written by students. They also conclude
that mutant code can simulate student code to a reasonable extent.

2.2 LLMs in Computing Education
With the introduction of generative AI, educators can now produce
high-quality, personalized learning materials at scale for their stu-
dents. These models can produce diverse explanations [39] that
students find engaging [38] and that are often rated higher [29] or
equal [3] in quality compared to explanations generated by peers.
While LLM-generated code explanations have been found to be
similar semantically and lexically to those created by experts, their
readability is lower compared to explanations created by experts
or students [31]. Students and instructors can also use the mod-
els to generate personally relevant analogies [6, 7], programming
assignments [49], and to create multiple choice questions [15, 52].
As such, generative AI has become a legitimate source of help for

many computing students [25, 47] with over 26% of students using
it on a daily basis [25].

To further support students, researchers have also developed
interactive systems to scaffold student’s use of generative AI in
classroom settings. This scaffolding is essential to prevent mis-
use [4, 28, 55] and to address challenges that some students face in
effectively prompting and interpreting responses from generative
AI [25, 48]. Such systems include, for example, CodeAid [27], Code-
Help [34], and Promptly [12]. Despite the emergence of tools that
scaffold the use of generative AI, less research has been dedicated
to investigating whether generative AI can be used to simulate
student behaviors or generate synthetic student data. Markel et
al. simulated student questions to train teaching assistants [40],
highlighting a potential area for further investigation.

2.3 Generating Synthetic Data
Synthetic data is highly useful for multiple data science related
purposes, including releasing privacy-preserving data in sensitive
domains, construction of datasets without unwanted biases present
in real world data, and augmenting scarce real world data [26].
Synthetic data generators have been studied in various fields such
as finance [2], medicine [22], and computer science [8, 42]. Like-
wise, the usefulness of synthetic data generation has been noted in
the fields of education and learning analytics [5], e.g., to evaluate
knowledge tracing models [46, 50], to train performance predic-
tion models [14, 21], and to simulate student behaviour for further
research [43, 56]. However, the focus in generating datasets has
been on numerical or categorical data, and not textual data such as
student submissions for open text or programming exercises.

Enter LLMs which excel in generating text resembling that of
humans and can be easily prompted to produce specific kinds of
texts. On their own, they already are highly versatile and capa-
ble synthetic data generators for textual data given the correct
prompts [33, 53]. As a prime example, in a recent study by Møller
et al. [42], augmenting training data of classification models with
synthetic data (using GPT-4 and LLama2) was found to outperform
augmenting it with crowdsourced data on some NLP classification
tasks, particularly on multi-class tasks or tasks with rare classes,
and to be beneficial on others although not as much as crowdsourc-
ing. They note that using LLMs directly for various tasks is mostly
inferior to using an LLM that is fine-tuned (i.e., trained further)
using synthesized data, a result echoed by Tang et al. [51] who
investigated the capabilities of LLMs for healthcare related tasks.

While it is straightforward to generate synthetic data with LLMs,
generating data of high quality and variability can require specific
prompting strategies or knowledge enhancement [36, 44]. Evalu-
ating the quality of generated open-ended textual data directly as
opposed to, e.g., evaluating it through classification models, can be
laborious, requiring manual evaluations or auxiliary models [9, 36].

The main limitation of synthetic data is that it might not resem-
ble real data – the closer synthetic data is to real data, the more
valuable it is. The goal of our study is to evaluate to what extent
LLM-generated synthetic incorrect code submissions resemble real
incorrect code submissions by students, shedding light on whether
they could be used to generate synthetic student submissions.
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Table 1: Summary of the C programming project functions from 2016 and 2017. Every function had 20 tests.

Year Prototype Declaration Description

2016 int PrimeBelow(int upper); Returns the largest prime number less than the given upper limit.

2016 void Strikeout(char *hide, char *phrase); Modifies a phrase by striking out occurrences of the word specified in hide.

2016 int KthLargest(int k, int *values, int numValues); Returns the k-th largest element from an array of integers.

2016 Rectangle BoundingRectangle(Rectangle r1, Rectangle r2); Computes the smallest rectangle that can enclose two given rectangles.

2016 int TallestVine(int seedA, int seedB, int days); Simulates the growth of vines over a specified number of days based on seed values.

2017 double AverageSheep(int *counts); Calculates the average count of sheep over a period (similar to a “rainfall” computation).

2017 int PrimeFactors(int n, int *factors); Determines the prime factors of a given integer, n.

2017 void ConnectTwo(int maze[10][10]); Modifies a 10x10 2D array to show the shortest connection between two specified cells.

2017 void DayTrader(int *prices, int len, int *run, int *runIndex); Identifies the best run of consecutive days for maximizing return on stock prices.

2017 void AddOne(char *input, char *output); Increments an arbitrarily large numeric string storing the result in an output string.

3 Methods
Our data on student test case failures is taken from two distinct
contexts, at institutions in different countries teaching different
programming languages. This diverse data allows us to better under-
stand how well our proposed synthetic data generation approach
might generalize to new contexts.

3.1 Context and Data
3.1.1 C Context. Our first set of data is obtained from a six-week
C programming module which is part of an introductory program-
ming course taught at the University of Auckland, a research univer-
sity located in New Zealand. The content of this six-week module
focuses on fundamental topics including basic syntax, data types,
operators, standard I/O, control structures, functions, arrays, strings
and file I/O. Students take part in weekly lab sessions, where they
complete short programming exercises and receive immediate feed-
back from an auto-grader. The module concludes with a program-
ming project, contributing 12% towards their final grade for the
course, for which students do not receive feedback until after the
submission deadline. Our data for this research includes student
submissions to this final project taken from two consecutive deliv-
eries of the course in 2016 and 2017. The data used in this study
comprises a total of 8598 submissions of which 2405 are incorrect
(i.e., do not pass all the tests) from 1751 students.

The programming project includes the requirement to implement
five distinct functions of varying difficulty. Students are encouraged
to thoroughly test their code prior to submitting it for grading as
code that does not compile is not graded, and credit is only awarded
for functions which pass all 20 of the tests in the corresponding
test suite. Table 1 lists the prototype declarations, along with brief
descriptors (students and the LLM were provided more detailed
specifications), for the ten functions (five from each year) for which
we analyze student submissions and test case failures.

3.1.2 Dart Context. The second dataset comes from an online
course platform that hosts a variety of courses offered by Aalto
University, a research university located in Finland. For this study,
ten exercises from two different courses were chosen. Both courses
use the Dart programming language. The first course is an open
online introductory programming course where participants are
typically novices without any prior programming experience. The

course teaches students basic programming concepts such as vari-
ables, printing output and reading input, conditional statements,
iteration, lists, and functions. The course is worth 2 ECTS credits
which corresponds to about 50-60 hours of workload.

The second course is an advanced programming course where
students are expected to know basic programming in some program-
ming language. The goal of the second course is to teach students
about developing software that supports a wide variety of devices
using Dart and Flutter. The course is worth 5 ECTS credits which
corresponds to about 135 hours of workload. As the participants
are not expected to know Dart or Flutter, the course has a short
introduction to key parts of the Dart programming language.

The introductory course is taught in Finnish while the advanced
course is taught in English. For this article, we have translated the
problem names and descriptions into English; however, the original
language was used when prompting the LLM.

Both courses can be completed fully online and contain multiple
small programming exercises embedded within the online materials.
The data used for this study comes from a sample of ten of these
small exercises. Table 2 shows brief descriptions of the exercises
used in this study. Students and the LLM were provided the actual,
more comprehensive problem descriptions. The data comprises a
total of 44742 submissions of which 24719 are incorrect (i.e., do not
pass all the tests) from 5322 students (5063 from the introductory
course and 259 from the advanced course).

3.2 Prompting the LLM
For this study, we chose to use the GPT-4o large language model1,
which at the time of writing, was the state-of-the-art model accord-
ing to online leaderboards2. As the state-of-the-art model at the
time of writing, we believe that it is the best choice to evaluate, as
its performance should be closest to future models with increased
capabilities.

We evaluate three different prompts to explore how prompt en-
gineering affects the generated incorrect solutions. These prompts
are based on our prior work [37]. The prompts used in this study
are the following (for the exact phrasing, see Figure 1).

1More specifically, the GPT-4o-2024-05-13 version.
2According to the LMSYS Chatbot Arena Leaderboard, accessed July 20th, 2024: https:
//chat.lmsys.org/?leaderboard
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Table 2: Summary of Dart Programming Exercises.

Course Exercise Description # of tests

Introductory Grade as text Ask the user for a numerical grade and print the corresponding textual description of the grade. 6

Introductory Sum of three numbers Ask the user for three numbers and then print the sum of the numbers. 2

Introductory Ask for password Write a function that takes a correct password as a parameter and then asks the user for the password
until they input the correct password.

3

Introductory Sum of positive numbers Write a function that takes in a list and returns the sum of the positive numbers in the list. 2

Introductory Authentication Ask the user for specified username and password, and print different messages to the user depending
on whether they input the correct username (“admin”) and/or password (“radish”).

3

Advanced Average of positives Return the average value of positive numbers in a given list (similar to the Rainfall problem). 4

Advanced Budget check Given two doubles, budget and spending, print whether the budget is okay or not. 3

Advanced Mystery function Write a function that returns a string depending on which number is passed to the function and
whether that number is divisible by 5 or 7 or both (similar to the FizzBuzz problem).

5

Advanced Sum with formula Write a function that takes in two numbers and returns the written sum formula of those two numbers
(e.g., for input 1 and 2, returns “1+2=3”).

2

Advanced Video and playlist Implement two classes, Video and Playlist. A video has a name (String) and duration in seconds (int)
and a toString method. A playlist contains a list of videos and has methods for adding videos, checking
if a video is on the playlist, and for returning the total duration of the playlist.

3

Problem description:
<Problem description>

Test cases:
<List of test cases>

Test case failure frequencies:
<List of failure frequencies for each test case>

Your task:
Please generate five incorrect solutions to this programming
problem that include one or more semantic bugs. Place the
delimiter CODE_START before every solution example you’ll
generate and CODE_END at the end of the solution code to
help me extract just the generated code. Importantly, it
should be possible to compile the incorrect solutions and it
should be possible to run unit tests for the code. When
generating the solutions, please try to follow the distribution
of failing tests given above under “Test case failure
frequencies”. Use the <Dart/C> programming language.

Figure 1: The prompts used in the study. The baseline prompt
did not include the blue and yellow highlighted parts. The
test-case-informed prompt included the blue highlighted
part on top of the baseline prompt. The frequency-informed
prompt included both the blue and yellow highlighted parts
on top of the baseline prompt. The bolded parts indicate
variables for which content depended on the exercise.

• A baseline prompt that just asks the model to generate se-
mantically incorrect solutions to the problem.

• A test-case-informed prompt where the model is also pro-
vided the test cases for the exercise.

• A frequency-informed prompt where the model is provided
both the test cases and the frequencies of how often incor-
rect submissions fail each specific test case. In addition, the
model is instructed to try follow the distribution of the failure
frequencies.

In our study, we only focus on semantic bugs. There are a few
reasons for this. Firstly, we believe that semantic bugs are more
interesting for potential debugging exercises. Secondly, if the code
is not syntactically correct, then it would not be possible to run
the test suite against the generated code, making it infeasible to
evaluate the distribution of test case failures for the generated
synthetic data. This is also why for all prompts, we explicitly tell
the model that the generated solutions should compile and that it
should be possible to run unit tests for the generated code.

When generating the submissions, for each combination of prompt,
exercise, and context, we generate five batches of five incorrect
solutions (i.e., 25 total for each unique combination of prompt, exer-
cise and context). This results in a total of 3 prompts × 5 batches ×
5 solutions × 10 exercises × 2 contexts = 1500 generated solutions.

3.3 Analysis
We only include incorrect submissions in our analysis. This is done
as our focus in this work is to generate incorrect synthetic solutions
– prior work has established that LLMs can generate correct solu-
tions [13, 19, 47]. For all the generated synthetic submissions, as
well as for the real data used as a comparison point, we ran the unit
test suites that had been used for those exercises when they were
part of the course. For each individual unit test, we then calculated
the percentage of cases where the solutions pass and fail the unit
test, i.e., a unit test “pass rate”. This gives us one percentage, or
pass rate, for each unit test. As there are hundreds of unit tests
altogether for the 20 exercises analyzed in this work, we calculate
the minimum, maximum, mean, and standard deviation of these
unit test pass rates for each exercise (which each comprise multiple
unit tests). This way, we can compare if the unit test pass rates
between the real and the synthetic data are different with regard
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Table 3: Results of the analysis. The “Real” column shows statistics for the real student data (only incorrect solutions). The
other three columns show the statistics for each of the three prompts we used. For each exercise, there were multiple unit
tests. The range, mean, and standard deviation of the unit test pass rates are shown for each condition (real, baseline, test-case
informed, frequency-informed). In addition, the average differences (deltas) between the real data and the synthetic data are
shown for the means and standard deviations.

Real Baseline Test-case-informed Frequency-informed
Language Exercise Range 𝜇 𝜎 Range 𝜇 𝜎 Range 𝜇 𝜎 Range 𝜇 𝜎

C Prime Below [50, 92] 81.1 12.6 [58, 100] 80.5 9.9 [50, 100] 68.8 14.7 [61, 100] 83.7 9.9
C Strikeout [29, 75] 57.5 13.1 [0, 96] 10.2 29.4 [0, 83] 9.5 25.2 [0, 96] 10.0 29.4
C Kth Largest [43, 73] 61.2 8.7 [40, 96] 66.2 19.0 [48, 83] 62.3 12.5 [56, 96] 70.0 14.8
C Bounding Rectangle [22, 74] 52.7 12.2 [0, 28] 8.4 7.6 [4, 32] 12.6 7.5 [12, 44] 22.4 9.7
C Tallest Vine [31, 49] 38.3 5.7 [4, 62] 40.2 24.0 [0, 64] 40.4 26.1 [4, 76] 50.2 29.7
C Average Sheep [15, 84] 70.8 17.4 [32, 77] 49.7 15.7 [35, 83] 53.5 18.0 [42, 88] 61.4 18.4
C Prime Factors [24, 79] 61.7 18.3 [61, 74] 69.4 4.7 [39, 87] 61.2 12.6 [52, 81] 66.7 9.4
C Connect Two [23, 59] 35.7 10.2 [20, 30] 23.5 3.3 [23, 41] 27.3 5.7 [6, 24] 8.7 5.0
C Day Trader [30, 74] 54.9 17.9 [8, 28] 11.8 5.3 [0, 12] 2.2 4.0 [16, 28] 19.8 4.2
C Add One [23, 49] 40.0 8.9 [24, 76] 50.0 19.9 [76, 80] 77.6 2.0 [44, 96] 73.0 22.4
Average deltas to real data for mean and standard deviation. 19.3 9.8 22.0 7.5 21.1 9.4
Dart Grade as text [20, 48] 38.7 9.2 [44, 72] 62.0 9.2 [44, 76] 58.0 11.3 [44, 72] 64.7 9.9
Dart Average of positives [31, 46] 38.0 6.6 [24, 64] 39.0 15.1 [24, 48] 33.0 9.9 [8, 64] 21.0 16.3
Dart Budget check [24, 38] 30.0 5.9 [12, 40] 21.3 13.2 [12, 44] 30.7 13.6 [32, 64] 49.3 13.2
Dart Sum of three numbers [1, 2] 1.5 0.5 [0, 0] 0.0 0.0 [0, 0] 0.0 0.0 [4, 4] 4.0 0.0
Dart Ask for password [2, 31] 17.3 11.9 [0, 0] 0.0 0.0 [0, 0] 0.0 0.0 [0, 0] 0.0 0.0
Dart Mystery function [0, 82] 64.2 32.1 [4, 80] 48.0 27.8 [8, 68] 44.0 20.2 [8, 52] 41.6 16.9
Dart Sum of positive numbers [1, 6] 3.5 2.5 [24, 24] 24.0 0.0 [28, 32] 30.0 2.0 [20, 28] 24.0 4.0
Dart Sum with formula [0, 0] 0.0 0.0 [0, 4] 2.0 2.0 [0, 0] 0.0 0.0 [0, 0] 0.0 0.0
Dart Authentication [24, 58] 38.0 14.5 [24, 44] 33.3 8.2 [28, 44] 34.7 6.8 [32, 72] 49.3 16.8
Dart Video and playlist [33, 71] 50.7 15.6 [16, 40] 24.0 11.3 [24, 44] 34.7 8.2 [40, 52] 45.3 5.0
Average deltas to real data for mean and standard deviation. 12.2 4.8 11.0 5.3 14.2 6.0

to the pass rate range (i.e., minimum and maximum), mean, and
standard deviation.

Even though we asked the model to produce code that unit tests
could be run against, the model would sometimes produce code
that crashed. For C, there were 48 (out of 750) generated programs
that crashed when trying to run the test suite (typically due to a
segmentation fault). These were ignored in calculating the statistics.

To analyze the difference between the generated synthetic data
and real data statistically, we conduct a Kruskal-Wallis H test be-
tween the test pass rates between all four distributions (real, base-
line, test-case-informed, and frequency-informed) for both pro-
gramming languages separately. In case either of the Kruskal-Wallis
H test results suggests that the distributions are statistically sig-
nificantly different using an alpha threshold of 0.05, we conduct
pairwise Mann-Whitney U tests between the real data and each syn-
thetic dataset separately to analyze which of the synthetic datasets
are significantly different from the real data. As we do multiple
statistical comparisons, we employ the Bonferroni correction to
avoid finding spurious statistically significant differences.

4 Results and Discussion
The results of the analysis are shown in Table 3. Many interesting
observations can be made based on the table. First, there seem to be

differences between exercises in how well the model can generate
incorrect solutions to the exercise. Some exercises seem hard for
the model to solve “partially incorrectly”, i.e., to generate a bug
that allows some tests to pass. This is the case, for example, for the
“Ask for password” Dart exercise and the “Day Trader” C exercise.
For the former, the mean pass rate in the real data is 17.3%, but
all the LLM-generated incorrect solutions always fail all the tests.
For the latter, the mean pass rate in the real data is 54.9%, which is
considerably higher than the mean pass rate for all three prompts:
11.8%, 2.2%, and 19.8% for the baseline, test-case informed, and
frequency-informed prompts respectively. This suggests that for
these two exercises, the bugs generated by the model tend to cause
most of the tests to fail, while in the real data, student bugs are
more subtle and only cause part of the tests to fail. This finding is
similar to synthesized code that is aimed to be correct where it has
also been found that LLM performance is problem dependent [35].

When considering the results, the number of test cases should
be taken into account for the Dart data (all the C exercises had
exactly 20 test cases each). For example, the “Sum of three numbers”
and the “Sum with formula” exercises both only had two test cases.
For both of these exercises, the tests mainly check that the student
has not hard coded the response, and thus most bugs (other than
hard coding) will cause both tests to fail concurrently. For these
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two exercises, the very low ranges and means of unit test pass rates
suggest that real buggy submissions almost exclusively fail both
tests, i.e., it is very rare that one test would pass and the other not.

Somewhat surprisingly, there do not seem to be large differences
between the different prompts in howwell they work for generating
synthetic incorrect submissions. This is most visible by looking at
the average deltas between the real data and the synthetic data. This
is confirmed for the Dart data by a Kruskal-Wallis H test (H = 0.87,
p = 0.83), which suggests that all four distributions are statistically
equivalent. However, for the C data, the results of the Kruskal-Wallis
H test (H = 28.4, p < 0.0001) suggest that at least one distribution is
significantly different from the others. Pairwise Mann-Whitney U
tests between the real data and each synthetic dataset separately
reveal that both the baseline (U = 25739.0, p < 0.0001) and the
test-case-informed (U = 25036.5, p < 0.0001) synthetic datasets are
significantly different from the real data. However, the difference is
not significant for the frequency-informed synthetic dataset with
our threshold for significance alpha = 0.05 (U = 22816.0, p = 0.07).
For our study, these results imply that all three prompts led to
“good” synthetic data for Dart (as it was not significantly different
from real data), while only the frequency-informed prompt led to
“good” synthetic data for C.

As providing test case information and failure distribution to
GPT-4o does not always appear to help it generate submissions with
more similar distributions to real data, more sophisticated prompt
engineering approaches could be a useful area to explore, at least
for the current generation of state-of-the-art models. Previous work
has found differences between student and LLM-generated code,
for example, in what constructs and keywords are used [11, 24].
In general, generating synthetic content using LLMs risks mono-
tonicity, especially if content is generated without controls aimed
at increasing the diversity of the generated content [36].

The finding that the synthetic Dart data seems to be more similar
to the real student data with regard to test case failure distributions
is corroborated by looking at the average deltas. For the Dart data,
the average deltas between the mean pass rates for the real data
and the synthetic data are considerably lower (12.2% for baseline,
11.0% for test-case-informed, and 14.2% for frequency-informed)
than for the C data (19.3% for baseline, 22.0% for test-case-informed,
and 21.1% for frequency-informed). This finding is surprising as
the model has likely been trained with more C code than Dart code
since C is a vastly more common programming language compared
to Dart. This suggests that it might be harder for the model to
generate semantic bugs that are similar to bugs found in student
programs for C than for Dart. On the other hand, the Dart exercises
are less complex than the C exercises, which could also contribute
to the observation.

Two of the C exercises had diagrams in their problem descrip-
tions that were not shown to the model during prompting. For the
“Tallest Vine” exercise, this does not seem to have been a problem
for the model as the mean pass rates for the synthetic data are
higher than for the real data (40.2% for baseline, 40.4% for test-case-
informed, and 50.2% for frequency-informed versus 38.3% for real
data), suggesting the model was able to generate solutions that pass
some of the tests. However, for the “Bounding Rectangle” exercise,
this might explain why the mean pass rates for the synthetic data
are considerably lower than for the real data (8.4% for baseline,

12.6% for test-case-informed, and 22.4% for frequency-informed
versus 52.7% for real data).

5 Limitations
There are some limitations to this work. We only ask the model
to generate incorrect solutions. In both contexts, a large portion
of submissions pass all the tests (45% of submissions for Dart and
72% of submissions for C). Our analysis does not look at whether
the model can generate realistic correct solutions, which is left
for future research. Prior work suggests that LLMs can solve most
introductory programming exercises correctly [47], although LLM-
generated solutions have distinct patterns that make it possible
to distinguish them from student-generated solutions [24]. Thus,
future work should study whether LLMs can be used to generate
realistic synthetic correct solutions.

We only used a single LLM and two datasets in our study. Thus,
it is not certain our results would generalize to other LLMs or other
contexts, e.g., ones using different programming languages or ones
that have different student populations.

We only evaluate the similarity of the synthetic data to the real
data with regard to test case failure distributions. For example,
we do not look at constructs used in the code, what strategies
are employed in the program to solve the problem, or the actual
bugs in the code. However, our prior work showed that with proper
prompting, the bug distributions in generated synthetic submissions
are similar to bug distributions reported in the literature [37].

Some of the test suites of the Dart exercises were not very com-
prehensive, only including a couple of tests. This means that some
bugs that the LLMs generate might not be captured by the test
suite. For the C exercises, two of them had diagrams in the problem
descriptions that were not shown to the LLM. Thus, the LLM was
not provided the same information as the students, which could
have made it more difficult for the LLM to generate the incorrect
solutions, potentially affecting the results.

6 Conclusions
We investigated the capability of generative AImodels in generating
synthetic incorrect code submissions to programming exercises.
This could be useful for creating debugging exercises for students
and for generating synthetic datasets for research purposes. Our
findings are a first step towards investigating whether LLMs can be
used to generate synthetic incorrect submissions. Our results are
promising in this regard, suggesting that LLM-generated synthetic
submissions are sometimes not significantly different from real
student data with regard to test case failure distributions. This
shows promise that LLMs could potentially be used for generating
satisfiably diverse synthetic code submission data, lowering barriers
to conducting research with such data, and making it easier to
provide students with debugging practice.

However, more research is necessary to explore the closeness of
LLM-generated synthetic code submissions to that of real student
data in more detail, such as what in the code makes the test cases
fail and can the patterns in synthetic code submissions be made to
more closely resemble that of real student code submissions.
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