
Synthetic Students: A Comparative Study of Bug Distribution
Between Large Language Models and Computing Students

Stephen MacNeil
Temple University
Philadelphia, PA, US

stephen.macneil@temple.edu

Magdalena Rogalska
Temple University
Philadelphia, PA, US

m.rogalska@temple.edu

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Arto Hellas
Aalto University
Espoo, Finland

arto.hellas@aalto.fi

Xandria Crosland
xcrosl1@wgu.edu

Western Governors University
Millcreek, Utah, USA

Abstract
Large language models (LLMs) present an exciting opportunity
for generating synthetic classroom data. Such data could include
code containing a typical distribution of errors, simulated student
behaviour to address the cold start problem when developing ed-
ucation tools, and synthetic user data when access to authentic
data is restricted due to privacy reasons. In this research paper, we
conduct a comparative study examining the distribution of bugs
generated by LLMs in contrast to those produced by computing
students. Leveraging data from two previous large-scale analyses
of student-generated bugs, we investigate whether LLMs can be
coaxed to exhibit bug patterns that are similar to authentic student
bugs when prompted to inject errors into code. The results suggest
that unguided, LLMs do not generate plausible error distributions,
and many of the generated errors are unlikely to be generated by
real students. However, with guidance including descriptions of
common errors and typical frequencies, LLMs can be shepherded
to generate realistic distributions of errors in synthetic code.

CCS Concepts
• Social and professional topics→ Computing education.

Keywords
Generative AI, LLMs, GPT-4, synthetic data, student data, buggy
code, educational data mining

ACM Reference Format:
Stephen MacNeil, Magdalena Rogalska, Juho Leinonen, Paul Denny, Arto
Hellas, and Xandria Crosland. 2024. Synthetic Students: A Comparative
Study of Bug Distribution Between Large Language Models and Computing
Students. In Proceedings of the 2024 ACMVirtual Global Computing Education
Conference V. 1 (SIGCSE Virtual 2024), December 5–8, 2024, Virtual Event, NC,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3649165.
3690100

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0598-4/24/12
https://doi.org/10.1145/3649165.3690100

1 Introduction
Large language models (LLMs) present a promising new opportu-
nity for generating synthetic data [20], which may have important
implications for computing education research and practice. Such
data could include examples of code containing typical student
errors, which could have useful practical applications. For example,
it provides a viable solution for conducting research in situations
where access to authentic data is restricted due to privacy con-
cerns [26]. Teachers could also make use of such examples when
developing learning resources, such as debugging tasks, or materials
to help address common mistakes. Having access to large amounts
of synthetic data could also be useful for developers of educational
tools. For example, a well known problem when developing intelli-
gent or adaptive tutoring systems is the ‘cold start problem’ [38],
where a lack of user data results in an initial mismatch between
the system’s internal model and a learner’s actual performance.

Prior work outside of computing education contexts has begun
to explore the use of LLMs for generating synthetic data. In the field
of Human-Computer Interaction (HCI), Hämäläinen et al. generated
synthetic questionnaire responses, demonstrating that LLMs can
produce believable accounts of user experiences [21]. Although
they show the potential for using synthetic data to ideate and pilot
experiments, they suggest synthetic data should be validated with
real data to ensure reliability. Similarly, Park et al. studied LLM-
based agents to simulate human behavior and found interactions
of the agents were human-like, and useful for designers [39, 40].

Inspired by these developments in other research areas, in this
work we investigate the potential of LLMs to generate synthetic
code that mimics the distribution of bugs found in student-written
code. The central research questions of this study are:

• RQ1: Can LLMs produce erroneous code upon request?
• RQ2: To what extent does directing an LLM through prompt
engineering influence the distribution of bugs it generates?

• RQ3: How do bug distributions from an LLM correlate with
or deviate from those generated by human students?

To address these questions, we compare the distribution of bugs
generated by an LLM with those produced by computing students.
Using publicly-available student data from previous studies, we
investigate the effectiveness of different prompting strategies in
guiding LLMs to generate realistic error distributions. Our findings
suggest that while LLMs do not produce accurate distributions

ar
X

iv
:2

41
0.

09
19

3v
1

 [
cs

.C
Y

]
 1

1
O

ct
 2

02
4

https://orcid.org/0000-0003-2781-6619
https://orcid.org/0009-0002-8876-3506
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0001-6502-209X
https://orcid.org/0009-0009-3720-8896
https://doi.org/10.1145/3649165.3690100
https://doi.org/10.1145/3649165.3690100
https://doi.org/10.1145/3649165.3690100

SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA Stephen MacNeil et al.

without guidance, they can do so with appropriate information
about error frequencies. Our work is the first to explore the use
of LLMs for generating synthetic data for computing education
research purposes, and we discuss avenues for future work.

2 Related Work
2.1 Common Bugs in Students’ Code
Learning to program involves developing an understanding of the
syntax, structure and style of a programming language [33], and stu-
dents encounter a wide range of syntax and logic errors during this
process [2, 12, 42]. Such errors include “trivial mechanics” errors
such as syntax errors with braces, brackets, semicolons, and nam-
ing conventions [42], as well as errors related to the semantics of
the learned language [2]. Early research on errors in programming
often centered on specific problems [25, 46, 48]. Later, researchers
increasingly used programming errors – and programming process
data – in forming a deeper understanding of the problems [23].
As an early example of such work, Jadud [24] quantified the error
fixing behavior of novice programmers, identifying a link between
the error fixing behavior (or skill) and course outcomes.

In general, there are differences in the frequency of programming
errors [42, 49] and the time that it takes to fix such errors [8, 11].
The types of errors that students encounter also gradually change
over time [2, 52], and they can stem from multiple sources [2, 16].
These sources include misinterpreting the programming problem
and having flaws in programming knowledge [16], as well as the
role of the programming language and the environment [28, 50, 52].

Research on programming errors has contributed to program-
ming language design (e.g. [47]), and researchers have sought to
help students with programming errors, for example, by improving
programming error messages [4, 14, 30]. All such research builds
on the availability of relevant data. However, although there are
increasing number of programming datasets available [23], errors
can vary between programming languages, and the distributions
of errors may also differ between contexts.

2.2 Generating Educational Content With LLMs
Large language models (LLMs), which are advanced transformer
models, possess the ability to both comprehend and generate code
and text. These capabilities enable LLMs to offer students personal-
ized, just-in-time pedagogical support [13] . For instance, LLMs have
been utilized to enhance code comprehension by explaining code
in plain English [29, 35, 43] or by producing analogies to explain
both code and underlying concepts like recursion [5, 6]. Leinonen
et al. found that the explanations provided by LLMs were compa-
rable in word length to those generated by peers in a classroom,
though students rated the quality of LLM-generated explanations
higher [29]. However, in other cases, LLMs have been shown to
dramatically outperform students such as in identifying bugs [34].

In addition to supporting students with just-in-time content
generation, some research has explored the creation of real-time
content for instructors. For example, Tran et al. demonstrated that
LLMs can generate multiple-choice questions with plausible dis-
tractors and correct answers based solely on the question stem [51].
Doughty further extended this research by developing a pipeline

for creating multiple-choice questions aligned with Bloom’s Taxon-
omy [15]. In their work, they observed that the pipeline resulted in
similar learning objectives as those covered in the class.

What this prior work shows is that LLMs already appear to be
capable of generating effective learning materials. In some cases,
these materials are comparable to the ones that might be sourced
from students [29] or crafted by instructors [15, 51]. However, what
remains unclear is how well these ‘similar’ materials can be aligned
to mimic the style and performance of students, including the com-
mon errors they might make.

2.3 Synthetic Data Generation
There are many reasons for generating synthetic data for research.
Real data could be scarce [17], hard to collect [21], low quality [17],
or contain private information that cannot be shared (for example,
medical records) [9]. One way of mitigating these issues is to try
de-identify datasets [19], although this can in some cases reduce the
utility of the data [31]. These issues can be potentially sidestepped
by generating synthetic data, if the quality of the generated data is
similar to or greater than organic data.

Traditional approaches for generating synthetic data have in-
cluded algorithm-based approaches [44] and generative adversarial
networks (GANs) [17]. In education, synthetic data has been used,
for example, to generate data to train and evaluate knowledge
tracing methods [44] which aim to accurately model a learner’s
knowledge of the concepts they are practicing.

Recently, advancements in large language models (LLMs) have
opened new possibilities for synthetic data generation. Research
has explored various scenarios, including simulating social inter-
actions. Park et al. discovered that interactions within a simulated
community, termed ‘social simulacra,’ can aid in prototyping, with
simulated content often hard for experienced moderators to distin-
guish from real content [40]. In a follow-up study, they found that
data generated by 25 LLM-based agents in a game-like environment
was more believable than data from human crowdworkers [39]. Sim-
ilarly, Hämäläinen et al. used GPT-3 to generate synthetic data on
HCI experiences, particularly video games as art, finding the con-
tent human-like but less diverse than that created by humans [21].

3 Methods
To evaluate our research questions, we conducted two comprehen-
sive studies. In the first study, we aimed to replicate and extend
the findings of Altadmri and Brown [2]. Using their methodology,
we employed GPT-4, a state-of-the-art LLM, to generate synthetic
bugs. To address a lack of information about the precise program-
ming problems used in their work, we conducted a second study
where the programming problems were more explicitly defined.
This second study replicates the bug frequencies identified by Rigby
et al. [41] in their study of 900 programming students. An overview
of the programs we used can be found in the virtual appendix1.

3.1 Prompting With Distributional Information
To generate synthetic bugs, we investigated three prompting strate-
gies that differed in the level of information provided about how

1https://figshare.com/s/e0b0db319ca9ef73fa0c

Synthetic Students: Bug Distributions Between LLMs and Computing Students SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA

Now give me 5 bug examples based on a code below trying to roughly align with
that distribution, make sure to rewrite the original code in it’s entirety but modified
to include the bug. Place the delimiter BUG_START before every bug example
you'll generate.

Distribution Information

Task

C Code Example

</>

Based on a paper by Rigby et al., which presents the frequency of off-by-one
bugs that appear in students' code, the following types of bugs occur with the
given frequencies

 64.65% - HighBounds: accessing an index beyond the end of array (index length

 20.94% - LowMiss: missing the first element in an array (index 0

 7.51% - HighMiss: missing the last element of an array (index length-1

 6.90% - LowBounds: accessing an index before the start of array (index-1)

Figure 1: An overview of the prompts used in Study 2.
The Distributional Information was used in the Frequency-
informed and Taxonomy-informed prompts. However, in the
Taxonomy-informed prompts, the specific frequency percent-
ages were removed. The Task information and Code Example
were used across all three prompts.

students encounter similar problems in real-world contexts. An
example based on Study 2 is presented in Figure 1.

3.1.1 Open-Ended Prompt. The baseline prompt was intentionally
open-ended to gauge how closely LLMs align with student bug
frequency. Here, no specific information about bug distribution
was provided to the model.

3.1.2 Taxonomy-Informed Prompt. In the second prompt, we ex-
plored the impact of providing basic information about the latent
bug distribution. The model was given a list of bugs encountered
by students in real-world contexts as reported by the two papers
we replicated (i.e.: Altadmri and Brown [2] and Rigby et al. [41]).
This approach reflects how an instructor might have some intuition
about common student bugs without precise frequency knowledge.

3.1.3 Frequency-Informed Prompt. In the final prompt, we pro-
vided the model with detailed information about the latent distribu-
tion of bug frequencies, including the specific frequencies at which
students encountered each error. We used or computed the frequen-
cies for each study based on the two papers being replicated [2, 41].

3.2 Study 1: Replication of Altadmri and Brown
In the first study, we conducted a replication of the work by Al-
tadmri and Brown [2]. Their research analyzed the frequency of
bugs generated by real students across 37 million compilations.
They identified 18 errors related to syntax, type, and semantics.
These errors are summarized in Table 1.

To replicate their work, we chose five Java programs. Java was
chosen because that was the language used by participants in their
study [2]. The five Java programs were chosen to be diverse; how-
ever, they do not perfectly match the range used in the prior study
where the programming problems were not experimentally con-
trolled and varied widely across the 37 million compilations.

Table 1: Student Mistakes from Altadmri and Brown [2]

Shorthand Explanation of the Mistake

Syntax errors:
A Confusing = with ==
C Mismatched parentheses
D Confusing & with &&
E Spurious semi-colon after if, for, while
F Wrong separator in for
G Wrong brackets in if
H Using reserved keywords
J Forgetting parentheses when calling methods
K Spurious semi-colon after method header
L Less-than / greater-than operators wrong
P Including types in actual method arguments

Type errors:
I Calling method with wrong types
Q Type mismatch when assigning method result

Other semantic errors:
B Using == to compare strings
M Invoking instance method as static
N Discarding method return
O Missing return statement
R Missing methods when implementing interface

We used GPT-4 to generate bugs and experimentally varied the
prompts as described in Section 3.1. In total, 375 output programs
with injected bugs were created. This was done by requesting the
generation of five bugs for five code examples and repeating this
process five times for each of the three prompt permutations to
account for the probablistic nature of LLM responses, resulting in:

3 prompts x 5 trials x 5 code examples x 5 bugs

3.3 Study 2: Replication of Rigby et al.
The goal of the first study was to investigate whether LLMs are
capable of generating similar distributions of bugs and syntax errors
as students. However, it was challenging to replicate this prior
work because they had investigated bug frequencies extracted from
thousands of authentic programs which were solving a great variety
of programming tasks.

To more tightly control the programming tasks, we conducted
a second study that replicates the work of Rigby et al. [41]. In
their work, only four programming problems were used and the
corresponding bug frequencies were computed based on more than
22,000 submissions from 900 students. They focused purely on logic
errors, in particular off-by-one errors for C code that iterates over
an array. They categorised the four mistakes that can cause an off-
by-one error: missing the first element (index 0), missing the last
element (index length-1), accessing an invalid index before the start
(index -1), or accessing an index just past the end (index length).

Similar to Study 1, we used GPT-4 to generate bugs for the
programming problems. We only modified the distributional infor-
mation to align with the corresponding bugs and frequencies.

3.4 Analyzing the LLM-Generated Bugs
3.4.1 Deductive Coding and Inter-Rater Reliability. The first part of
the analysis focused on deductively coding the generated data using
the original taxonomies from each corresponding study [2, 41]. Two
coders independently coded the data and we computed inter-rater
reliability (IRR) using Cohen’s Kappa to determine their agreement

SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA Stephen MacNeil et al.

Table 2: Comparison of bug frequencies (%) with Altadmri
and Brown [2]. The table includes out-of-distribution bugs
from our thematic analysis and ‘-’ denotes refusals.

Bug Bug Type Original Frequency Taxonomy Baseline

C Syntax 33.1 17.6 13.6 4.8
I Type 19.4 19.2 9.6 0
O Semantic 14.3 17.6 12.8 4.8
A Syntax 7.3 13.6 13.6 8.8
N Semantic 5.1 5.6 2.4 0.8
B Semantic 5.1 0.8 4.0 0.8
M Semantic 3.6 4.0 2.4 1.6
R Semantic 3.3 0 2.4 0
P Syntax 2.2 0 4.0 0
E Syntax 2.1 8.0 11.2 0.8
K Syntax 1.6 0.8 3.2 0.8
D Syntax 1.2 1.6 7.2 0
J Syntax 0.8 0 0 0
Q Type 0.7 0 0 1.6
L Syntax 0.2 0 0.8 3.2
F Syntax 0.1 0 0.8 0
H Syntax <0.1 0 0 0
G Syntax <0.1 0 0 0

Out-of-Distribution Errors

- None N/A 1.6 5.6 3.2
X Mixed 0 4 0.8 12.8
Y Semantic 0 0 0.8 19.2
T Type 0 2.4 0 5.6
W Syntax 0 0 0 7.2
S Semantic 0 0.8 0 18.4
U Mixed 0 2.4 4.8 5.6

which is adjusted for class imbalances. For Study 1, these codes are
listed in Table 1 and the Kappa for IRR between the two coders was
0.92. For Study 2, we used the same four bug types coded in their
study, ‘High Bounds’, ‘Low Bounds’, ‘Low Miss’, and ‘High Miss’.
The Kappa for IRR between coders was 0.81.

3.4.2 Statistical Analyses. The resulting frequency data was ana-
lyzed using the Chi Square goodness of fit test. Given that there
were multiple distributions being compared, we corrected the criti-
cal p-values using the Bonferroni correction, which reduces Type I
errors due to multiple comparisons.

3.4.3 Thematic Analysis of Out-of-Distribution Bugs. When repli-
cating both studies [2, 41], bug types that were not included in
the original were coded ‘X’. These data were then analyzed using
a thematic analysis approach to identify additional themes. The
thematic analysis was guided by best practices [7] and followed
a multi-step process with two coders analyzing the data indepen-
dently but frequently discussing what they were observing and
mediating their understanding.

4 Results
4.1 Study 1
4.1.1 Generating Bugs With LLMs. Our results suggest that LLMs
can effectively create and integrate bugs into otherwise correct code.
The refusal rates across prompts were extremely low (3.46%) and
this included instances where it returned correct code. Otherwise,
the models were capable of producing and injecting bugs into the
code. We did observe that the models often explicitly identified the
bug in the code with a comment describing the bug.

Table 3: The themes of out-of-distribution bug types identi-
fied in our thematic analysis.

Y Logic error: Examples include counting 0 and 1 as primes, a function returning
false in an if statement where it should return true, or forgetting to use a
temporary variable while swapping variables.

T Type error: A function or variable has the wrong type. For example, a function
with return type int returns a string, or a variable of type double is assigned
a char value.

W Undeclared or uninitialized variables: Trying to use an undeclared variable
or modify a variable that has not been assigned a value.

S Off-by-one error: Starting a loop at 1 instead of 0, or iterating past the valid
address in an array.

U Operator confusion: Confusing operators such as %, /, =, &&, ||. For
example, using if (element && toCheckValue) instead of if (element
== toCheckValue).

4.1.2 Bug Frequencies by Prompt Type. Our results also show that
providing the model with information about the distribution helped
to ensure the distribution more closely matched the actual distri-
bution of bugs generated by students. As shown in Table 2, the
Baseline Prompt, which had no information about the bug types or
associated frequencies, produced code containing 68.8% of bugs that
were not in the original distribution. Conversely, the Frequency-
informed and Taxonomy-informed prompts produced 9.6% and 6.4%
of these out-of-distribution bugs.

Based on a Chi Square Test, we observed that the Taxonomy-
informed (𝜒2 = 8.7, 𝑝 < 0.05) and Baseline (𝜒2 = 17.7, 𝑝 < 0.01)
prompts produced distributions that were statistically significantly
different than the distributions present in the students’ code. How-
ever, there was no significant difference for the Frequency-informed
prompt (𝜒2 = 0.18, 𝑝 = 0.91). This suggests that the additional
context was helpful in reproducing the original distribution.

Finally, across all three prompts, we observed a bias in the model
where some bugs, such as A, E, and D were amplified by the model.
For example, Bug E, which is the error of adding a semi-colon after
an if, for, or while statement, was common for both the Frequency-
informed (8.0%) and Taxonomy-informed (11.2%) prompts despite
being uncommon in the original student distributions (2.1%)

4.1.3 Thematic Analysis of Out-of-Distribution Bugs. In our initial
coding, out-of-distribution bugs were labeled X. We conducted a
thematic analysis on these bugs to identify what types of bugs GPT-
4 injected into the code. We identified five themes and additional
bugs that did not fit into those themes. The five themes are described
in Table 3. The frequency of these five bugs are also reported in
Table 2. Many of these errors were not compilation errors and were
therefore not reported in the original study [2].

4.1.4 Examples of Out-of-Distribution Bugs. In addition to the
themes from the previous section, we also observed some ‘X’ bugs
that were less common but very interesting. For instance, when
using the Baseline Prompt, GPT-4 occasionally mixed syntax from
different languages, such as confusing .length() with .length.
Similarly, GPT-4 sometimes used boolean and bool interchange-
ably, and evenmisspelled it as ‘bolean.’ These typos and syntactic
confusions might reflect the types of errors students make when
transitioning between programming languages [10].

Some examples of out-of-distribution bugs were ones that would
indicate considerable confusion if made by students (and thus might

Synthetic Students: Bug Distributions Between LLMs and Computing Students SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA

make useful teaching examples). For example, consider the follow-
ing error produced from the Taxonomy-informed Prompt:

return nstr = ""; //Returning an assignment
of empty string

This bug is unusual because it conflates concepts such as return
statements and variable assignments. Furthermore, assigning a vari-
able and then immediately returning that variable is an unnecessary
step as the empty string could just be returned directly. Moreover,
in some languages this might return the memory address of the
variable nstr (though in Java it would return the empty string) or
produce a compilation error. Typically, programmers are taught to
distinguish between assigning a value to a variable and returning a
value from a function.

The Taxonomy-informed and Frequency-informed prompts sel-
dom produced strange bugs. However, in one case the Frequency-
informed prompt included a string in the method signature:

public static String reverse("Hello") {

Finally, there was an instance in the Baseline prompt where the
model produced a conditional statement with the condition missing.

if () { return true; }

Like the previous example, this error is unusual because it does
not serve a functional purpose. Where other errors, such as using
syntax from different languages interchangeably are mistakes stu-
dents might make, it is more difficult to understand why a student
would make such an error.

4.1.5 Refusal Rates. While not common, we observed all three
prompts resulted in the model refusing to add bugs to the code.
The refusal rate was highest for the Taxonomy-informed prompt
(5.6%) and lowest for the Frequency-informed prompt (1.6%). These
differences are minor and likely driven largely by chance.

4.2 Study 2
The first study showed that providing information about the un-
derlying distribution helped GPT-4 to replicate that distribution.
However, certain types of programming problems are more prone
to specific bugs. For instance, off-by-one errors are highly unlikely
in code that does not involve iteration. As a result, not being able
to use the same programming problems as Altadmri and Brown [2]
was a limitation. To address this limitation, Study 2 focused on
replicating prior work where only four programming problems
(all consisting of iterating over an array) were attempted by every
student in the study.

4.2.1 Bug Frequencies by Prompt Type. Similar to Study 1, the Base-
line prompt produced more out-of-distribution errors (44%) than
the Frequency-informed and Taxonomy-informed prompts which
only contained 6% and 8% of bugs that were not in the original
distribution respectively. Unlike Study 1, the Baseline prompt pro-
duced fewer out-of-distribution errors. This may be because the
Baseline prompt for Study 2 was constrained by only asking for
‘off-by-one’ errors. We observed statistically significant differences
between each distribution and the distribution of students’ bugs.
Based on Chi Square Tests (with p-values corrected using the Bon-
ferroni correction), the Frequency-informed (𝜒2 = 69.9, 𝑝 < 0.01),
Taxonomy-informed (𝜒2 = 115.7, 𝑝 < 0.01), and Baseline (𝜒2 = 76.4,

Table 4: Comparison of bug frequencies (%) with Rigby
et al. [41] where ‘-’ and ‘X’ represent refusals and out-of-
distribution errors respectively.

Bug Original Frequency Taxonomy Baseline

HighBounds 64.6 30 21 20
LowMiss 20.9 21 21 13
HighMiss 7.5 19 21 0
LowBounds 6.9 21 20 19
LM and HB 0 2 2 1
LM and HM 0 0 2 0

Out-of-Distribution Errors

- N/A 1 5 3
X 0 6 8 44

𝑝 < 0.01) prompts produced distributions of off-by-one errors that
were different to those seen in practice from real students. Manual
inspection of the frequencies in Table 4 indicate that the Frequency-
informed prompt produced a somewhat more realistic distribution,
better matching the most common ‘HighBounds’ error type.

4.2.2 Examples of Out-of-Distribution Off-By-One Errors. We ob-
served in the data many interesting errors that were injected by
the LLM which were not strictly ‘off-by-one’ errors (in the sense of
loop iteration) but which did involve an adjustment (by 1) of a value
or variable in the code. For instance, we observed bugs where the
accumulator was decremented (or incremented) prior to it being
returned by the function

return count -1;

We also observed some unusual errors, such as using a post-
decrement operator within the loop condition, leading to quite
subtle bugs (and which would cause the loop to terminate earlier
than a typical off-by-one):

for (int i = 0; i < n--; i++){

4.2.3 Refusal Rates. Refusals were uncommon (1%–5%) and sim-
ilar to Study 1, with Frequency-informed decreasing from Study
1 by 0.6%, Taxonomy-informed decreasing by 0.6% and Baseline
decreasing by 0.2%.

5 Discussion
In this paper, we explored whether LLMs can generate realistic
synthetic bugs – that is, that mirror the distribution of real bugs
produced by students when working on programming problems.
Our results indicated that providing the model with some guidance
helped considerably to align the generated bugs to those observed in
practice. In particular, providing a list of common bugs (Taxonomy-
informed) tended to improve the generated distribution over not
including this information, whereas including frequency informa-
tion as well (Frequency-informed) provided even closer alignment.
In Study 1, we found that including frequency information helped
the model to produce a corpus of buggy code with a distribution of
errors that was statistically similar to the original data.

In both studies, we used the OpenAI API when making requests
to the GPT-4 LLM, thus relying on the frequency information pro-
vided in our prompts across independent API calls. In contrast, a
chat-based LLM such as ChatGPT could take a more sophisticated

SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA Stephen MacNeil et al.

approach by generating code (to select values at random accord-
ing to a distribution) and executing it with its underlying code
interpreter plug-in. This would allow ChatGPT to produce a per-
fectly aligned distribution, limited only by its ability to generate
correct bugs of each specified type, which is seems very capable of
doing. Of course, in practice, it may not be possible to accurately
determine the probabilities (of bugs, or any other artefacts to be
synthesized) in advance. Even with data from prior research, as
we had, such probabilities can be highly contextual and may vary
from one programming task or educational setting to the next. For
example, a previous replication of the original study by Brown
and Altadmri with human students resulted in a slightly different
distribution [1]. Nevertheless, our results demonstrate that LLMs
have potential for generating synthetic data, such as bugs, using
probability information when it is made available.

Almost all of the 18 categories of errors in Study 1, and all four
of the logic error categories in Study 2, had matching bug examples
generated by the LLM. This is quite impressive considering that the
vast majority of code used in training LLMs is typically free from
bugs, as code committed to public repositories is usually debugged
beforehand. Thus, the syntax and logic errors made by novices
when learning to program are likely not well represented in the
data available to LLMs when training. However, especially for the
baseline condition, some of the bugs produced were uncommon
and in some cases unconventional. These bugs described as case
studies in this paper were much more common for the baseline
prompt which further highlights the value of including guidance
to the models. Similarly, and consistent with prior work [3, 27, 37],
we observed biases in LLMs where some uncommon bugs were
amplified by the model, even when given the frequency.

5.1 Toward Synthetic Students
We see exciting avenues for future work exploring the use of LLMs
to simulate individual students. For example, very recent work has
shown that leveraging LLMs to simulate students answering MCQs
can support item evaluation and help educators improve question
quality [32]. This suggests great potential for running simulations
involving synthetic students. A class of synthetic students, with
different capability and error-proneness, could complete a proposed
assessment to give feedback to the instructor on its suitability. In the-
ory, it may even be possible to to test interventions using synthetic
students, allowing for experimentation in a controlled, risk-free
environment before applying them in actual classroom settings. We
elaborate on these possibilities in the following subsections:

5.1.1 Cold-Start Problem. The cold-start problem [45] occurs when
intelligent tutoring systems and autograders lack sufficient data to
effectively assist students. This issue arises because these systems
rely heavily on historical data to generate accurate recommen-
dations and feedback. LLMs can help to supplant this need or to
augment historical data if it is not sufficient.

5.1.2 Piloting In-Class Interventions. A persistent challenge in com-
puting education research is the ethical concern of conducting in-
terventions that might inadvertently harm students. One potential
solution is to simulate student interactions within a classroom envi-
ronment before implementing interventions. This approach allows

researchers to test and refine their methods in a controlled, risk-free
setting. While this strategy requires significant development and
validation, it holds promise for improving the ethical standards
of classroom research. Nonetheless, it is crucial that simulated
approaches complement, rather than replace, in-class research in-
volving actual students, as real-world student behavior cannot be
fully captured by simulations. Simulations become another tool
alongside pre-registration, informed consent, and power analysis.

5.1.3 Predictors of Success. Building on prior computing educa-
tion research focusing on predicting the success of students based
on early performance [18, 22], one possible direction is to train
LLM agents based on students in a class and then use those agents
to identify students that are at risk of failing by simulating their
performance through the rest of the course.

Generating bugs similar to those encountered by students can
also be beneficial for training TAs and instructors. This approach
has been explored in the context of simulating students’ responses
to multiple-choice questions (MCQs) [32] and training TAs by creat-
ing LLM agents that ask them questions about the assignments [36].
Building on these efforts, LLMs could generate common bugs and
coding design patterns, aiding TAs in identifying and addressing
gaps in their knowledge before they begin working with students.

6 Limitations
There are a few limitations to consider in this study. First, as men-
tioned in the discussion, there may be more deterministic methods
for replicating the distribution of student data. The goal in this
work was to understand the impact that information about the
distribution has on model alignment. This is important because
precise distributions are not always known and can vary based
on the student population and course context [1, 2, 52]. This work
also highlights that using LLMs to generate bugs without providing
any information about an expected distribution will result predom-
inately in irrelevant bugs.

7 Conclusions
In this paper, we investigated the capabilities for LLMs to produce
bugs with the same distribution as students in a classroom study.
Across our two studies, we observed that giving the model infor-
mation about the underlying distribution improved the ability of
GPT-4 to produce relevant bugs. In cases where the distribution was
not provided, GPT-4 was more likely to produce out-of-distribution
bugs that in some cases would likely provide limited pedagogical
benefit for students. Consequently, we propose the idea of syn-
thetic students, which can mimic real student errors and behaviors,
offering new opportunities for teacher training and practice.

References
[1] Alireza Ahadi, Raymond Lister, Shahil Lal, and Arto Hellas. 2018. Learning

programming, syntax errors and institution-specific factors. In Proceedings of the
20th Australasian computing education conference. 90–96.

[2] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating
novice programming mistakes in large-scale student data. In Proc. of the 46th
ACM Technical Symp. on Computer Science Education. 522–527.

[3] Lena Armstrong, Abbey Liu, Stephen MacNeil, and Danaë Metaxa. 2024. The
Silicone Ceiling: Auditing GPT’s Race and Gender Biases in Hiring. arXiv preprint
arXiv:2405.04412 (2024).

[4] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael

Synthetic Students: Bug Distributions Between LLMs and Computing Students SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA

Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages
Considered Unhelpful: The Landscape of Text-Based Programming Error Mes-
sage Research. In Proceedings of the Working Group Reports on Innovation and
Technology in Computer Science Education. ACM, 177–210.

[5] Seth Bernstein, Paul Denny, Juho Leinonen, Lauren Kan, Arto Hellas, Matt Little-
field Sami Sarsa, and Stephen MacNeil. 2024. "Like a Nesting Doll": Analyzing
Recursion Analogies Generated by CS Students using Large Language Models.
arXiv preprint arXiv:2403.09409 (2024).

[6] Seth Bernstein, Paul Denny, Juho Leinonen, Matt Littlefield, Arto Hellas, and
Stephen MacNeil. 2024. Analyzing Students’ Preferences for LLM-Generated
Analogies. In Proceedings of the 2024 on Innovation and Technology in Computer
Science Education V. 2. 812–812.

[7] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[8] Neil CC Brown and Amjad Altadmri. 2017. Novice Java programming mistakes:
Large-scale data vs. educator beliefs. ACM Trans. on Computing Education (TOCE)
17, 2 (2017), 1–21.

[9] Fida K Dankar and Mahmoud Ibrahim. 2021. Fake it till you make it: Guidelines
for effective synthetic data generation. Applied Sciences 11, 5 (2021), 2158.

[10] Paul Denny, Brett A. Becker, Nigel Bosch, James Prather, Brent Reeves, and
Jacqueline Whalley. 2022. Novice Reflections During the Transition to a New
Programming Language. In Proc. of the 53rd ACM Technical Symp. on Computer
Science Education - Vol. 1. ACM, New York, NY, USA, 948–954.

[11] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All syntax errors
are not equal. In Proc. of the 17th ACM annual Conf. on Innovation and technology
in computer science education. 75–80.

[12] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Understanding the Syntax Barrier for Novices. In Proceedings of the 16th Annual
Conference on Innovation and Technology in Computer Science Education. ACM.

[13] Paul Denny, Stephen MacNeil, Jaromir Savelka, Leo Porter, and Andrew Luxton-
Reilly. 2024. Desirable Characteristics for AI Teaching Assistants in Programming
Education. arXiv preprint arXiv:2405.14178 (2024).

[14] Paul Denny, James Prather, and Brett A Becker. 2020. Error Message Readability
and Novice Debugging Performance. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education. 480–486.

[15] Jacob Doughty, Zipiao Wan, Anishka Bompelli, Jubahed Qayum, Taozhi Wang,
Juran Zhang, Yujia Zheng, Aidan Doyle, Pragnya Sridhar, et al. 2024. A compara-
tive study of AI-generated (GPT-4) and human-crafted MCQs in programming
education. In Proc. of the 26th Australasian Computing Education Conf. 114–123.

[16] Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. 2018. Common Logic
Errors Made by Novice Programmers. In Proc. of the 20th Australasian Computing
Education Conf. ACM, New York, NY, USA, 83–89.

[17] Alvaro Figueira and Bruno Vaz. 2022. Survey on synthetic data generation,
evaluation methods and GANs. Mathematics 10, 15 (2022), 2733.

[18] Sally Fincher, Anthony Robins, Bob Baker, Ilona Box, Quintin Cutts, Michael de
Raadt, Patricia Haden, John Hamer, et al. 2006. Predictors of success in a first
programming course. In Proc. of the 8th Australasian Computing Education Conf.

[19] Simson Garfinkel. 2015. De-identification of Personal Information:. US Department
of Commerce, National Institute of Standards and Technology.

[20] Xu Guo and Yiqiang Chen. 2024. Generative AI for Synthetic Data Generation:
Methods, Challenges and the Future. arXiv:2403.04190 [cs.LG]

[21] Perttu Hämäläinen, Mikke Tavast, and Anton Kunnari. 2023. Evaluating Large
Language Models in Generating Synthetic HCI Research Data: a Case Study. In
Proceedings of the Conference on Human Factors in Computing Systems (CHI ’23).

[22] Arto Hellas, Petri Ihantola, Andrew Petersen, Vangel V. Ajanovski, Mirela Gutica,
Timo Hynninen, Antti Knutas, Juho Leinonen, Chris Messom, and Soohyun Nam
Liao. 2018. Predicting academic performance: a systematic literature review. In
Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. ACM, New York, NY, USA, 175–199.

[23] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, et al. 2015. Educational data
mining and learning analytics in programming: Literature review and case studies.
Proc. of the 2015 ITiCSE on working group reports (2015), 41–63.

[24] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proc. of the second int. workshop on Computing education research.

[25] W. Lewis Johnson, Elliot Soloway, Benjamin Cutler, and Steven Draper. 1983. Bug
Catalogue: I. Technical Report. Yale University, YaleU/CSD/RR #286.

[26] Kyle M. L. Jones, Andrew Asher, Abigail Goben, Michael R. Perry, Dorothea Salo,
Kristin A. Briney, and M. Brooke Robertshaw. 2020. “We’re being tracked at all
times”: Student perspectives of their privacy in relation to learning analytics in
higher education. J. of the Association for Information Science and Technology 71,
9 (2020), 1044–1059.

[27] Hannah Rose Kirk, Yennie Jun, Filippo Volpin, Haider Iqbal, Elias Benussi, Frederic
Dreyer, Aleksandar Shtedritski, and Yuki Asano. 2021. Bias out-of-the-box: An
empirical analysis of intersectional occupational biases in popular generative
language models. Advances in neural information processing systems 34 (2021).

[28] Tobias Kohn. 2019. The error behind the message: Finding the cause of error
messages in python. In Proc. of the 50th ACM Technical Symp. on Computer Science

Education. 524–530.
[29] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne

Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. In Proc. of the 2023 Conf. on Innovation
and Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE 2023).

[30] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using large language models to enhance programming
error messages. In Proc. of the 54th ACM Technical Symp. on Computer Science
Education V. 1. 563–569.

[31] Juho Leinonen, Petri Ihantola, and Arto Hellas. 2017. Preventing keystroke based
identification in open data sets. In Proc. of the Fourth (2017) ACM Conference on
Learning @ Scale. 101–109.

[32] Xinyi Lu and XuWang. 2024. Generative Students: Using LLM-Simulated Student
Profiles to Support Question Item Evaluation. arXiv preprint arXiv:2405.11591
(2024).

[33] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A Becker, Michail Gian-
nakos, Amruth N Kumar, Linda Ott, et al. 2018. Introductory programming: a
systematic literature review. In Proc. companion of the 23rd annual ACM conf. on
innovation and technology in computer science education. 55–106.

[34] Stephen MacNeil, Paul Denny, Andrew Tran, Juho Leinonen, Seth Bernstein, Arto
Hellas, Sami Sarsa, and Joanne Kim. 2024. Decoding Logic Errors: A Comparative
Study on Bug Detection by Students and Large Language Models. In Proceedings
of the 26th Australasian Computing Education Conference. 11–18.

[35] StephenMacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul Denny,
Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using Code Expla-
nations Generated by Large Language Models in a Web Software Development
E-Book. In Proc. SIGCSE’23. ACM, 6 pages.

[36] Julia M Markel, Steven G Opferman, James A Landay, and Chris Piech. 2023.
GPTeach: Interactive TA training with GPT-based students. In Proceedings of the
tenth acm conference on learning@ scale. 226–236.

[37] Roberto Navigli, Simone Conia, and Björn Ross. 2023. Biases in large language
models: origins, inventory, and discussion. ACM Journal of Data and Information
Quality 15, 2 (2023), 1–21.

[38] Maciej Pankiewicz. 2021. Assessing the Cold Start Problem in Adaptive Sys-
tems. In Proceedings of the 26th ACM Conference on Innovation and Technology in
Computer Science Education V. 2. 650.

[39] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy
Liang, and Michael S Bernstein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology. 1–22.

[40] Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy
Liang, and Michael S Bernstein. 2022. Social simulacra: Creating populated
prototypes for social computing systems. In Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology. 1–18.

[41] Liam Rigby, Paul Denny, and Andrew Luxton-Reilly. 2020. A miss is as good as a
mile: Off-by-one errors and arrays in an introductory programming course. In
Proceedings of the twenty-second australasian computing education conference.

[42] Anthony Robins, Patricia Haden, and Sandy Garner. 2006. Problem distributions
in a CS1 course. In Proceedings of the 8th Australasian Conference on Computing
Education-Volume 52. Australian Computer Society, Inc., 165–173.

[43] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models. In Proc. of the 2022 ACM Conf. on Int. Computing Education Research V.1.

[44] Sami Sarsa, Juho Leinonen, Arto Hellas, et al. 2022. Empirical Evaluation of Deep
Learning Models for Knowledge Tracing: Of Hyperparameters and Metrics on
Performance and Replicability. Journal of Educational Data Mining 14, 2 (2022).

[45] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock.
2002. Methods and metrics for cold-start recommendations. In Proc. of the 25th
annual int. ACM SIGIR conf. on Research and development in information retrieval.

[46] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do we know how difficult the rainfall problem is?. In Proc. of the 15th Koli
Calling Conf. on Computing Education Research. 87–96.

[47] Elliot Soloway, Jeffrey G. Bonar, and Kate Ehrlich. 1983. Cognitive strategies and
looping constructs: An empirical study. Commun. ACM 26, 11 (1983), 853–860.

[48] Elliot Soloway, Kate Ehrlich, Jeffrey G. Bonar, and Judith Greenspan. 1982. What
do novices know about programming? In Directions in Human–Computer Inter-
actions. Vol. 6. Ablex Publishing, 27–54.

[49] James C Spohrer and Elliot Soloway. 1986. Novice mistakes: Are the folk wisdoms
correct? Commun. ACM 29, 7 (1986), 624–632.

[50] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. Trans. Comput. Educ. 13, 4 (Nov. 2013).

[51] Andrew Tran, Kenneth Angelikas, Egi Rama, Chiku Okechukwu, David H Smith,
and Stephen MacNeil. 2023. Generating multiple choice questions for comput-
ing courses using large language models. In 2023 IEEE Frontiers in Education
Conference (FIE). IEEE, 1–8.

[52] Arto Vihavainen, Juha Helminen, and Petri Ihantola. 2014. How Novices Tackle
Their First Lines of Code in an IDE: Analysis of Programming Session Traces. In
Proc. of the 14th Koli Calling Int. Conf. on Computing Education Research. 109–116.

https://arxiv.org/abs/2403.04190

	Abstract
	1 Introduction
	2 Related Work
	2.1 Common Bugs in Students' Code
	2.2 Generating Educational Content With LLMs
	2.3 Synthetic Data Generation

	3 Methods
	3.1 Prompting With Distributional Information
	3.2 Study 1: Replication of Altadmri and Brown
	3.3 Study 2: Replication of Rigby et al.
	3.4 Analyzing the LLM-Generated Bugs

	4 Results
	4.1 Study 1
	4.2 Study 2

	5 Discussion
	5.1 Toward Synthetic Students

	6 Limitations
	7 Conclusions
	References

