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ABSTRACT

Being able to identify the user of a computer solely based on
their typing patterns can lead to improvements in plagiarism
detection, provide new opportunities for authentication, and
enable novel guidance methods in tutoring systems. How-
ever, at the same time, if such identification is possible, new
privacy and ethical concerns arise. In our work, we explore
methods for identifying individuals from typing data cap-
tured by a programming environment as these individuals
are learning to program. We compare the identification ac-
curacy of automatically generated user profiles, ranging from
the average amount of time that a user needs between key-
strokes to the amount of time that it takes for the user to
press specific pairs of keys, digraphs. We also explore the ef-
fect of data quantity and different acceptance thresholds on
the identification accuracy, and analyze how the accuracy
changes when identifying individuals across courses. Our
results show that, while the identification accuracy varies
depending on data quantity and the method, identification
of users based on their programming data is possible. These
results indicate that there is potential in using this method,
for example, in identification of students taking exams, and
that such data has privacy concerns that should be ad-
dressed.
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1. INTRODUCTION

The transmission of messages over a long distance using
textual and symbolic notation revolutionized communica-
tion across the world during the 19th century. By early 20th
century, the vast majority of people had access to telegraph
offices, and as a consequence, could communicate across long
distances with relative ease [18,29]. Skilled telegraph operat-
ors could transmit tens of words per minute, and developed
a distinctive rhythm [5], so called fist.

Identification of this distinctive rhythm was of importance
especially during the second world war, where intelligence of-
ficers sought to approximate the locations of enemies based
on the individual operators known to be associated with spe-
cific enemy troops [17]. The first time that such an approach
for identifying computer keyboard users was suggested was
in 1970s [26], and since then, a number of methods for identi-
fying computer users based on their typing patterns have
been proposed [14, 23].

Although the current results from identifying users based
on their typing patterns are promising (see eg. [3,7,9,10,13,
19,34]), so far, we do not know how such methods perform
in the context of programming. It is possible that the task
of programming is different from writing e.g. essays, and
as programmers — especially novices — evolve in how they
type their programs [31], their typing patterns may change
during the course. Knowing whether programmers can be
traced down solely from typing patterns could be used to
inform privacy and ethical decisions, and consequently, also
to make decisions on what sort of data to store or share.
Moreover, in the educational context, if students can be ac-
curately identified based on their typing patterns, one could,
for example, construct a system that suggests — or demands
— switching the “driver” in pair programming [36] — which
could be beneficial for those who otherwise struggle to give
up the keyboard.

In the experiment described in this article, we analyze
key-press logs recorded in a programming environment, and
evaluate how accurately students can be identified from such
data. Our experiment is constructed from multiple parts,
where we measure the identification accuracy based on data
quantity within a course, cross-course identification, as well
as the effect of a threshold, i.e. accepting the student if she
or he is among a set of close matches.

This article is organized as follows. First, in Section 2, we
provide a brief overview of keystroke analysis with a focus
on automatically identifying users from such data. Then,
in Section 3, we discuss our research methodology and data,



which is followed by a description of experiments and results
in Section 4. Discussion on the results and limitations is
provided in Section 5, and in Section 6, we conclude the
article and outline future work.

2. RELATED WORK

Keystroke analysis has mainly been used in research on
authentication and identification [14,23]. Typing pattern
properties such as typing speed, keystroke durations and
keystroke latencies can be used to identify users. Identi-
fication of users via such measures can be used as an extra
level of security in addition to the more traditional password
and username, as well as to monitor the logged in user and
to detect possible moments in which the user is no longer
genuine. Therefore keystroke analysis can also be applied in
authenticating students taking online examinations.

Authentication methods that are based on an individual’s
unique properties are called biometric. They can be based
on either physiological or behavioral characteristics. Key-
stroke dynamics is a behavioral measurement, and it has
many advantages as an authentication method. It is non-
intrusive and inexpensive, and no additional equipment be-
sides the computer and the keyboard are required.

There are different characteristics that can be calculated
from keystroke data. Duration of keystrokes, pressure of
keystrokes, and keystroke latencies are common features that
are used in keystroke analysis [14]. Especially digraph laten-
cies have been widely used [7,9, 15,21, 34]. Digraphs are
generally considered to be any two adjacent characters. For
example, the word int includes two digraphs: in and nt.
Trigraphs are similar constructs of three characters. Dow-
land and Furnell experimented with digraph, trigraph, and
keyword latencies [7]. They achieved the most promising
results when using digraph latencies, but this is likely ex-
plainable by a larger amount of digraphs than trigraphs in
the data. At least Killourhy and Maxion have considered
the hold timings of keystrokes in the analysis, as they have
noticed that it improves the accuracy of the results [15]. In
addition, features like average keystrokes per minute and
amount of errors have been evaluated [24].

However, behavioral features can vary depending on the
situation, and typing patterns can be affected for example
by different keyboards or different types of texts [10]. The
analysis based on transcribed or pre-determined text, such
as the username and password, has been more heavily re-
searched [2, 6, 11,13, 37], but some studies have used free
text instead [2,10,19]. Using 42 subjects, Monrose and Ru-
bin found that the evaluation results decreased significantly
from accuracy of 79% with transcribed text to 21% with
free text [21]. They hypothesized that this could be due to
writer’s block with having to think of something to write
rather than just typing text that is given to you.

On the other hand, using free text can sometimes be more
desirable, and there have also been promising results with it.
Killourhy and Maxion found no significant difference in clas-
sification results when using transcribed or free text [15]. In
their experiment, 20 subjects were given comparable tran-
scription and free composition tasks. They used lowercase
digraph keydown-keydown and key-hold timing features and
two different classification algorithms. The evaluation res-
ults were not exactly the same with freely composed and
transcribed text, but they were very close and neither one
was always better [15]. Also Villani et al. [34] have stud-

ied the difference between free and transcribed text. With
36 subjects they noticed that the identification accuracy de-
creased slightly with free text from 99.4% to 98.3% and from
100% to 99.5% [34].

Typing patterns can also be affected by different condi-
tions, such as different keyboards. Villani et al. [34] dis-
covered that different keyboards can decrease the identifica-
tion accuracy. Using either only freely typed or transcribed
text, they reached accuracies over 98% when the subjects
only used one type of keyboard, but different keyboards in
training set and test set resulted in accuracy of only about
60%. However, it is good to note, that using both desktop
and laptop keyboards in both the training set and test set
did not noticeably decrease the accuracy [34].

Keystroke analysis has also been successfully applied already
in identifying students [20,27]. Using data from 30 students
taking examinations in a business school, Monaco et al. were
able to correctly identify all the students [20]. With the in-
creasing amount of Massive Open Online Courses (MOOC)
and other online classes, institutions providing these courses
are required to find new methods for identifying their stu-
dents. For example, Coursera is already collecting typing
samples from students that want to acquire a verified certi-
ficate [1]. While Coursera is only utilizing this when students
turn in their assignments, it could be possible to continu-
ously monitor the students while they are solving assign-
ments or exams.

Typing patterns have also been studied in other contexts
than identification and authentication. In programming,
keystroke analysis has been used as an indicator of perform-
ance [30]. In the study by Thomas et al., some digraphs had
a moderate negative correlation with programming course
scores, while others had little noticeable effect [30]. Thomas
et al. suggest that programmers with a good grasp of the
concepts and plans are likely to type some digraphs faster.
In addition, keystroke analysis has been used to, for ex-
ample, automatically detect boredom and engagement [4],
stress [35], and emotional states in general [8].

3. METHODOLOGY

In this Section, we visit the context and data, research
questions, and methodology.

3.1 Context

The data for the study comes from an introductory pro-
gramming course in Java that was organized during the Au-
tumn semester in 2014 at the University of Helsinki. The
course duration is 7 weeks, and the students are familiarized
with topics such as input and output, variables, loops, lists,
and objects. During the course, much of the students’ work
is focused on practical programming assignments, which are
worked within an environment that records the students’
keypress data. While we have adopted the system by Vi-
havainen et al. [33], other such systems are also widely avail-
able (see e.g. [22]).

At the start of the course, students are asked to parti-
cipate in research by providing data from their learning pro-
cess. The used system stores details of every keypress within
the NetBeans programming environment, which include the
student id, difference created by the change (i.e. the key
pressed), timestamp, and the identifier of the assignment
that the student is working on, which can be used to de-
termine the course and course week.



The students can work on the exercises either in the com-
puter labs, where they are able to get help from teaching
assistants when needed, or they can work on the exercises
independently anywhere (for further details on the teaching
approach and context, see e.g. [16]). Therefore, we do not
have information about the computers or keyboards that
were used during the data collection, which means that stu-
dents can use different keyboards even when solving a single
exercise. The students can also take a break at any time,
and continue later from the same spot they were at.

We also collected data from an advanced programming
course in Java, which was organized directly after the in-
troductory course. The course structure is similar, lasting
7 weeks and having several programming assignments each
week.

3.2 Research Questions

In this work we seek to determine how accurately one can
identify programmers based on their typing patterns. Our
research questions for this work are:

RQ 1. How does the identification accuracy change if the ac-
ceptance threshold is varied?

RQ 2. How is the accuracy of programmer identification in-
fluenced by the amount of typing data?

RQ 3. Given data from two separate programming courses,
how accurately can programmers be linked in these
datasets?

With the first research question, we are interested in how
the results change, if instead of trying to precisely identify
the programmers, we allow the correct author to be within
a certain threshold. That is, instead of testing whether the
author of a test sample is the author of the nearest sample in
the training set, we check whether the correct author of the
test sample can be found in the k nearest training samples.

With the second question, we want to see how the amount
of data affects the accuracy of identification results. Our
hypothesis is, that the more data we have, the more accurate
the results are. If this is the case, we want to know how
much data we need to collect before the results are accurate
enough for identification.

With our third question, we want to know whether we are
still able to identify the programmers even if the data has
been collected from two separate courses. This helps to give
us an idea about how the time elapsed between two samples
affects the identification, and whether learning affects the
typing patterns enough to make identification harder. On
the other hand, with samples collected from two different
courses we have more data, which may make identification
easier.

3.3 Data Preprocessing

For the analysis, we excluded events that consisted of more
than a single keypress. These events included copy-paste
-events, auto-completion events from the programming en-
vironment, refactoring events as well as long deletions. That
is, only events with single character change were considered.

We only included students who had typed more than 2000
characters. On average, the students typed 7500 charac-
ters during the first week of the introductory course, which
means that expecting at least 2000 characters roughly leaves

us with the students that have worked on more than one
quarter of the first week. This inclusion criteria is per-
formed as some students only typed a few characters, for
example because they have stopped providing data, or have
used other programming environments than NetBeans and
only pasted their solutions to the working environment.

We also eliminated events for which the duration between
the events was too short or too long. This is important,
as the students did not work in controlled environments,
and they were able to take a break or stop working at any
time. Therefore, the elapsed time between two characters
could even be a couple of days, and including such data
would create unnecessary noise in the analysis. Short events
were removed to eliminate auto-completion events from the
programming environment, or other events where two keys
are pressed together. We used the same allowed range of
10ms—-750ms as Dowland and Furnell [7].

After filtering out events that took too much or too little
time, the data were normalized so that the averages x; were
converted to values x; that are between zero and one using
the following formula,

’ Ti — Tmin
Ty = Toan — Tonin (1)
where min and max are the minimum and maximum values
of the variable from all subjects. This was performed to
reduce the possible effect that the time that it takes to reach
specific keys would dominate the time it takes to reach other
keys.

Finally, as there are thousands of possible digraphs (key-
pairs) that the students can type, and as it is possible that
many of those are used by just one person, we always se-
lected only the 100 most common digraphs in each of our
experiments. For determining the most common ones, we
calculated the medians of the number of times the students
used the digraph in the training and test sets. We then
sorted the digraphs by their medians and selected the 100
largest.

3.4 Evaluated Profiles

Each programmer’s profile consists of mean averages of
feature latencies, which are depicted by three different levels
of typing patterns, as well as a combination of them.

Level 0: The average time that the programmer needs to
press any key while typing, i.e. the sum of the typing times
divided by the amount of events.

Level 1: The average time that the programmer needs to
press a specific key while typing, i.e. the average amount of
time that a student takes to reach a given key on a keyboard.

Level 2: The average time that the programmer needs
to press a specific key-pair, digraph, while typing, i.e. the
average amount of time that a programmer takes to traverse
between two specific keys.

Combination: Combination of the above levels.

Similar to Killourhy and Maxion [15], to get reliable aver-
ages, we only calculated an average for a specific character or
digraph if the student had typed that character or digraph
5 times or more.

3.5 Identification

The distance between a given pair of programming stu-
dents was defined as the Euclidean distance between the



mean vectors s; and s» of the students. Euclidean distance
d can be calculated using the following formula,

where n is the amount of features. If a specific feature was
missing from either the training data or the test data, we
used the average time that student took to press any key
while typing, i.e the Level 0 feature, instead.

For identification we used a nearest neighbor classifier.
During the analysis, the distance from each sample in a test
set was calculated to each sample in a separate training test.
The author of the test sample was identified as the author
of the training set sample, if the distance between those two
samples is the smallest over all evaluated distances.

Traditionally, an identification system either identifies the
owner of a test sample to be someone from the training set,
or someone unknown [10]. This is due to the fact that many
such systems are used as part of an authorization process,
and thus, it is important that the system can identify the
user as someone who should have no access. However, in
our case, we have a closed population in a course, and thus,
we can train the system with samples from all users that we
aim to identify, ignoring the case of unknown users.

For testing purposes, we assume that all samples are genu-
ine and produced by the actual student. As the number of
students that work on the exercises decreases during the
course due to some students dropping out or choosing to
disable the data gathering, our training sets always contain
at least the same number of students as the test sets.

4. EXPERIMENTS AND RESULTS

In this section, we present the experimental setting we
designed to answer each of our research question, as well as
the results.

4.1 Effect of Acceptance Threshold

To answer Research Question 1, "How does the identifica-
tion accuracy change if the acceptance threshold is varied?”,
we used all events from weeks 1-6 of the introductory pro-
gramming course as our training set, and all events from
week 7 as the test set. The minimum requirement of 2000
typed characters left us with 233 students in the training
set and 173 in the test set. That is, although there are 233
students in the training data — from the earlier parts of the
course —, we sought to identify those 173 students who were
there during the last week.

In the identification step, we calculated the amount of
exact matches of training set samples to test set samples,
as well as the amount of correct matches within a certain
threshold, i.e in the top k estimates. That is, we consider the
test sample to be correctly identified if the correct author is
the author of one of the k closest training set samples instead
of just checking the author of the closest training set sample.
The results in the top 1, top 5 and top 10 estimates with 4
different feature sets are presented in Table 1.

Both Levels 0 and 1, that is, the average amount of time
that a student takes to press any key, and the amount of
time a student takes from any key to a specific key, have
poor performance. Only 7 out of 173 students (4%) were
correctly identified with Level 0, when only exact matches

Table 1: For each feature set, the number of students
correctly identified, given that estimates within the

Threshold were considered to be correct.

Type Threshold Correct Accuracy
Level 0 1 7 4.0%
Level 0 5 28 16.2%
Level 0 10 48 27.7%
Level 1 1 47 27.2%
Level 1 5 78 45.1%
Level 1 10 92 53.2%
Level 2 1 157 90.8%
Level 2 5 165 95.4%
Level 2 10 169 97.7%
Combined | 1 135 78.0%
Combined | 5 153 88.4%
Combined | 10 160 92.5%
Performance of different feature types.
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Figure 1: The overall performance of the different
feature sets.

were considered. Similarly, 47 out of 173 (27%) were ex-
actly identified with Level 1. The Level 2 features, that is,
the amount of time that it takes to move from a specific key
to another specific key, performed considerably better, ac-
curately identifying 90.8% of the students with threshold of
one — counting the match only if the student was exactly the
one that the system proposed. Almost as high performance
was observed with the combined feature set, which combined
all the Level 0, Level 1, and Level 2 features.

The results for the different feature sets are also depicted
in Figure 1. In the Figure, the y-axis denotes the percentage
of correctly identified students for a given threshold, which
is denoted by the x-axis. Level 2 is the best performing fea-
ture set with all thresholds. Though the accuracy increases
while the threshold grows, we do not observe much improve-
ment in the results after threshold 10 with Level 2. At this
point, only four students were not identified, and they were
identified when allowing thresholds of 12, 29, 63 and 127.

4.2 Effect of Data Quantity

To answer Research Question 2, "How is the accuracy of
programmer identification influenced by the amount of typ-
ing data?”, we gradually increased the amount of data in our



Table 2: The amount of correctly identified students
when the amount of data in training set increases.

Included Weeks | Type Correct | Accuracy
1 and 2 Level 0 4 2.6%
Level 1 54 35.3%
Level 2 119 77.8%
Combined | 129 84.3%
1-2 and 3 Level 0 10 6.5%
Level 1 49 32.0%
Level 2 126 82.4%
Combined | 112 73.2%
1-3 and 4 Level 0 5 3.3%
Level 1 44 28.8%
Level 2 135 88.2%
Combined | 123 80.4%
1-4 and 5 Level 0 6 3.9%
Level 1 31 20.3%
Level 2 135 88.2%
Combined | 106 69.3%
1-5 and 6 Level 0 6 3.9%
Level 1 33 21.6%
Level 2 133 86.9%
Combined | 108 70.6%
1-6 and 7 Level 0 8 5.2%
Level 1 46 30.1%
Level 2 146 95.4%
Combined | 125 81.7%

training set to estimate how long one needs to keep collect-
ing data before being able to make accurate identifications.
We started with using all the events from the first week as
our training set, and we then added one week to it at a time.
As our test set, we always used the next week that was not
yet included in the training set.

In our training set, we included all the students that had
typed more than 2000 characters during the first week, which
left us with 225 students. To eliminate the effect of the num-
ber of students working on the course reducing over time,
we kept the test set size consistent by only including the 153
students who had typed more than 2000 characters during
every week.

The results with the different levels are presented in Table
2 and visualized in Figure 2. Level 0 and Level 1 perform
poorly regardless of the amount of data. Level 2 is the best
performing feature set in all cases, except for the first week,
and we can see an increase in the accuracy from 77.8% to
95.4% as the amount of data increases. However, when in-
cluding 3, 4 or 5 weeks of data in the training set, the ac-
curacy stays somewhat consistent ranging around 87-88%.

Table 3 presents the results of Level 2 with different thres-
holds. As observed previously, the amount of data and the
threshold affect the accuracy. Nevertheless, regardless of the
amount of data, we are able to place the correct author of
the test set sample in the top 5 estimates in at least 95% of
the cases.

4.3 Cross-dataset Identification

To answer Research Question 3, "Given data from two
separate programming courses, how accurately can program-
mers be linked in these datasets?”, we used all the events
from the introductory course as our training set, and all the

Effect of training set size on accuracy.
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Figure 2: The effect of gradually increasing the size
of the training set on identification accuracy with
different levels.

events from the advanced programming course as our test
set. The results are presented in Table 4. The training set
included 233 students and the test set 146 students.

In this experiment, we were able to exactly identify all
except two students using Level 2 features reaching an iden-
tification percentage of 98.6%. When allowing a threshold of
2, we only fail to identify one student. The better results in
this experiment are likely explainable by the large amount
of data in our test set. In all other experiments, we have
included only one week of data in the test set. This also
indicates the importance of data quantity.

Even though the programming skills and perhaps the typ-
ing speeds of the students have developed during the course,
we are still able to identify the students with high accur-
acy. On the other hand, the advanced course took place
right after the introductory course, so the break between
the courses was relatively short.

To determine how much the typing profiles of students
change, we ran an experiment where the training set in-
cluded only the first two weeks of the introductory program-
ming course, and the test set the last two weeks of the ad-
vanced programming course. Eleven weeks elapsed between
the data sets. In this experiment, 92 out of 130 (70.8%)
programmers were exactly identified, and 118 out of 130
(90.8%) were correctly identified with a threshold of ten.
The accuracy decreases, but this can be at least partly due
to a smaller amount of data. However, also Tappert et al.
noticed that identification accuracy decreases over time [28].

S. DISCUSSION

In our experiments, we have achieved promising results
in identifying programmers from their typing data. Using
average times of digraphs, i.e. Level 2, the correct individual
can be placed in the five closest estimates in 95% of the
cases. As the amount of data increases, around 90-99% of
the students can be exactly identified.

These results are not as good as some of the previous res-
ults in other contexts [10,19,20,27], but at the same time,
show the potential in using keystroke analysis as an iden-
tification method in the context of programming. In our



Table 3: The effect of amount of data on the number
of students correctly identified using Level 2, given
a specific threshold.

Included Weeks | Thresholq Correct | Accuracy

1 and 2 1 119 77.8%
5 146 95.4%
10 149 97.4%
1-2 and 3 1 126 82.4%
5 146 95.4%
10 151 98.7%
1-3 and 4 1 135 88.2%
5 150 98.0%
10 152 99.3%
1-4 and 5 1 135 88.2%
5 149 97.4%
10 149 97.4%
1-5 and 6 1 133 86.9%
5 146 95.4%
10 149 97.4%
1-6 and 7 1 146 95.4%
5 151 98.7%
10 152 99.3%

Table 4: Results for cross-dataset identification. For
each feature set, the number of students correctly
identified, given a specific threshold.

Type Threshold Correct Accuracy
Level 0 1 7 4.8%
Level 0 5 31 21.2%
Level 0 10 45 30.8%
Level 1 1 92 63.0%
Level 1 5 123 84.2%
Level 1 10 127 87.0%
Level 2 1 144 98.6%
Level 2 5 145 99.3%
Level 2 10 145 99.3%
Combined | 1 136 93.2%
Combined | 5 142 97.3%
Combined | 10 144 98.6%

case, we have not controlled the environment where the pro-
grammers complete their exercises, and changing conditions,
such as different keyboards, have been shown to have an ef-
fect on identification accuracy [34]. We have also used a
nearest neighbor classifier based on Euclidean distance, and
more sophisticated classification methods could yield to bet-
ter results.

Though the evaluated method works well on our data set,
it is possible that it can not be applied in other cases. Yet,
keystroke analysis has been successfully applied to identify
students [20,27], just not in the context of programming,
and our results support these previous findings. Research
on authentication systems has used varying methods and
interfaces for collecting the data and still achieved similar
results, so we believe that identification is possible even if
using, for example, a different programming environment or
another programming language. Furthermore, our experi-
ments used data from two different courses, which makes
us believe that it is feasible to identify programmers from

keystroke information in other contexts and data sets.

When using programming data from seven weeks of a
course, six weeks for learning about the students, and one
week for evaluating the students, the best performing fea-
ture combination identified 90.8% of the students exactly.
When the identification criteria was made easier by consid-
ering the top ten estimates, 97.7% of the students could be
identified.

This described test case can be seen as a hypothetical
exam situation, where we have collected data for six weeks
during a course, and where we want to verify the identity
of a student taking a computer exam in the end. Contexts
that use computer exams in their introductory programming
courses, but have no resources for organizing these exams in
controlled situations, could benefit from these results. It
would e.g. be possible to have students take the computer
exams at home, whenever the time is best for them. Having
an automatic system that raises a flag in potential cheating
cases, that could then be manually checked, could be a good
addition to the current plagiarism detection systems [12].
Such systems could also be used to inform students about
cheating and plagiarism, which could potentially change stu-
dents’ perceptions towards plagiarism [25]. This could also
be applied in online and distance courses, given that the
verification of students’ identity is considered important.

When considering the results, it is good to note that we
allowed the students to choose the conditions in which they
wanted to work and felt comfortable. It is possible that pres-
sure or excitement can change typing patterns, which may
influence the results in e.g. a real exam situation. In ad-
dition, the data gathered from one week’s exercises is likely
larger than the data available from an exam, which may
reduce accuracy.

Our system is based on trust, and we do not know whether
the students have actually done the exercises by themselves.
It is possible that they have received help from others at
some point of the course, or even with all the exercises.
However, if this were the case, and if it would be typical,
it is also likely that our results would have been poorer. On
the other hand, if the first weeks of the course would be or-
ganized in closed labs with supervision, it would likely be
possible to use this method to detect students who e.g. re-
cruit someone else to do parts of their work for them. As
seen in the results presented in Table 3, we can place the
correct author of the test sample in the top five estimates in
95% of the cases even when training the system with data
from only the first week. Such knowledge could be beneficial
for e.g. teaching interventions, during which students could
be directed towards reflection and better study strategies.

In our context, the students have a lot of programming
exercises to solve, so we are able to collect large amounts
of data. As noted, the amount of data has an effect on
accuracy, which means that the method might not be ad-
aptable to systems that collect less data. We required that
the students had typed more than 2000 characters to include
them in the study. This is less than one third of the typ-
ing that students do on average during the first week of the
programming course, but good results have been achieved
with free text even with less data. A performance of 96.3%
was achieved with a minimum of 500 and average of 750
keystrokes with 119 subjects, though not in the context of
specifically identifying programmers or students [19]. Us-
ing a minimum of only 500 characters in our case lowered



the performance from 90.8% to 87.6% when using data from
weeks 1-6 and 7 of the introductory course; however, a full
analysis of the character amount is out of the scope of this
article.

‘We have also only applied the method to 150-200 students,
and none of the works that we are aware of have tested key-
stroke analysis in case of a thousand or more of subjects.
The accuracy is likely to decrease as the number of subjects
increases, but we believe that the threshold-based identific-
ation could have potential even in this case.

In addition, these results raise privacy concerns regarding
releasing the data for public use. Even if no personal details
are provided within the data, our experiments show that
programmers could still be identified from their keystrokes.
This is evident from e.g. the cross-dataset identification,
and means that separate datasets may be connected if no
care is taken. A starting point could be, if the timestamps
in the data are not important for external parties, is to use
ordinal numbers instead of timestamps.

Finally, our system always identifies one of the authors of
the training set samples as the author of a test set sample,
which makes the identification problem easier when com-
pared to a problem where samples can also come from users
that are new to the system. Thus, the results here might
not be fully comparable to all other identification results,
though previous works in authenticating students have sim-
ilarly used a closed system [19], or both open and closed
systems [27].

6. CONCLUSIONS AND FUTURE WORK

In this study, we have taken the first steps towards auto-
matically identifying programmers from keystroke data re-
corded within a programming environment. Though our
results do not reach the accuracy levels of some other best-
performing classifiers used with freely typed text, we have
showed that a reasonable accuracy can be achieved also in
the context of programming. As the need for new identific-
ation methods increases with the amount of online courses,
and storing data with finer granularity has become increas-
ingly popular [32], these results are important and topical.

In the future, we hope to improve our results by using
a more sophisticated classifier. The one used in these ex-
periments is a simple nearest neighbor classifier based on
Euclidean distance. In addition, we plan to test the system
also with an open population.

We are also looking into testing the identification with
data from a real exam situation, as well as with more stu-
dents. Although our data sets already had more students
than some of the previous studies, we would like to see how
the accuracy of the classifier changes when the number of
students on the course increases. These are important ques-
tions if we want to apply keystroke analysis as an authen-
tication method on MOOQOCs for example.

Furthermore, we are interested in finding out if keystroke
analysis could be applied in advancing teaching methods on
introductory computer science courses. For example, if we
are able to pinpoint the times where in pair programming
sessions the typist has been exchanged, we could direct the
programmers to change places often enough.

Finally, we are also investigating the connection between
typing latency and introductory programming course per-
formance.
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