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ABSTRACT
Identifying and resolving logic errors can be one of the most frus-
trating challenges for novices programmers. Unlike syntax errors,
for which a compiler or interpreter can issue a message, logic errors
can be subtle. In certain conditions, buggy code may even exhibit
correct behavior – in other cases, the issue might be about how a
problem statement has been interpreted. Such errors can be hard to
spot when reading the code, and they can also at times be missed
by automated tests. There is great educational potential in automat-
ically detecting logic errors, especially when paired with suitable
feedback for novices. Large language models (LLMs) have recently
demonstrated surprising performance for a range of computing
tasks, including generating and explaining code. These capabilities
are closely linked to code syntax, which aligns with the next to-
ken prediction behavior of LLMs. On the other hand, logic errors
relate to the runtime performance of code and thus may not be
as well suited to analysis by LLMs. To explore this, we investigate
the performance of two popular LLMs, GPT-3 and GPT-4, for de-
tecting and providing a novice-friendly explanation of logic errors.
We compare LLM performance with a large cohort of introductory
computing students (𝑛 = 964) solving the same error detection task.
Through a mixed-methods analysis of student and model responses,
we observe significant improvement in logic error identification
between the previous and current generation of LLMs, and find
that both LLM generations significantly outperform students. We
outline how such models could be integrated into computing ed-
ucation tools, and discuss their potential for supporting students
when learning programming.
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1 INTRODUCTION
Learning to program involves navigating a landscape where mis-
takes are an inherent part of the journey. Novice programmers are
bound to encounter numerous errors when writing code, ranging
from logic flaws and syntactical inaccuracies to runtime glitches.
These mistakes pose substantial hurdles to students as they strive
to develop their programming skills. Despite extensive efforts by
computing education researchers and practitioners to establish
taxonomies and recognize patterns of common programming er-
rors [1, 6, 37, 38, 61], the process of effectively detecting and resolv-
ing bugs remains a persistent challenge.

Simultaneously, the emergence of large language models (LLMs)
has demonstrated remarkable capabilities in understanding and
generating text that is highly similar to the text generated by peo-
ple. These models, trained on vast amounts of textual data, have
been used in a variety of computing education contexts including
helping students to understand code [30, 35] and programming
error messages [31]. These use cases demonstrate the ability of
LLMs to understand the syntax and structure of code. Still, it is
unclear whether models can reason about runtime performance
without explicitly running the code. Therefore, detecting runtime

https://orcid.org/0000-0003-2781-6619
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0002-0094-1113
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0001-5767-1057
https://orcid.org/0000-0001-6502-209X
https://orcid.org/0000-0002-7277-9282
https://orcid.org/0000-0001-7646-2373
https://doi.org/10.1145/3636243.3636245
https://doi.org/10.1145/3636243.3636245


ACE 2024, January 29-February 2, 2024, Sydney, NSW, Australia MacNeil, et al.

errors may present a challenge for LLMs, limiting their potential to
help learners.

In this paper, we conduct a large-scale comparative study that
investigates the abilities of two LLMs and students to detect bugs
in faulty code. We recruited 964 students in a large introductory
C programming class to identify bugs in three code examples. The
selected code examples contained three types of bugs including
an out-of-bounds error, an expression error, and an operator er-
ror. Students were selected because they are increasingly relying
on LLMs as a legitimate help-seeking resource [20, 25, 62]. Our
results suggest that LLMs outperform students in bug detection
performance, especially for faulty code. However, in addition to
detecting the pre-inserted bugs, the LLMs had a tendency to be
overly proactive, also commenting on extremely minor ‘bugs’ such
as naming conventions, and other considerations that might be
overwhelming if used for learning purposes. GPT-4 was nearly
perfect at identifying bugs in faulty code, but was much more likely
than GPT-3 to identify these minor ‘bugs’ in the correct programs
and therefore performed ‘poorly’ on correct code. Studying correct
code was important because students may use these tools when
their code is mostly correct, and a list of minor errors may be de-
moralizing or may lead them off-track. Based on our findings, we
conclude that LLMs appear to be capable of identifying logic errors,
outperforming students at this task. However, additional work is
needed to extend this work toward more complex code examples
and with more advanced computing students. Given that experts
are more likely to ‘chunk’ code and see emergent structure, it is
unclear whether they would be more or less able to identify bugs
in the code without writing test cases.

2 RELATEDWORK
2.1 Students and Bugs in Code
Bugs and errors are a common feature in student code and under-
standing the encountered problems and errors has been a long-
standing endeavor within Computing Education Research. Early
research in this area centered often on specific problems such as
the looping problem or the rainfall problem [24, 48, 51, 52], lead-
ing also toward investigations into the design and features of pro-
gramming languages (e.g. [51]). In general there are differences in
frequency of programming errors [53] and the time that it takes to
fix those errors [7, 11, 38, 50]. The types of errors that students en-
counter also gradually change [2], and they can stem from multiple
sources [2, 14]. These sources include misinterpreting the program-
ming problem and having flaws in programming knowledge [14],
not to mention the role of the used programming language [26].

When students encounter a problem, they need to resolve it.
Resolving programming problems – or debugging – can be done
using multiple approaches, including tracing code, commenting
out code, and adding print statements [17, 40, 59]. Simply looking
at the code and trying to find places that do not look right – i.e.
pattern matching – can also be a viable strategy in some cases [17].
Like programming, finding problems in code by tracing the code
is a skill, and both of them have been highlighted as something
that students can struggle with. As an example, an ITiCSE working
group from 2001 highlighted a lack of programming skills at the
end of introductory programming course [39], and a subsequent

ITiCSE working group from 2004 focused on the results by looking
into students’ ability to read and trace code [32], also highlighting
problems. These issues have in part led to national and international
efforts in understanding the struggles that students face, such as
the BRACElet project that started in 2004 [58].

These studies tend to highlight that students have difficulties
with tracing code [32, 56], which might in part be explainable by
lack of expertise. A student might, when solving a tracing problem,
even just guess a solution if they do not have a higher-level rea-
soning strategy [32], or might simply have misconceptions about
how a program executes, which in turn leads to faulty conclu-
sions [56]. This possibility of guessing code tracing outcomes has
also in part led to the emergence of “explain in plain English” prob-
lems. For these problems, students are expected to provide a high-
level overview of the program’s functionality and purpose rather
than simply outlining how the program executes [33, 60]. These
problems can also be challenging, and any tools that would help
students learn to understand and explain code would be of benefit.

2.2 Generative AI and Computing Education
Recently computing education researchers are expressing concern
and excitement about the ways that generative models may affect
the computing education landscape [12, 29, 34, 36, 41, 42, 62]. While
a strong consensus about how we should adapt our pedagogical
practice has yet to emerge, each of these discussions acknowledge
that generative models are not likely a passing fad.

Numerous examples of the capabilities of generative models are
emerging such as their ability to both solve and create programming
assignments [16, 44], explain code [30, 35], identify programming
concepts [55], answer multiple choice questions [46, 47], write
code [43, 57], solve visual problems [21], and enhance programming
error messages [31]. These use cases are critical because without
understanding the capabilities of generative models, it is extremely
challenging to adapt to this rapidly changing landscape.

However, limited work has investigated the capabilities of gen-
erative models to identify bugs within code. Given that novice
programmers often encounter bugs and may lack the ability to
identify and fix these bugs, it is important to explore the capa-
bilities of generative models to accomplish this task. Very recent
papers focus on enhancing programming error messages [31] and
automatically repairing bugs in code [15, 23, 28]. In this paper, we
add to the growing set of use cases by exploring the potential for
generative models to identify potential bugs and errors.

3 METHOD
3.1 Research Questions
Previous research has demonstrated many impressive capabilities
of large language models. However, many of these examples, such
as generating explanations and identifying programming concepts,
are closely linked to code syntax, which aligns with the next token
prediction behavior of LLMs. To better explore the potential limits
of LLMs, this study focuses on identifying logic errors in code,
which relate to the runtime performance of code, and thus may not
be as well suited to analysis by LLMs as they are unable to execute
code. If large language models perform well in this task, there is an
exciting opportunity to use these models to help students to debug
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Figure 1: The three examples of code with the correct variant, and the three incorrect variants annotated. The incorrect variants
were 1) operator error, 2) expression error, and 3) out-of-bounds error.

their code. Based on these goals, we investigated the following
research questions:
RQ 1: How do students and large language models compare in their

ability to correctly identify logic errors in faulty code?
RQ 2: Which types of logic errors are easiest for students and large

language models to correctly identify?
RQ 3: How many bugs or issues do students and large language

models identify when reviewing faulty and correct code?

3.2 Study Design
In this study, we seek to investigate the performance of large lan-
guagemodels in detecting bugs in faulty code.We conducted a study
that compared the performance of students with the two large lan-
guage models GPT-3 and GPT-4. Performance was measured across
three code examples with four variants. These variants included the
correct code and three variants with bugs introduced: 1) an operator
error, 2) an out-of-bounds error, and 3) an expression error. The
study was designed with two between-subjects components which
include the source of the detection method, i.e., whether it was
performed by the students, GPT-3, or GPT-4, and the bug variant.
The study also included a within-subjects component which was
the three code examples. By showing students multiple examples,
we could partially control for participant error.

3.2.1 Participants, Data Collection, and Ethics. The data used in
this study were collected from a first-year C programming course at
the University of Auckland. The data were collected during a single
lab session that ran over a one-week period. Leading up to this
lab, the course covered the concepts of arithmetic, types, functions,
loops, and arrays. We collected 964 total complete responses from
students. The data collection followed the ethical guidelines of the
university and was approved by the University of Auckland Human
Participants Ethics Committee1.

3.2.2 Study Tasks. As part of the lab, students were shown the
three code examples in Figure 1. Each example contains a function
with a single loop that processes elements of an array. The task
for the students was to identify any bugs that might exist within

1Reference number UAHPEC25279.

the code. The instructions said “Consider the following definition
of a function called <Function Name>:” which was followed by the
code without comments. They were then asked to come up with a
short description of what they believe the intended purpose of the
function to be. This was followed by having them “List all errors, if
any, found in this code based on your explanation of the purpose of the
function. It is possible that the code contains one or more small errors
(however, this is not necessarily true and the code may be correct). If
you can identify any errors in the implementation of the code, you
should describe these errors.”

3.2.3 Measures. The data collection resulted in 2980 total responses
from students. In addition, 30 LLM responses were generated for
each code example and version pair by varying the temperature
and prompt to account for variations that might affect performance.
This resulted in 720 total additional responses from the two models.

A team of four researchers manually coded each student and
model response. The coders evaluated the correctness of the iden-
tified bug as a dichotomous variable (e.g.: correct or incorrect). The
coders also evaluated the number of bugs that the response con-
tained. The coding was mutually exclusive: a response correctly
identifying a bug but also noting other incorrect bugs was coded
as correct. When coding the example that did not contain bugs,
we coded a blank response or an explicit statement that no bugs
were contained as a correct response and other responses were con-
sidered incorrect. This coding scheme did not allow for explicitly
tracking false positives and false negatives, but it was necessary
to obtain substantial inter-rater reliability (𝜅 = 0.873, 30 ratings).
Students often did not explicitly state the bug so we coded their
response as ‘correct’ even if they only provided a solution that
would fix the expected bug.

3.2.4 Analysis for Conditional Differences. We analyzed the depen-
dent measures (e.g.: number of bugs) using a linear mixed-effects
model. The main fixed factors of interest were the “Source” (repre-
senting GPT-3, GPT-4, or Students) and the “Version” of the code
example (representing different versions of the example). Addition-
ally, an interaction term between “Source” and “Version” was in-
cluded to examine potential differences in bug identification across
sources and versions. To account for potential dependencies among
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observations from the same example, a random intercept term was
included in the model specification. This random effect was nested
within the “Code Example” factor, capturing the variability asso-
ciated with different examples. Pairwise comparisons were made
using the Tukey method with Holm’s correction for multiple com-
parisons.

3.3 Models
3.3.1 Model Specification. To automatically identify the bugs in
the study, we used two large language models [8] developed by
OpenAI. The first model, text-davinci-003, has been widely used up
until the time of running the study. Later, when GPT-4 was released,
we included results using the gpt-4-0314 model to understand how
the state-of-the-art models perform at the same task.

3.3.2 Prompt Engineering. Prompt engineering is a process of de-
veloping instructions to guide the responses of an LLM. The speci-
ficity and phrasing of these prompts have the potential to strongly
influence the content and quality of the responses [3, 49, 63]. Un-
derstanding the potential effects that prompts can have on perfor-
mance, we used multiple prompting strategies to account for this
aspect. In addition, the hyperparameters of an LLM, such as the
temperature, can also affect the output. Lower temperatures tend to
result in more deterministic responses while higher temperatures
tend to provide more ‘creative’ responses. We chose to use the de-
fault temperature of 0.7 and a lower temperature of 0.3. The three
prompts used for this study are listed below.

• # List all errors and bugs, if any, found in the following C
code: <code>

• # List any issues, including bugs, errors, or potential prob-
lems that exist in the following C code: <code>

• # Assume the role of a highly intelligent computer scientist
who is capable of easily finding bugs and errors by reading
source code. List all errors and bugs, if any, found in the
following C code: <code>

Between the variations in prompt and temperature, there were 6
possible permutation. For each permutation, we issued 5 requests to
the OpenAI API. The reason for issuing 5 requests was to account
for the non-deterministic nature of LLM prompts. This resulted in
30 responses for each combination of code example and bug type
and 360 total requests to OpenAI.

4 RESULTS
4.1 Bug Detection Performance
Performance in bug detection rates varied between the students
and the models, as shown in Table 1. GPT-3 exhibited an overall
correctness rate of 85.3%, while GPT-4 closely followed with a
correctness rate of 85.0%. Notably, students had a much lower bug
detection rate at 49.1%. While both models detected bugs at nearly
twice the rate of students, performance was even higher when only
considering model performance on faulty code.

4.1.1 For faulty code, LLMs outperform students. When presented
with incorrect code, GPT-3 exhibited a bug detection rate of 87.3%,
demonstrating a substantial ability to identify coding errors. GPT-4
surpassed this performance with an impressive bug detection rate

of 99.2%, indicating a higher sensitivity to identifying bugs within
faulty code. On the other hand, students detected bugs at rate of
34.5%, showcasing a limited proficiency in detecting coding errors.

4.1.2 LLMs tended to identify bugs in correct code. In the case
of identifying correctly functioning code, GPT-3 achieved a bug
detection rate of 79.4% (i.e., classified the code as bug-free). GPT-4,
however, displayed a comparatively lower rate of 42.2% in correctly
identifying bug-free code. In contrast, students demonstrated a
notably high proficiency in identifying correct code, with a bug
detection rate of 92.8%.

4.2 Number of Bugs Detected
We observed statistically significant differences in the number of
bugs identified by GPT-3, GPT-4, and students. The results of the
linear mixed-effects model, which are summarized in Table 2, show
that GPT-4 identified significantly more bugs than GPT-3 (𝛽 = 0.76,
𝑆𝐸 = 0.13, 𝑧 = 5.77, 𝑝 < 0.001) and students (𝛽 = 1.70, 𝑆𝐸 = 0.11,
𝑧 = −15.13, 𝑝 < 0.001). The model estimated that GPT-4 identified
0.761 more bugs than GPT-3 and 1.701 more bugs than students
when other variables were held constant. GPT-3 also identified
statistically significantly more bugs than students (𝛽 = 0.94, 𝑆𝐸 =

0.11, 𝑧 = −8.30, 𝑝 < 0.001).

4.3 Analyzing the Bug Reports
4.3.1 GPT-4 was more verbose, even when normalized by the num-
ber of bugs detected. We computed the average word count for
responses made by students and each model. GPT-4 responses had
on average 129.0 (𝜎 = 44.7) words followed by GPT-3 and students
with 54.2 (𝜎 = 19.5) and 38.9 (𝜎 = 27.0) words respectively. This con-
stitutes a 3.31-fold increase in the number of words GPT-4 produced
compared to students. Given the differences in number of bugs iden-
tified by source, we normalized word count by the number of bugs
reported. This resulted in 52.7 (𝜎 = 25.7) words for GPT-4 and 23.5
(𝜎 = 9.11) and 35.6 (𝜎 = 24.5) words for GPT-3 and students. These
results should be contextualized by the observation that GPT-4 had
a tendency to provide partial and in a few cases complete solutions
for the bugs that it identified. Moreover, the models exhibited a
more concentrated distribution around their means, while student
responses exhibited notably higher variability.

4.3.2 Qualitative analysis of responses. To better understand the
capabilities of large language models in detecting bugs in code
and to draw distinctions between students’ responses and these
models, we did a qualitative exploration of the error messages. By
analyzing selected bug reports generated by the models in our
study, we could shed light on a variety of shortcomings of the
models’ approaches. As suggested by our analysis of word count,
there appear to be differences in the ways that LLMs and students
identify and describe bugs. Students tended to describe the bug,
offer a solution, or both. We did not observe an instance where a
model offered a solution without also describing the underlying
bug. Models often combined a description of the bug along with a
partial solution, in some cases they provided a complete solution.
GPT-4 appeared to be most likely to offer a complete solution. As
noted in the analysis of bug detection performance, LLMs often
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Table 1: A summary of student and model performance in correctly identifying bugs. In instances where coders were unsure,
they coded it as ‘uncertain.’ These are excluded from the table. For instance, if we consider the number of correct and incorrect
responses for GPT-3 in Code Example 1 with Bug 2, their total does not sum to 30.

Code Example 1 Code Example 2 Code Example 3
Source Bug 1 Bug 2 Bug 3 Correct Bug 1 Bug 2 Bug 3 Correct Bug 1 Bug 2 Bug 3 Correct

Student
correct 56 91 108 207 71 90 82 222 84 66 69 220

incorrect 147 146 125 19 184 165 130 6 155 143 162 26
rate 0.276 0.384 0.464 0.916 0.278 0.353 0.387 0.974 0.351 0.316 0.299 0.894

GPT-3
correct 30 23 8 30 29 27 24 29 29 30 24 12

incorrect 0 4 22 0 0 0 1 1 0 0 6 17
rate 1 0.852 0.267 1 1 1 0.96 0.967 1 1 0.800 0.414

GPT-4
correct 29 30 28 19 30 30 28 0 30 30 28 0

incorrect 0 0 1 11 0 0 1 30 0 0 1 30
rate 1 1 0.966 0.633 1 1 0.966 0 1 1 0.966 0

Table 2: Number of bugs detected by condition

Contrasts Estimate Std. Error z value Pr(>|z|)
GPT4 - GPT3 0.761 0.132 5.766 < 0.001 ***
GPT3 - Student 0.940 0.113 8.303 < 0.001 ***
GPT4 - Student 1.701 0.112 15.133 < 0.001 ***
Bug2 - Bug1 0.390 0.134 2.910 0.02724 *
Correct - Bug2 0.652 0.186 3.495 0.00389 **
Bug3 - Bug1 0.644 0.139 4.626 < 0.001 ***
Correct - Bug2 0.262 0.187 1.399 0.63514
Bug3 - Bug2 0.254 0.140 1.812 0.36131
Bug3 - Correct -0.008 0.190 -0.040 1.00000

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported – Holm Correction)

identified bugs even for ‘correct’ code. Below is an example where
GPT-4 identified 6 bugs in otherwise correct code for Example 2:

(1) No function prototype: There is no function prototype pro-
vided for the CountZeros function. It is a good practice to
provide a function prototype before the function definition
to avoid any potential issues with implicit declarations.

(2) No include statements: The code does not include any nec-
essary header files, such as stdio.h or stdlib.h, which
might be required for certain operations or functions used
in the program.

(3) Inconsistent naming convention: The function name
COUNTZEROS is mentioned in the question, but the actual
function name in the code is CountZeros. It is important to
maintain a consistent naming convention throughout the
code.

(4) No error handling: The function does not perform any error
handling, such as checking for NULL pointers or negative
array length. This could lead to undefined behavior if the
function is called with invalid arguments.

(5) No comments: The code lacks comments explaining the pur-
pose of the function and its parameters. Adding comments
can make the code more readable and easier to understand
for others.

(6) Potential integer overflow: If the length parameter is very
large.

It should be noted that most of these identified ‘bugs’ could be
interpreted as areas for improvement. For example, the model sug-
gests improvements to naming conventions or including comments.
However, both the fourth and sixth bugs could actually result in
runtime issues. The model identifies a lack of input sanitization
checks for two potential corner cases. The qualitative investigation
underscores the intricacies of LLMs’ code interpretations. They
exhibit detailed understanding but can occasionally miss the mark
on context or offer feedback that, while technically correct, might
feel misaligned with the coder’s intent. Balancing LLM insights
with human discernment could yield the most effective outcomes.

Many student responses just contained the proposed change
without any explanation or reasoning. They often did not explicitly
define a bug but instead only described the solution. Some students
also indicated errors that either did not fix the issue, introduced
new problems, or focused too heavily on syntactical correctness
without addressing the core problem. In the example below, a stu-
dent highlighted changes that should be made to the code which
do not fix the bug:

• i = 0; should change to i = 1; to avoid using the 0th
value.

• Instead of count++, use count = count + 1;.
• There should be no space between for and the opening
parenthesis (.

• Similarly, there should be no space between if and the open-
ing parenthesis (.

5 DISCUSSION
Our results suggest that large language models are more capable
than students at identifying bugs in code. There are multiple possi-
ble explanations for this. First, more expert programmers often do
not necessarily need to read the code character by character or word
by word when forming an understanding of the code, rather, they
study features of the code that are relevant to the task at hand [19].
Consequently, a student may miss syntax errors or minor bugs, if
they are not in focus. This can also be explained by the happy path
mentality where because most of the code is correct, students may
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become complacent and fail to detect bugs; some bugs also take
more time to identify and fix than others [11]. Participants were
explicitly prompted to find errors, which puts them into an explicit
debugging mindset. In practice, they might not critically examine
their code with the same scrutiny, so the bug detection rate for
students may actually be even lower in practice.

Both LLMs performed extremely well, with GPT-4 performing
near perfect when presented with buggy code. However, both mod-
els performed poorly in our analysis of correct code as they identi-
fied very minor bugs and stylistic aspects such as naming conven-
tions contrary to our expectation that they would classify the code
as bug-free. While the suggestions were largely correct, it might
not be helpful to point out minor bugs and code conventions in oth-
erwise correct code, especially considering students’ preferences
for concise bug reports [13].

One noticeable difference between GPT-3 and GPT-4 was that
GPT-4 would point out these minor bugs more than GPT-3. One
possible explanation for this is that the newer model has possibly
had more instruction fine-tuning, where the model is trained to
follow instructions from the user. This might cause the model to
try please the user by going above and beyond the ask, e.g. in our
case not only pointing out the obvious bug, but also commenting
on more minor issues. We also found that GPT-4 was more verbose,
even when controlling for the number of bugs in the code. This
aligns with prior findings where newer models often add super-
fluous textual content to responses [10] and may come up with
non-existing bugs to fix when asked to help with buggy code [20].

The ability of LLMs to correctly identify bugs at a much higher
rate than students has exciting implications for computing educa-
tion. LLMs could be used to help novices (and more experienced
programmers too) in detecting bugs in code, for example, by having
LLMs integrated directly into the IDE that students use to work
on their course exercises. Models could make suggestions for im-
provement as they did in cases with correct code or identify subtle
logic errors in the code, potentially building on prior research on
improving programming error messages, which has the promise of
improving learning [5, 13]. Despite the allure of the technological
possibilities, there likely should be a mechanism that would control
how often the suggestions would be shown, as not all errors require
help [20]. Similarly, it is important to carefully curate educational
content, especially with growing concerns about over-reliance on
LLMs [9, 29, 34, 57, 62]. To mitigate potential issues, it is likely
preferable to avoid directly presenting errors and solutions to stu-
dents. Instead, pedagogical systems could detect when students are
spinning their wheels trying to debug their code [4] and then use
the LLM to scaffold students toward identifying the error them-
selves. Thus providing learning opportunities that also mitigate
stress associated with debugging.

Similarly, as LLMs are adept at detecting bugs and writing sug-
gestions on how to fix them, they could be further integrated into
teacher tools. As an example, tools such as OverCode [18] and
CodeClusters [27] that are designed to provide feedback to masses
of students could be integrated with LLMs so that LLMs would
create draft feedback, which instructors then could – when needed
– adjust and send out. The ability of LLMs to identify rare corner
cases also has interesting implications for teaching testing, as feed-
back from LLMs could help with writing more comprehensive test

suites. The good performance of the models could also lead to new,
innovative exercise types. For example, we envision that an LLM
could create buggy code where students would need to find and fix
the bug – similarly, one activity could be trying to create bugs that
LLMs fail to identify. Such activities could also provide additional
data on learning, which then could be used to fine-tune LLMs.

As the educational landscape continues to adapt to LLMs [29, 41,
42, 62], the new bug capabilities of LLMs identified in this paper may
further inform how students seek help in classroom settings [22].

5.1 Limitations
Tomake the taskmore ecologically valid, we provided students with
an open-response question rather than a multiple-choice question.
This had the advantage that students could not guess the right
answer andwasmore similar to how students would encounter code
in the wild; however, it became difficult to differentiate between a
response that explicitly stated ‘no bugs’ and a blank response. To
address this limitation, we evaluated the rates of default responses
by variant and observed no statistically significant difference in the
number of default responses across all four variants.

Participants were asked to identify any bugs that were present
within the code, so in this case, a lack of an explicit response was
treated as a default response (e.g.: ‘no bugs’). To assess the impact
on our results, we recalculated percentages by excluding blanks.
The revised student correctness rates are as follows: 79.6% (133
blanks removed), 89.8% (169 blanks removed), and 60.0% (181 blanks
removed). These results represent a conservative estimate, consid-
ering only explicitly stated correct answers. The resulting rates
remained higher than GPT-4, but closer to GPT-3 correctness rates.

Participants were also explicitly instructed to identify bugs as
part of the lab activity. While prior research has demonstrated
that debugging others’ code can be challenging [59], it is possible
that if students were studying their own code, it might have been
easier for them. Relatedly, the code did not have comments that
would explain what each line of code does. This may align with
code students often encounter naturally, but could have affected
the students’ performance or required the model to infer too much
from the code structure and function name.

The code examples used in this study only contained a single
intended error. It is possible that the presence of multiple bugs
in code might affect the performance of LLMs (and students) in
detecting bugs. The goal for this paper was an initial tightly scoped
investigation of identifying a bug within code. Future work will
investigate cases where multiple bugs are included.

In our study, we employed a robust approach by utilizing three
distinct prompts, leveraging multiple models, including both GPT-3
and GPT-4, and exploring various temperatures (i.e., 0.4 and 0.7).
Additionally, each prompt was issued multiple times to accommo-
date the inherent probabilistic nature of generative AI. While we
acknowledge the potential impact of further prompt optimization
on mitigating false positives in the correct code condition, it is
essential to note the dynamic nature of these models, characterized
by continuous changes in verbosity and performance [45, 46, 54].
Rather than providing a definitive characterization of performance,
our primary objective was to delve into a novel capability of LLMs.
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In this work, we report on the results of a study that compares
the ability of students and large language models to identify bugs in
faulty and correct code. Our results suggest that students struggled
to find bugs in faulty code, but that they performed relatively well
at identifying whether the code was correct. The models performed
in the opposite way: both models (GPT-3 and GPT-4) strongly out-
performed students in identifying bugs in faulty code, but tended
to identify many minor ‘bugs’ which were more akin to sugges-
tions for improvement when the code was correct. This suggests
that models are overly sensitive toward discovering bugs in code.
While some of the minor bugs detected by the models could be
considered ‘bugs’, such over-sensitivity could be seen as a negative
for integrating LLMs into teaching. If students receive superflous
feedback on minor stylistic aspects, for example, they might start
disregarding any useful feedback from the models too.
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