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ABSTRACT
Recent breakthroughs in Large Language Models (LLMs), such as
GPT-3 and Codex, now enable software developers to generate code
based on a natural language prompt. Within computer science edu-
cation, researchers are exploring the potential for LLMs to generate
code explanations and programming assignments using carefully
crafted prompts. These advances may enable students to interact
with code in new ways while helping instructors scale their learn-
ing materials. However, LLMs also introduce new implications for
academic integrity, curriculum design, and software engineering
careers. This workshop will demonstrate the capabilities of LLMs to
help attendees evaluate whether and how LLMsmight be integrated
into their pedagogy and research. We will also engage attendees in
brainstorming to consider how LLMs will impact our field.

CCS CONCEPTS
• Social and professional topics→ Computing education; •Com-
puting methodologies→ Natural language generation.
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1 INTRODUCTION
Educational technology can have a transformational effect on teach-
ing and learning in computer science classrooms. Intelligent tutor-
ing systems provide students with real-time formative feedback on
their work to help them get unstuck [17] when peers and instruc-
tors are not available. Online tutorials and videos have enabled
instructors to ‘flip their classes’ and consider new methods for con-
tent delivery [6, 13], making necessary space for active learning
and collaboration during class time. Anchored collaboration [4, 12]
and subgoal labeling [3, 11] have created more engaging online
learning spaces where students co-construct their knowledge and
build on each other’s ideas. Clicker quizzes and peer instruction
methods enable instructors to evaluate students’ misconceptions
within large classes in real-time [2]. Technology advances and edu-
cation technology can not only improve classroom experiences but
also create new models and opportunities for teaching and learning.

Large language Models (LLMs) are similarly poised to impact
computer science classrooms. LLMs are machine learning models
that are trained on a large amount of text data. These models are
designed to learn the statistical properties of language in order to
predict the next word in a sequence or generate new text. LLMs
are capable of natural language understanding and text generation
which enables many use cases ranging from creative story writ-
ing [22] to using LLMs to write about themselves [20]. In computer
science classroom settings, LLMs have the potential to provide
high-quality code explanations for students at scale [14, 15, 19].

In this workshop, we will demonstrate LLMs’ capabilities to
inspire instructors and researchers to consider how this new tech-
nology might integrate with their existing pedagogy. We also will
discuss the potential impacts that LLMs might have on curricula
and students’ careers. Given that LLMs can generate code based
on a natural language prompt, the skills and job requirements may
change for software engineers. Software engineers may take on
more design-oriented roles and serve as software architects while
LLMs write (most of) the source code. This might lead to courses
that focus on prompt engineering, code evaluation, and debugging.
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Figure 1: An example code snippet with an explanation gen-
erated using GPT-3.

1.1 Generating Explanations of Code
High-quality code explanations enable students to better under-
stand code and efficiently learn programming concepts [16]. Com-
mon automated methods to explain code snippets and coding con-
cepts include tracing program execution [7], defining terms [9], pro-
viding hints [18], and presenting feedback on errors [16, 18]. These
techniques either leverage heuristics which limits their generaliz-
ability or rely on instructors to manually configure and pregenerate
content. However, LLMs have the potential to scale these efforts
and generalize to multiple languages and programming contexts.
Our research team has developed code-explanations with the LLMs
Codex [19] and GPT-3 [14, 15] which resulted in the development
of a design space for LLM-generated code explanations [15].

1.2 Generating Assignments
Students benefit from frequent hands-on practice with program-
ming assignments [10]. Assignments are most engaging when they
are personalized toward a student’s personal interests [8] and when
they provide sufficient instructions and examples. However, it is
time-consuming to create and maintain high-quality assignments.
Previous researchers have techniques to automatically generate
assignments, but they require instructors to build and maintain
templates [21]. To provide high-quality assignments at scale, our
team has developed prompts to generate programming assignments
using OpenAI Codex [19]. Based on these prior experiences, we
will share best practices with attendees.

1.3 Generating Code
Large language models have the potential to change the roles and
responsibilities of software developers. For example, GitHub’s Copi-
lot can generate code for programmers based on natural language
prompts [1]. The generated code is high enough quality to lead
researchers to raise concerns about cheating [5]. This ability to gen-
erate high-quality code may affect software engineering jobs. Engi-
neers may be expected to elicit code requirements, write prompts,
and debug the resulting code. In the workshop, we will explore how
LLMs may affect the way we prepare our students.

2 WORKSHOP ATTENDEES
Our workshop is designed primarily with educators and researchers
inmind; however, we plan to encourage student attendees at SIGCSE

to participate in our workshop and share their perspectives. Our
research team consists of faculty, researchers, and undergraduate
students to provide a balanced perspective and to make the work-
shop welcoming to attendees at various points in their careers. We
have considered additional methods to make our workshop an in-
clusive space. We greet attendees and create space for them to share
their names and the pronouns they use. We will also provide build-
ing information including the nearest gender-neutral bathroom,
elevator, and quiet rooms to reduce barriers to participation.

3 SCHEDULE
The goal of our workshop is to give participants an awareness of
the capabilities of LLMs to support their pedagogy, to get practice
using LLMs and learn best practices in prompt engineering, and to
brainstorm with their colleagues the ways large language models
can support their pedagogy.

• Pre-workshop Activities:We will share a tutorial to guide
attendees through creating Github Copilot and OpenAI ac-
counts with sample prompts to try on their own before the
workshop. Free credits are currently available.

• Introductions (20 mins): The team and attendees intro-
duce themselves. Attendees will engage in a speed dating
activity to get to know others one-on-one.

• Demonstration (10 mins): Our team will demonstrate the
capabilities of GPT-3 (supported by materials).

• Guided Activity 1 (20 mins): Participants will work in
pairs to solve programming assignments with Github Copi-
lot.

• Break (10 mins)
• Guided Activity 2 (25 mins): Participants will work in
pairs to generate code explanations using GPT-3.

• Guided Activity 3 (25 mins): Participants will work in
pairs to create programming assignments using Codex.

• Break (10 mins)
• Group brainstorming (25 mins): As a think-pair-share
activity, attendees will work in pairs on a shared Miro board
to brainstorm ideas for integrating LLMs into their courses.

• Exploratory learning (25): attendeeswill use our resources
to further explore LLMs, exploreways to realize brainstormed
ideas, and explore LLMs beyond the workshop activities, in-
cluding testing unique prompt ideas.

• Debrief (10 mins): Summarization of the workshop and
key insights, initiating collaborations, etc.

4 DISSEMINATINGWORKSHOP RESULTS
Our workshop team will create a website leading up to the work-
shop which will host and maintain resources on using LLMs in
CS classrooms. After the workshop, we will update the website
with content from the Miro boards and a joint reflection written by
workshop organizers on the challenges and opportunities identified
by attendees. This idea is inspired by existing websites with advice
for CS Teaching (e.g.: https://www.csteachingtips.org/ ).

5 ORGANIZERS
Our team has extensive experience using LLMs to write code [5],
generate code explanations [14, 15], and create assignments [19].
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Figure 2: An example code snippet with an analogy-based explanation generated.

Our team includes three faculty members, two researchers, and
three undergraduate students who have all published research on
using LLMs for CS Education. We strongly believe that this diverse
convergence of faculty, researchers, and students will be essential
to ensure that LLMs have the most positive potential impact on
computing education.
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