
The Implications of Large Language Models
for CS Teachers and Students

Stephen MacNeil
Temple University

Philadelphia, PA, USA
stephen.macneil@temple.edu

Joanne Kim
Temple University

Philadelphia, PA, USA
joanne.kim@temple.edu

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

Paul Denny
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Seth Bernstein
Temple University

Philadelphia, PA, USA
seth.bernstein@temple.edu

Brett A. Becker
University College Dublin

Dublin, Ireland
brett.becker@ucd.ie

Michel Wermelinger
The Open University
Milton Keynes, UK

michel.wermelinger@open.ac.uk

Arto Hellas
Aalto University
Espoo, Finland

arto.hellas@aalto.fi

Andrew Tran
Temple University

Philadelphia, PA, USA
andrew.tran10@temple.edu

Sami Sarsa
Aalto University
Espoo, Finland

sami.sarsa@aalto.fi

James Prather
Abilene Christian University

Abilene, TX, USA
james.prather@acu.edu

Viraj Kumar
Indian Institute of Science

Bengaluru, India
viraj@iisc.ac.in

ABSTRACT
The introduction of Large Language Models (LLMs) has generated
a significant amount of excitement both in industry and among
researchers. Recently, tools that leverage LLMs have made their
way into the classroom where they help students generate code and
help instructors generate learning materials. There are likely many
more uses of these tools – both beneficial to learning and possibly
detrimental to learning. To help ensure that these tools are used to
enhance learning, educators need to not only be familiar with these
tools, but with their use and potential misuse. The goal of this BoF
is to raise awareness about LLMs and to build a learning community
around their use in computing education. Aligned with this goal of
building an inclusive learning community, our BoF is led by globally
distributed discussion leaders, including undergraduate researchers,
to facilitate multiple coordinated discussions that can lead to a
broader conversation about the role of LLMs in CS education.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
large language models, GPT-3, code explanations, code generation,
copilot, artificial intelligence, computer science education

ACM Reference Format:
Stephen MacNeil, Joanne Kim, Juho Leinonen, Paul Denny, Seth Bernstein,
Brett A. Becker, Michel Wermelinger, Arto Hellas, Andrew Tran, Sami
Sarsa, James Prather, and Viraj Kumar. 2023. The Implications of Large
Language Models for CS Teachers and Students. In Proceedings of the 54th
ACM Technical Symposium on Computing Science Education V. 2 (SIGCSE
2023), March 15–18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3545947.3573358

1 INTRODUCTION
The recent introduction of Large Language Models (LLMs) is begin-
ning to provide exciting new opportunities for professional com-
puter scientists and for computing educators. For example, LLMs
power tools like GitHub Copilot, Amazon CodeWhisperer, and
tabnine which can automatically generate code based on natural
language specifications provided by a user [1, 3, 4, 11]. LLMs are also
capable of generating high-quality explanations of code in real-time
to facilitate learning [7, 9, 10]. Recent work has even demonstrated
their potential for generating assignments for instructors [10] and
enhancing error messages [6]. However, the introduction of LLMs
presents both opportunities and challenges [2]. These generative
models are very new, however, and it is not yet clear to what extent
they can facilitate learning in practice.

In this Birds of a Feather session, we plan to engage the SIGCSE
community in fruitful discussions about whether and how these
new LLMs might transform our research and practice. With the
growing interest in LLMs in CS education over the past sixmonths [2,
5–10, 12, 13], we expect that this is a critical moment for our com-
munity to engage with these new opportunities while critically
reflecting on the challenges of the present moment. Our goal is
to build a learning community of computing educators that can
sustain these conversations

1.1 A changing workplace
Developer tools are constantly improving and enabling developers
to work at increasingly high levels of abstraction. LLMs that power
IDE plugins such as GitHub Copilot1, and services such as Amazon
CodeWhisperer2 are poised to have an even greater impact based on

1github.com/features/copilot
2aws.amazon.com/codewhisperer/

https://orcid.org/0000-0003-2781-6619
https://orcid.org/0000-0001-7646-2373
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0003-1446-647X
https://orcid.org/0000-0002-6467-3293
https://orcid.org/0000-0001-6502-209X
https://orcid.org/0000-0002-0094-1113
https://orcid.org/0000-0002-7277-9282
https://orcid.org/0000-0003-2807-6042
https://orcid.org/
https://doi.org/10.1145/3545947.3573358
https://github.com/features/copilot
https://aws.amazon.com/codewhisperer/


SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada MacNeil, et al.

their ability to not only facilitate developers’ work but to actually do
work on their behalf. These new capabilities prompt CS education
researchers to reflect critically on the skills that students should be
learning to work effectively in these environments. Echoing calls
for computing skills beyond simply coding, such as computational
thinking and computing ethics, CS education research may need to
re-evaluate our curriculum and intended learning outcomes.

1.2 A changing classroom
Large Language Models are currently poised to transform computer
science classrooms in a variety of ways. Recent papers have started
to illustrate ways that LLMs might impact students’ experiences [5],
teachers’ experiences [10], and provide new learning opportuni-
ties [7, 9]. While these changes ideally benefit students and teachers,
there have also been concerns raised about the effects LLMs might
have on academic integrity [5]. This moment is vital for computing
education researchers to speculate, discuss, and define the ways
that LLMs should be introduced to students. With care, decisions
made now can ensure that LLMs are used in ways that enhance
teaching and learning rather than introduce challenges.

2 ORGANIZERS
Collectively, our team has presented six papers, posters, and work-
shops related to the use of LLMs in CS education [5, 7–10, 13],
including classroom deployments [7]. As organizers, we each bring
additional perspectives coming from seven universities (including
distance education) across three different continents. Most impor-
tantly, our team includes three undergraduate researchers and one
Ph.D. researcher. We strongly believe that this student perspective
is essential for research that involves students engaging with LLMs.

2.1 As instructors, we...
As instructors, we care about creating high-quality learning envi-
ronments for our students. By using LLMs to generate real-time ex-
planations [7, 9, 10] and programming assignments [10], instructors
can quickly and cheaply generate learning materials to supplement
existing teaching practice, freeing instructors to spend time with
students who require more help or refining their existing materials.
This ability to generate on-demand learning resources also provides
opportunities to personalize content for each individual student.
However, we are also concerned that LLMs have the potential to do
students’ work for them. Students may be tempted to use tools like
GitHub Copilot to complete assignments early in their program,
but may not be able to rely on them as the assignments become
more challenging. Our team consists of seven educators with a wide
range of experience levels which inspired the following topics:

• Students may eventually use LLMs to generate code at work,
what does this mean for curriculum design?

• LLMs can generate code comparable to code written by stu-
dents [10], what does this mean for academic integrity?

• LLMs can generate learningmaterials such as assignments [10]
and explanations [7, 9], in what other ways can LLMs sup-
port pedagogy and teaching?

2.2 As students, we...
As students, the challenges and opportunities we face are primarily
around learning and getting full-time positions. Some of us have
taken high school courses and are sufficiently prepared, whereas
some of us might need more help. LLMs offer personalized con-
tent which can be accessed on demand at any time. This could
potentially reduce our hesitation to reach out for help and also
help increase students’ confidence. In addition, when transitioning
into the professional environment, LLMs may be tools that we rely
on to do our work. If GitHub Copilot can reduce our professional
workload, why wouldn’t we use it? Our discussions have inspired
the following topics:

• Explanations are sometimes inaccurate or incomplete. What
effect will wrong explanations have on student learning?

• Crafting prompts for LLMs can be challenging, what courses
would be available to teach students to use LLMs?

• Generated code may be incorrect. What effect does this have
on learning?

3 MULTIPLE BREAKOUT ROOM DISCUSSIONS
This BoF will be an online event, so that it reaches more attendees,
given the expected interest in this topic. We will facilitate discus-
sions in up to six breakout rooms, with one discussion topic per
room. There will be two discussion rounds so that attendees can
switch rooms and discuss two topics. Rooms that contain student
researchers will focus on topics where student perspectives are
most crucial such as designing new courses or learning activities.

• 5 Minutes - Breakout room topics are introduced and atten-
dees asynchronously introduce themselves in the chat.

• 20 Minutes - First round of guided discussions
• 20 Minutes - Second round of guided discussions
• 15 Minutes - Share back, summarize insights, and brainstorm
topics for future discussion.

If accepted, our teamwill create a website to advertise for the BoF,
solicit additional topics of interest, and upload a post-BoF report
based on the notes taken by breakout room discussion leaders.
In this way, the BoF will serve as the starting point for broader
conversations within our community about LLMs. We hope that
attendees will return to this website over time as we add additional
events and best practices as they relate to LLMs.

REFERENCES
[1] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2022. Grounded

Copilot: How Programmers Interact with Code-Generating Models. https:
//arxiv.org/abs/2206.15000

[2] Brett Becker, James Prather, Paul Denny, Andrew Luxton-Reilly, James Finnie-
Ansley, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities And Challenges of AI Code Generation.
In Proc. SIGCSE ’23 (Toronto, Canada). ACM.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, et al. 2021. Evaluating Large Language
Models Trained on Code. https://doi.org/10.48550/ARXIV.2107.03374

[4] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring Prompt Engineering for Solving CS1 Problems using Natural Language.
In Proc. SIGCSE ’23 (Toronto, Canada). ACM.

[5] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of
OpenAI Codex on Introductory Programming. In Proc. Australasian Computing
Education Conf. ACM, 10–19. https://doi.org/10.1145/3511861.3511863

[6] Juho Leinonen, Brett A. Becker, Paul Denny, Arto Hellas, James Prather, Brent
Reeves, and Sarsa Sami. 2023. Using Large Language Models to Enhance Pro-
gramming Error Messages. In Proc. SIGCSE ’23 (Toronto, Canada). ACM.

https://arxiv.org/abs/2206.15000
https://arxiv.org/abs/2206.15000
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.1145/3511861.3511863


The Implications of Large Language Models
for CS Teachers and Students SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

[7] StephenMacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul Denny,
Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using Code Expla-
nations Generated by Large Language Models in a Web Software Development
E-Book. In Proc. SIGCSE’23. ACM, 6 pages.

[8] StephenMacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul Denny,
Seth Bernstein, and Juho Leinonen. 2023. Generating CS Learning Materials with
Large Language Models. In Proc. SIGCSE’23. ACM, 3 pages.

[9] StephenMacNeil, Andrew Tran, DanMogil, Seth Bernstein, Erin Ross, and Ziheng
Huang. 2022. Generating Diverse Code Explanations Using the GPT-3 Large
Language Model. In Proc. ICER’22 - Vol. 2. ACM, 37–39.

[10] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language

Models. In Proc. ICER’22 - Vol. 1. ACM, 27–43.
[11] Dominik Sobania, Martin Briesch, and Franz Rothlauf. 2021. Choose Your Pro-

gramming Copilot: A Comparison of the Program Synthesis Performance of
GitHub Copilot and Genetic Programming. https://arxiv.org/abs/2111.07875

[12] Justin D Weisz, Michael Muller, Steven I Ross, Fernando Martinez, Stephanie
Houde, Mayank Agarwal, Kartik Talamadupula, and John T Richards. 2022. Better
together? An Evaluation of AI-supported Code Translation. In Proc. 27th Int’l
Conf. on Intelligent User Interfaces. ACM, 369–391.

[13] Michel Wermelinger. 2023. Using GitHub Copilot to Solve Simple Programming
Problems. In Proc. SIGCSE’23. ACM, 6 pages.

https://arxiv.org/abs/2111.07875

	Abstract
	1 Introduction
	1.1 A changing workplace
	1.2 A changing classroom

	2 Organizers
	2.1 As instructors, we...
	2.2 As students, we...

	3 Multiple Breakout Room Discussions
	References

