
Fostering Responsible AI Use Through Negative Expertise:
A Contextualized AutocompletionQuiz

Stephen MacNeil
Temple University
Philadelphia, PA, US

stephen.macneil@temple.edu

James Prather
Abilene Christian University

Abilene, TX, USA
james.prather@acu.edu

Rahad Arman Nabid
Temple University
Philadelphia, PA, US

rahad.arman.nabid@temple.edu

Sebastian Gutierrez
Temple University
Philadelphia, PA, US
guts@temple.edu

Silas Carvalho
Temple University
Philadelphia, PA, US

silas.neto.carvalho@temple.edu

Saimon Shrestha
Temple University
Philadelphia, PA, US
tup35165@temple.edu

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Brent N. Reeves
Abilene Christian University

Abilene, TX, USA
brent.reeves@acu.edu

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

Rachel Louise Rossetti
Google

Boulder, CO, USA
rrossetti@google.com

Abstract
Generative AI tools, like GitHub Copilot, are becoming an industry
standard by offering real-time code suggestions that streamline the
coding process. Although these systems improve productivity, they
also introduce pedagogical challenges. Students may become overly
reliant on AI-generated code suggestions, accepting them without
critical thought, potentially reducing their ability to engagewith the
underlying logic of the code. We developed an interactive quiz sys-
tem within a simulated IDE environment designed to help students
think critically about autogenerated code suggestions. Instructors
use the tool to create contextualized coding quizzes that present
multiple code suggestions at each line. Students must choose the
correct option to move on to the next step. Survey responses sug-
gest that this approach could promote critical thinking and scaffold
metacognitive skills like planning and reflection. Students reported
that the system helped them distinguish between good and bad
suggestions. Most students preferred this experience to traditional
quizzes or Github Copilot. These findings show the potential to
scaffold more critical use of generative AI coding tools.

CCS Concepts
• Social and professional topics → Computing education.

Keywords
Auto-completion, Copilot, Negative Expertise, Generative AI

This work is licensed under a Creative Commons Attribution 4.0 International License.
ITiCSE 2025, Nijmegen, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1567-9/2025/06
https://doi.org/10.1145/3724363.3729067

ACM Reference Format:
Stephen MacNeil, James Prather, Rahad Arman Nabid, Sebastian Gutier-
rez, Silas Carvalho, Saimon Shrestha, Paul Denny, Brent N. Reeves, Juho
Leinonen, and Rachel Louise Rossetti. 2025. Fostering Responsible AI Use
Through Negative Expertise: A Contextualized Autocompletion Quiz. In
Proceedings of the 30th ACM Conference on Innovation and Technology in
Computer Science Education V. 1 (ITiCSE 2025), June 27-July 2, 2025, Nijmegen,
Netherlands. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3724363.3729067

1 Introduction
Programming is not just a technical skill but a powerful vehicle for
developing problem-solving and critical thinking skills that are fun-
damental to computing education [31, 36]. However, the successful
development of these skills is challenged by the growing preva-
lence of AI-powered auto-completion tools, such as GitHub Copilot
[1, 6, 40]. While these tools can accelerate coding tasks and reduce
syntax errors, they can also lead to negative interaction patterns
when students fail to critically evaluate AI-generated suggestions
[27]. For example, students may develop an over-reliance on AI sug-
gestions leading to an ‘illusion of competence’ [28]. When students
blindly accept amodel output that is logically flawed, they can be led
down a wrong path that results in unproductive debugging cycles.
In addition, frequent interruptions from auto-suggestions can be
distracting for novices [28]. We hypothesize that these challenges
can be addressed by teaching students how to read and critically
evaluate AI-generated code suggestions.

A classic approach for scaffolding code writing involves students
constructing programs by selecting fragments of code from a set of
fixed choices. Parsons problems [10, 11] and block-based program-
ming [3, 39] are both popular and widely studied examples in this
category, differing in the level of flexibility provided in the choices.

326

https://orcid.org/0000-0003-2781-6619
https://orcid.org/0000-0003-2807-6042
https://orcid.org/0000-0002-6562-6595
https://orcid.org/0009-0005-4844-692X
https://orcid.org/0009-0005-3817-5070
https://orcid.org/0009-0000-8842-3304
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0001-5781-1136
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0009-0001-3839-7360
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3724363.3729067
https://doi.org/10.1145/3724363.3729067
https://doi.org/10.1145/3724363.3729067
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3724363.3729067&domain=pdf&date_stamp=2025-06-17


ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands Stephen MacNeil et al.

However, both are static in the sense that the options available to
students are predetermined. In contrast, AI code-suggestion tools
are dynamic and they can generate next-line suggestions based
on the current context. To scaffold the use of these tools, one po-
tential approach is to present students at each line of code with
dynamically generated options—both correct and incorrect—based
on the partial program constructed so far. Essentially, a student
would build a program by answering a multiple-choice question for
each line of code by evaluating the options available at each step.
Unlike a Parsons problem with pre-defined distractors [34], our
proposed approach has the potential to support a less constrained
exploration of the solution space, and the possibility for different
students to explore different pathways.

In this work, we introduce an Autocompletion Quiz tool which
was designed to teach students critical thinking about code while
using Copilot-based suggestions. Our work draws from Minsky’s
concept of negative expertise [22] by leveraging the educational ben-
efits of understanding common pitfalls and ineffective strategies.
By presenting contextualized suggestions [12] in a multiple-choice
format, the tool encourages students to engage with both correct
suggestions and problematic ones which are rooted in common
coding misconceptions [29]. This aligns with the idea that exposing
students to incorrect patterns helps them build the skills needed to
identify and avoid them when using AI tools that offer code sug-
gestions. Our analysis focuses on the following research questions:

RQ1: How did students interact with the autocompletion quiz
tool?

RQ2: How do students describe their experiences using the auto-
completion quiz tool?

We make the following contributions in this paper: 1) a novel
programming practice format designed to promote critical think-
ing and 2) empirical insights into students’ interactions with the
autocompletion quiz tool. As future work, we intend to evaluate
the impacts of this approach on student learning outcomes, and
explore the benefits of different variants of the tool.

2 The Pitfalls of Generative AI
Generative AI has become increasingly common in computing
education, which has led researchers to investigate the potential
impacts on teaching and learning. While many benefits have been
identified, concerns have also been raised about how effectively
these models can solve problems at the CS1 and CS2 levels [13, 32],
Parsons problems [16, 30], and graph and tree data structure tasks
using only image-based inputs [15]. This has led some instructors
to share concerns about students relying on AI-generated code
they do not understand and becoming overly dependent on these
tools [2, 8, 18, 25, 41].

Recent studies suggest that the benefit of generative AI tools
depends heavily on their design and instructional context of use. A
recent working group by Prather et al. [26] found that incorporating
generative AI into teaching can positively impact tasks like code
comprehension, especially for custom-built AI tools that feature
pedagogical guardrails. However, for code-writing tasks, results
have been mixed, especially when students use industry-grade tools
like GitHub Copilot without explicit training.

Generative AI appears to benefit high-performing students dis-
proportionately [21]. Advanced students can use these tools to
accelerate their learning, while novice programmers face metacog-
nitive challenges that widen the gap between skill levels [28]. This
is because novice programmers struggle to effectively use genera-
tive AI tools. For example, they may have trouble understanding
code generated by the model [27], and models may lead them down
‘debugging rabbit holes’ [38]. Usage patterns are similarly uneven
with some students using AI tools daily, while others avoid them en-
tirely [17]. This bimodal distribution risks creating a digital divide
reminiscent of the early personal computer era [41].

The uneven use of generative AI along with the potential neg-
ative impacts on cogntive and metacognitive processes requires
more intentional pedagogy and tools to help students use AI more
effectively. As an example, Prompt Problems teaches students to
prompt by generating code based on their prompt and automati-
cally evaluating it against a test case [7]. Instead, our work focuses
more on code comprehension by introducing a novel quiz system
designed to give students practice evaluating AI-generated code
suggestions. By scaffolding evaluation skills, our goal is to prepare
students to use generative AI tools like GitHub Copilot effectively
and improve their ability to assess the usefulness and correctness
of code suggestions.

3 System Overview
The Autocompletion Quiz system introduces a novel programming
practice format, designed to promote critical engagement with
AI systems. By leveraging the concept of negative expertise [22],
the system challenges students to distinguish between good and
bad AI suggestions. The system provides an interface to generate
quizzes so that instructors can use an LLM to generate distractors
or write their own. Figure 1 provides an overview of the system’s
user interface. In our study, an LLM was used to generate all of
the distractors to ensure that distractors were the same for every
student in the study.

3.1 Design Rationale
3.1.1 ProgressiveQuiz Format. The quiz adopts a progressive, step-
by-step format in which students need to select the intended sug-
gestion from two distractors for each line of code, and each line
builds on prior choices. The design was inspired by Donald Schön’s
concepts of reflection-in-action (critical thinking on current options)
and reflection-on-action (evaluating previous decisions) [33] with
the goal to have students engage with the current suggestions and
their prior code. Although the correct options were predefined
by the instructor in this study, the system also has the ability to
generate them dynamically using an LLM.

3.1.2 Fostering Negative Expertise. Negative expertise [22] is a
pedagogical approach students critically engage with incorrect or
suboptimal strategies to enable them to better recognize and avoid
them. Our quiz leverages this principle by presenting students
with plausible but flawed suggestions (i.e.: distractors) alongside
an ideal suggestion. To maximize ecological validity, the distractor
options were generated using a LLM, following methods inspired
by recent work [20] and aligned with prior research that used LLMs
to generate correct answers and distractors [9, 23, 37].

327



Fostering Responsible AI Use Through Negative Expertise ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

Figure 1: System Overview: An illustration of the key components and workflow of the Autocompletion Quiz system.

These distractors are not strictly ‘incorrect’ as most code sugges-
tions could still produce correct outputs through later corrections.
For example, initializing an accumulator variable with a value other
than zero, such as one, is generally a poor practice, but the issue can
be resolved by decrementing the value later. To reflect this, we dis-
tinguish between good suggestions, which represent the intended
ideal approach, and bad suggestions, which are the distractors.

3.1.3 Ecologically Valid Visual Design. To increase authenticity
and knowledge transfer, the system was designed to mimic the
visual appearance of a standard integrated development environ-
ment (IDE). This design choice, grounded in the theory of situated
cognition and transfer learning [5], places students into an envi-
ronment that replicates real-world programming workflows. By
simulating the experience of receiving suggestions from tools like
GitHub Copilot, the system was designed to improve ecological
validity and increase the likelihood that the skills acquired during
practice will transfer when students interact with Github Copilot.

4 Methods
To evaluate our novel interactive system, we conducted a user
study with 32 computing students at a research university in the
Southwestern United States. We collected log data based on their
interactions and participants also completed a summative survey
about their experiences and ideas for new features.

4.1 Participants
Participants (𝑛 = 32) were all in their first programming course.
This CS1 course integrated generative AI from the beginning, in-
cluding utilization in lectures for writing code (GitHub Copilot)
and debugging (ChatGPT). Students were given traditional write

code questions for homework, but received no credit for them. In-
stead, weekly quizzes were given in class on paper consisting of
three code tracing problems almost exactly like the solutions for
the homework plus one write code question.

Although 32 students participated in our study, only 29 com-
pleted the demographic survey. Twenty-one participants identified
as men, eight identified as women, and no participants identified
as non-binary or another gender. Twenty-seven students were ages
18-22, the typical age of university students in the United States,
while two were older. Four were international students. Racial di-
versity reported was 17 Caucasian, 7 Hispanic, 4 Black, and 2 Asian.
Fourteen students were Computer Science majors while the rest
were from other STEM disciplines. Fifteen students reported that
they had taken programming in high school.

This research was approved by the university IRB and all partic-
ipants signed a consent form to participate voluntarily.

4.2 Procedure
Students were provided some instruction about what to expect in
the activity and then provided a link to the tool. Although par-
ticipants were allowed to use the entire 50-minute class period
to complete the quiz and submit the post-assessment survey, all
finished before the end of the class session.

4.2.1 Survey Questions. In a post-activity survey, we asked two
Likert questions (seen in Figure 2), and these open-ended questions:

• Can you please share your overall experience during this
learning activity, including what went well and did not?

• During this learning activity, the lines were presented one-
by-one, please share your experience with reading each line
and choosing the correct one.

328



ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands Stephen MacNeil et al.

Figure 2: Likert responses from participants.

• Can you compare this learning activity to a traditional quiz,
what aspects are better and which are worse?

• Can you compare this learning activity to writing code with
Github Copilot, what aspects are better andwhich are worse?

• As we continue to improve this tool, what do you think are
the pros and cons of making each line timed to simulate the
speed of using Github Copilot?

• As we continue to improve this tool, what do you think are
the pros and cons of suggesting multiple lines of code at a
time versus just a single line?

• What other ideas do you have for improving this tool?

4.3 Analysis
Given the relative novelty of our approach, there was no obvious
comparable baseline to use in a between-subjects study. Instead,
we conducted a qualitative analyses to understand students’ ex-
periences with the tool. We also report descriptive statistics to
contextualize their experiences.

A single researcher analyzed the students’ responses to open
response questions using a reflexive thematic analysis [4], starting
by open coding [35] each response. Each question was first analyzed
independently to identify patterns related to that specific question.
Themes were then developedwithin individual questions and across
questions when appropriate to identify broader patterns. Themes
were iteratively reviewed and refined multiple times to ensure that
they represented the perspectives of participants and that they
were meaningful from a research perspective. In the results section,
themes are presented with representative quotes to contextualize
the findings and to ground them in participants’ voices.

5 Results
5.1 RQ1: Student Interactions with the Tool
5.1.1 Completion Times and Distractors. All 32 participants were
able to reach the end of the task, i.e. respond to ‘line 38.’ The mean
time for completing the whole quiz was 7:33 and ranged from 4:30
to 11:30. Given the problem description shown to students and the
way programs are constructed (e.g. declaring variables near the
beginning), we anticipated that some lines would be more complex,
and therefore more difficult, than others. Although students clicked
distractors on 24 of the program’s 38 lines (see Table 1), most of
those were only done by a few participants. Furthermore, the num-
ber of students who picked a second distractor usually dropped
precipitously, often going to zero. This was true for most lines.

Some distractors were simple mistakes, such as a distractor with
angle brackets facing the wrong direction on line 11: “cout »
input;” rather than “cout « input;”. Other distractors were

more difficult to ascertain, such as line the iteration control flow
on line 10 where 19 participants initially chose a distractor. The
intended answer was “while(numElements < 100)”, but one dis-
tractor was “while(numElements <= 100)” and the other distrac-
tor was “for(int i=0; i<100; i++)”. Although possible to use
a for loop as suggested, students had been taught in the class to use
while loops with indefinite tasks and for loops with definite tasks.
It therefore made a more subtle but still appropriate distractor. For
this line, 12 participants chose a second distractor.

5.1.2 Students’ Responses to Likert Questions. The students re-
sponded to two Likert questions along a 5-point scale from Strongly
Disagree to Strongly Agree. As shown in Figure 2, the responses to
both questions were unaminously neutral to positive, with one ex-
ception. This provides promising initial evidence that this approach
might be well received by students.

5.2 RQ2: Students’ Experiences and Perceptions
Aligning with the Likert responses, students were extremely pos-
itive about their experiences using the tool in the open-response
questions. Students emphasized benefits such as supporting critical
thinking, focusing their attention, and supporting the metacogni-
tive processes of planning and reflection. We present these themes
in the following subsections.

5.2.1 Directing Attention to Key Code Variations. Students fre-
quently described how the tool guided their attention toward subtle
but important variations in code. By presenting multiple options
for each line, students were encouraged to analyze these differences
and evaluate which choice was ideal. One student explained:

“I felt overall it was just a very helpful learning tool
to learn how to differentiate slight differences in
code that can cause big problems later.” (P18)

This careful comparison of slight differences aligns with the
variation theory, in which key variations between exemplars (i.e.:
learning objects) can support learning [14]. This careful evaluation
of minor variations has benefits, but students also expressed facing
difficulties when unfamiliar variations were presented. For example,
another student remarked,

“I was able to solve the next step by looking at my option
and thinking of the minor differences of each one... I did
get some wrong just because I did not know what some
things meant.” (P14)

Beyond attention to the suggestions, a few students talked about
how the tool encouraged them to ‘slow down’ and to pay closer
attention. For example, one of the students shared,

“It helped me to slow down and carefully think
before moving on. Usually I just sort of speed through
some of the lines and take time to think about others...
some lines threw me off in this quiz, but I think it was
because I actually had to pay full attention to it rather
than just use muscle memory typing.” (P18)

Finally, in two cases, students identified instances where multiple
options might be ‘correct’ at the same time. Both claimed that this
forced them to consider efficiency and other aspects. For example,
P8 described this experience:

329



Fostering Responsible AI Use Through Negative Expertise ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

Line Number 3 5 6 7 8 10 11 12 15 16 18 19 21 22 23 24 25 26 29 30 31 35 36 38
Clicked first distractor 2 2 2 10 3 19 9 1 8 1 3 5 8 13 9 8 4 9 16 13 1 6 14 7
Clicked second distractor 0 0 0 5 0 12 1 1 1 0 0 0 0 5 1 0 0 3 0 6 0 1 1 4

Table 1: The number of participants who selected distractors as their first and second choices, organized by line number. Some
line numbers are excluded because they correspond to comments or blank lines, which were included to improve readability.

“There were a few problems where it felt like it could be
either of two answers, but looking back, one was almost
always more efficient, even though both could work.”

While for the majority of students the tool encouraged them to
slow down and attend to the code and to minor variations between
the suggestions, at least two students struggled with this task.

5.2.2 Reflecting on Prior Code. Another theme identified in the
analysis was that the tool appeared to foster a reflective practice,
with students frequently revisiting the prior code in order to evalu-
ate new suggestions. For example, P20 said:

“With the lines being in order it was pretty simple, and
choosing the correct next line was just using the previous
lines to pick the next best answer.” (P20)

This process of reflecting on earlier design decisions to inform
their next steps indicates they are actively thinking about how
they’re solving the problem which is an important metacognitive
activity. P9 reiterated this theme, saying:

“It being one line at a time made it a lot simpler be-
ing able to use what you’ve previously put to use as a
reference for what to put next.” (P9)

5.2.3 Needing to Think Ahead and Anticipate. One of the benefits
that students ascribed to the progressive quiz format was the need
to think ahead about how to solve the problem. This need to an-
ticipate the implications of each coding decision is indicative of
metacognitive planning, where learners set goals, making a plan,
and then monitor their plan as they carried it out

“I had to think one step ahead and ask myself how
this line would fit into the larger task the code was
trying to achieve.” (P29)

By showing each new line along with previous lines, students
described needing to think ahead to figure out where the code was
‘going’. For example, P1 describes this experience of thinking ahead,
but also describes ‘losing track’ of what they were doing:

“Overall it went well. A couple of times I lost track of
what the code was doing and messed up but for the
most part it was fine...It made me think ahead about
what would come next and also about what line of code
helps me get there the best.” (P1)

This experience of getting off track may be related to how stu-
dents want to solve the problem which is not aligned with how the
tool guided them all to the same solution. For instance, P6 remarked,

“Some of the things that they were doing where different
thanmy thought process so at times I was not completely
sure what they were doing” (P6)

Another student similarly remarked:

“Initially, it was hard to figure out how the problem was
going to be solved, which made declaring the variables
odd sometimes because I was thinking of a different
way to solve it. So, it was a little different to have to
solve it a certain way, but beneficial because I needed
to think about it.” (P10)

5.3 Comparisons to Traditional Quizzes
When comparing their experiences using the tool with traditional
quizzes, students consistently highlighted the distinct purposes
served by each. They perceived the tool as better suited for forma-
tive assessment, demonstrating its potential to facilitate learning
and skill development, while traditional quizzes were viewed pri-
marily as tools for summative evaluation, focusing on gauging
mastery. For example, P32 said:

“It is good for preparation but traditional quiz is better
for checking the root knowledge in a particular concept.”

Across responses, 16 students explicitly described the tool as
having advantages over traditional quizzes, with only two students
stating that it was less effective. The tool was frequently described
asmore interactive and requiring deeper engagement, with students
reporting that it encouraged active reflection on their decision-
making processes. One student remarked:

“I found it easier than a traditional quiz, but it also
forced me to question myself and be more conscious
of my decisions.” (P18)

This included students describing the need to engage more
deeply with the content rather than scanning or skimming it:

“During a traditional quiz I would more than likely
scan code rather than go through line by line...it
was very unique in the fact that it made the user have
to think about each line of code. Usually, I just scan over
code and this forced me to think more critically.” (P15)

5.4 Comparisons to Github Copilot
When comparing their experiences to using Github Copilot, stu-
dents were again largely positive with 12 students preferring the
tool and 3 students describing some way in which Copilot was more
helpful. The primary reasons provided by students were that the
quiz has better support for critical thinking and is more beginner
friendly. In terms of critical thinking, P1 and P24 shared:

“It was better than using copilot. Copilot just gives
you the answer most of the time and takes out a
form of critical thinking and problem solving that
is vital in coding.” (P1)
“You have to think less with GitHub Copilot because the
correct answer is given to you faster...” (P24)

330



ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands Stephen MacNeil et al.

Despite the majority of students agreeing with this sentiment,
P6 shared the opposite opinion, claiming that they wanted to be
more involved with driving the suggestions:

“I feel like here they pretty much do the code for you,
you just have to choose what you think is best, Github I
feel is more ourselves and our own thought process.”

5.5 Students’ Suggestions for Improvements
Students mentioned trade-offs related to agency, such as wanting
to declare their own variables or writing their own code:

“The program that was constructed feels like one I would
have made, though I prefer to declare all my variables
at the top, unlike what was done in the program.” (P3)

Others proposed the opposite, wanting more comments and
signposting to understand where the code was leading them. For
example, P10 requested,

“Keep including comments, those were helpful to know
where it was trying to go next.” (P10)

6 Discussion
Generative AI tools such as GitHub Copilot introduce new chal-
lenges for students working on programming tasks. These tools of-
ten require users to successfully monitor, evaluate, and self-regulate
their interactions—metacognitive skills that are already difficult
for many students [24]. Without careful guidance, students can
fall into unproductive behaviors such as ‘debugging rabbit holes’
or relying too heavily on AI-generated solutions which can nega-
tively impact learning or frustrate students [38]. Compounding this
problem, generative AI tools can also interfere with metacognitive
processes [28]. Therefore, scaffolding mechanisms are needed to
mitigate the challenges of using AI while also helping students
develop skills for critical thinking and metacognition. In this work,
we present a system designed to address these challenges by encour-
aging critical engagement with AI tools such as GitHub Copilot.
The system scaffolds students’ decision-making by offering correct
and flawed code suggestions.

Our findings suggest that our prototype supported the students
in several ways. It drew their attention to the code and to key dif-
ferences between the suggestions, which is an important aspect of
variation theory [14]. Students also described engaging in multiple
metacognitive processes [19], including reflection, monitoring, and
planning. Compared to using Github Copilot, students preferred the
tool, citing its ability to promote critical thinking. Some students
did not appreciate how opinionated the tool was about the solution
and described having a different idea of how the code should have
been written. However, in the negotiation of their plan with the
AI’s ‘plan’, some students described metacognitive benefits and an
opportunity for critical thinking.

Our work is in direct response to the findings recently presented
by Prather et al. [28] on novice programmers using AI coding
tools, such as GitHub Copilot. They found that novices often strug-
gled to read, comprehend, and identify good autogenerated code
suggestions. Some of their participants uncritically accepted code
suggestions, which led them down the wrong problem solving path.
We designed the quiz tool presented above to mitigate some of

these challenges. Students found it to be a useful formative tool
that provides a forcing function to pay attention to each line and
each suggestion. By incentivizing attention to small details, the tool
promotes slowing down to enhance code reading and comprehen-
sion. It also helps prepare students to identify bad autogenerated
suggestions so as to be less distracted or misled by them.

6.1 Future Work
Our findings provide encouraging preliminary evidence that this
approach can help students learn to overcome the metacognitive
harms imposed by Generative AI [28]. However, this prototype only
scratches the surface of a larger solution space. The tool could be
expanded to autogenerate the code suggestions for each line in real-
time, rather than before as we did for this study, which would be
even more ecologically valid for GitHub Copilot. This would enable
multiple ‘solution paths’ and solve some of the rigidity issues noted
by students around a single suggestion. These solutions would
then be tested via test cases to ensure correctness. Students could
even backtrack from errors to identify points where a suggestion
led them off an ideal solution path. Finally, future work should
investigate how this tool impacts learning gains.

7 Limitations
This study has a few limitations. First, the sample size was rela-
tively small and was drawn from a single class. Although this limits
generalizability, it is consistent with the exploratory nature of our
study and appropriate for the use of qualitative research methods.
Our findings should therefore be viewed as a foundation for future,
larger-scale studies rather than as conclusive evidence.

Second, we designed the tool to maximize ecological validity;
however, we presented students with three suggestions rather than
the single suggestion typically offered by tools like GitHub Copilot.
This gave students more opportunities to critically engage with
suggestions. However, alternative designs could be explored as
future work. For example, the tool could show a single suggestion
that students must either accept or reject.

Third, the distractors used in the study were generated by an
LLM which was prompted to create suggestions based on common
misconceptions. While this approach aligns with our goal of testing
students’ critical thinking, we acknowledge that the problematic
suggestions students encounter in real-world scenarios may dif-
fer. LLM-generated hallucinations can vary widely, encompassing
errors unrelated to known student misconceptions.

8 Conclusion
As generative AI tools become increasingly common in educational
and professional contexts, it is imperative to design systems that
go beyond convenience and automation to actively support critical
thinking and metacognitive development. Our work provides a first
step in this direction along with suggestions for future work.

Acknowledgments
This research was supported by a Google GARA grant, the Re-
search Council of Finland (Academy Research Fellow grant number
356114), and Boost Funding from the College of Science and Tech-
nology at Temple University.

331



Fostering Responsible AI Use Through Negative Expertise ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

References
[1] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded

Copilot: How Programmers Interact with Code-Generating Models. Proc. ACM
Program. Lang. 7, OOPSLA1, Article 78 (April 2023), 27 pages.

[2] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (SIGCSE 2023). ACM, 500–506. https://doi.org/10.1145/3545945.3569759

[3] Luiz Carlos Begosso, Luiz Ricardo Begosso, and Natalia Aragao Christ. 2020.
An analysis of block-based programming environments for CS1. In 2020 IEEE
Frontiers in Education Conference (FIE). IEEE, 1–5.

[4] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[5] John Seely Brown, Allan Collins, and Paul Duguid. 1989. Situated cognition and
the culture of learning. 1989 18, 1 (1989), 32–42.

[6] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring Prompt Engineering for Solving CS1 Problems Using Natural Lan-
guage. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education (SIGCSE 2023). ACM, 1136–1142.

[7] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Prompt Problems: A
New Programming Exercise for the Generative AI Era. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2024).
ACM, 296–302. https://doi.org/10.1145/3626252.3630909

[8] Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2024. Computing Education in the Era of Generative AI. Commun.
ACM 67, 2 (Jan. 2024), 56–67. https://doi.org/10.1145/3624720

[9] Jacob Doughty, Zipiao Wan, Anishka Bompelli, Jubahed Qayum, Taozhi Wang,
et al. 2024. A comparative study of AI-generated (GPT-4) and human-crafted
MCQs in programming education. In Proceedings of the 26th Australasian Com-
puting Education Conference. 114–123.

[10] Yuemeng Du, Andrew Luxton-Reilly, and Paul Denny. 2020. A Review of Research
on Parsons Problems. In Proceedings of the Twenty-Second Australasian Computing
Education Conference (ACE’20). ACM.

[11] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th koli calling
international conference on computing education research. 20–29.

[12] Micaela Esteves, Bejamim Fonseca, Leonel Morgado, and Paulo Martins. 2008.
Contextualization of programming learning: a virtual environment study. In 2008
38th Annual Frontiers in Education Conference. IEEE, F2A–17.

[13] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A. Becker. 2023. My AI Wants to Know if This Will
Be on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In
Proceedings of the 25th Australasian Computing Education Conference. ACM.

[14] Lingyuan Gu, Rongjin HUNAG, and Ference Marton. 2004. Teaching with vari-
ation: A Chinese way of promoting effective mathematics learning. In How
Chinese learn mathematics: Perspectives from insiders. World Scientific, 309–347.

[15] Sebastian Gutierrez, Irene Hou, Jihye Lee, Kenneth Angelikas, Owen Man, Sophia
Mettille, James Prather, Paul Denny, and StephenMacNeil. 2024. Seeing the Forest
and the Trees: Solving Visual Graph and Tree Based Data Structure Problems
using Large Multimodal Models. arXiv preprint arXiv:2412.11088 (2024).

[16] Irene Hou, Owen Man, Sophia Mettille, Sebastian Gutierrez, Kenneth Angelikas,
and Stephen MacNeil. 2024. More robots are coming: large multimodal models
(ChatGPT) can solve visually diverse images of Parsons problems. In Proceedings
of the 26th Australasian Computing Education Conference. 29–38.

[17] Irene Hou, Sophia Mettille, Owen Man, Zhuo Li, Cynthia Zastudil, and Stephen
MacNeil. 2024. The Effects of Generative AI on Computing Students’ Help-
Seeking Preferences. In Proceedings of the 26th Australasian Computing Education
Conference. ACM, 39–48.

[18] Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Resistance
is Futile": How University Programming Instructors Plan to Adapt as More
Students Use AI Code Generation and Explanation Tools such as ChatGPT and
GitHub Copilot. In Proceedings of the 2023 ACM Conference on International
Computing Education Research - Volume 1 (ICER ’23). ACM, 106–121.

[19] Dastyni Loksa, Lauren Margulieux, Brett A. Becker, Michelle Craig, Paul Denny,
Raymond Pettit, and James Prather. 2022. Metacognition and Self-Regulation in
Programming Education: Theories and Exemplars of Use. ACM Trans. Comput.
Educ. 22, 4, Article 39 (Sept. 2022), 31 pages. https://doi.org/10.1145/3487050

[20] Stephen MacNeil, Magdalena Rogalska, Juho Leinonen, Paul Denny, Arto Hel-
las, and Xandria Crosland. 2024. Synthetic Students: A Comparative Study of
Bug Distribution Between Large Language Models and Computing Students.
In Proceedings of the 2024 on ACM Virtual Global Computing Education Confer-
ence V. 1 (SIGCSE Virtual 2024). Association for Computing Machinery, 137–143.
https://doi.org/10.1145/3649165.3690100

[21] Lauren E. Margulieux, James Prather, Brent N. Reeves, Brett A. Becker, Gozde
Cetin Uzun, et al. 2024. Self-Regulation, Self-Efficacy, and Fear of Failure In-
teractions with How Novices Use LLMs to Solve Programming Problems. In
Proceedings of the 2024 on Innovation and Technology in Computer Science Educa-
tion V. 1 (ITiCSE 2024). ACM, 276–282. https://doi.org/10.1145/3649217.3653621

[22] Marvin Minsky. 1997. Negative expertise. (1997).
[23] Kate Nussenbaum, Dima Amso, and Julie Markant. 2017. When increasing

distraction helps learning: Distractor number and content interact in their effects
on memory. Attention, Perception, & Psychophysics 79 (2017), 2606–2619.

[24] James Prather, Brett A Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and
Lauren Margulieux. 2020. What do we think we think we are doing? Metacogni-
tion and self-regulation in programming. In Proceedings of the 2020 ACM confer-
ence on international computing education research. 2–13.

[25] James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
et al. 2023. The Robots Are Here: Navigating the Generative AI Revolution
in Computing Education. In Proceedings of the 2023 Working Group Reports on
Innovation and Technology in Computer Science Education (ITiCSE-WGR ’23).
Association for Computing Machinery. https://doi.org/10.1145/3623762.3633499

[26] James Prather, Juho Leinonen, Natalie Kiesler, Jamie Gorson Benario, Sam Lau,
et al. 2024. Beyond the Hype: A Comprehensive Review of Current Trends in
Generative AI Research, Teaching Practices, and Tools. arXiv:2412.14732 [cs.CY]
https://arxiv.org/abs/2412.14732

[27] James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. “It’s Weird That it Knows What I Want”: Usability and Interactions
with Copilot for Novice Programmers. ACM Trans. Comput.-Hum. Interact. 31, 1,
Article 4 (Nov. 2023), 31 pages. https://doi.org/10.1145/3617367

[28] James Prather, Brent N Reeves, Juho Leinonen, Stephen MacNeil, Arisoa S Ran-
drianasolo, Brett A Becker, Bailey Kimmel, Jared Wright, and Ben Briggs. 2024.
The Widening Gap: The Benefits and Harms of Generative AI for Novice Pro-
grammers. In Proceedings of the 2024 ACM Conference on International Computing
Education Research-Volume 1. 469–486.

[29] Yizhou Qian and James Lehman. 2017. Students’ misconceptions and other
difficulties in introductory programming: A literature review. ACM Transactions
on Computing Education (TOCE) 18, 1 (2017), 1–24.

[30] Brent Reeves, Sami Sarsa, James Prather, Paul Denny, Brett A. Becker, Arto
Hellas, Bailey Kimmel, Garrett Powell, and Juho Leinonen. 2023. Evaluating the
Performance of Code Generation Models for Solving Parsons Problems With
Small Prompt Variations. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1 (ITiCSE 2023). ACM.

[31] Advait Sarkar, XT Xu, N Toronto, I Drosos, and C Poelitz. 2024. When Copilot
Becomes Autopilot: Generative AI’s Critical Risk to Knowledge Work and a
Critical Solution. EuSpRIG Proceedings (2024).

[32] Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr. 2023.
Thrilled by Your Progress! Large Language Models (GPT-4) No Longer Struggle to
Pass Assessments in Higher Education Programming Courses. In Proceedings of
the 2023 ACM Conference on International Computing Education Research. ACM.

[33] Donald A Schön. 2017. The reflective practitioner: How professionals think in action.
Routledge.

[34] David H. Smith, Seth Poulsen, Chinedu Emeka, Zihan Wu, Carl Haynes-Magyar,
and Craig Zilles. 2024. Distractors Make You Pay Attention: Investigating the
Learning Outcomes of Including Distractor Blocks in Parsons Problems. In Pro-
ceedings of the 2024 ACM Conference on International Computing Education Re-
search - Volume 1 (ICER ’24). Association for Computing Machinery, 177–191.

[35] Anselm L Strauss and Juliet Corbin. 2004. Open coding. Social research methods:
A reader (2004), 303–306.

[36] Sarah Tasneem. 2012. Critical thinking in an introductory programming course.
Journal of computing sciences in colleges 27, 6 (2012), 81–83.

[37] Andrew Tran, Kenneth Angelikas, Egi Rama, Chiku Okechukwu, David H Smith,
and Stephen MacNeil. 2023. Generating multiple choice questions for comput-
ing courses using large language models. In 2023 IEEE Frontiers in Education
Conference (FIE). IEEE, 1–8. https://doi.org/10.1109/FIE58773.2023.10342898

[38] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In Extended Abstracts of the 2022 CHI Conference on
Human Factors in Computing Systems (CHI EA ’22). Association for Computing
Machinery, Article 332, 7 pages. https://doi.org/10.1145/3491101.3519665

[39] David Weintrop and Uri Wilensky. 2015. To block or not to block, that is the
question: students’ perceptions of blocks-based programming. In Proceedings of
the 14th International Conference on Interaction Design and Children (IDC ’15).
ACM, 199–208. https://doi.org/10.1145/2771839.2771860

[40] Michel Wermelinger. 2023. Using GitHub Copilot to Solve Simple Programming
Problems. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE 2023). ACM.

[41] Cynthia Zastudil, Magdalena Rogalska, Christine Kapp, Jennifer Vaughn, and
Stephen MacNeil. 2023. Generative AI in Computing Education: Perspectives of
Students and Instructors. In 2023 IEEE Frontiers in Education Conference (FIE).

332

https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1145/3626252.3630909
https://doi.org/10.1145/3624720
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3649165.3690100
https://doi.org/10.1145/3649217.3653621
https://doi.org/10.1145/3623762.3633499
https://arxiv.org/abs/2412.14732
https://arxiv.org/abs/2412.14732
https://doi.org/10.1145/3617367
https://doi.org/10.1109/FIE58773.2023.10342898
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/2771839.2771860

	Abstract
	1 Introduction
	2 The Pitfalls of Generative AI
	3 System Overview
	3.1 Design Rationale

	4 Methods
	4.1 Participants
	4.2 Procedure
	4.3 Analysis

	5 Results
	5.1 RQ1: Student Interactions with the Tool
	5.2 RQ2: Students' Experiences and Perceptions
	5.3 Comparisons to Traditional Quizzes
	5.4 Comparisons to Github Copilot
	5.5 Students' Suggestions for Improvements

	6 Discussion
	6.1 Future Work

	7 Limitations
	8 Conclusion
	Acknowledgments
	References



