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ABSTRACT
We explored how undergraduate introductory programming stu-
dents naturalistically used generative AI to solve programming
problems. We focused on the relationship between their use of AI
to their self-regulation strategies, self-efficacy, and fear of failure in
programming. In this repeated-measures, mixed-methods research,
we examined students’ patterns of using generative AI with qual-
itative student reflections and their self-regulation, self-efficacy,
and fear of failure with quantitative instruments at multiple times
throughout the semester. We also explored the relationships among
these variables to learner characteristics, perceived usefulness of AI,
and performance. Overall, our results suggest that student factors
affect their baseline use of AI. In particular, students with higher
self-efficacy, lower fear of failure, or higher prior grades tended to
use AI less or later in the problem-solving process and rated it as less
useful than others. Interestingly, we found no relationship between
students’ self-regulation strategies and their use of AI. Students
who used AI less or later in problem-solving also had higher grades
in the course, but this is most likely due to prior characteristics as
our data do not suggest that this is a causal relationship.
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1 INTRODUCTION
Generative AI (GenAI) is poised to drastically alter programming
education [14]. Some believe that GenAI will negatively impact pro-
gramming education, including warnings that GenAI will render
programming as we currently know it to be obsolete [44]. Con-
versely, many believe that programming will flourish due to GenAI.
For instance, the makers of Github Copilot (a GenAI code com-
pletion tool) recently proclaimed that the tool caused a massive
increase in productivity across all developers who were using it1.
Many instructors have had similar opinions – some embracing
GenAI and some rejecting it or banning its use [26].

Although early research was quick to show the capabilities of
GenAI with regard to introductory programming assignments and
exams [15, 16], we have much to learn about how GenAI impacts
student learning [4]. If GenAI tools can answer student questions
[19, 28], interpret unclear syntax error messages [27], and write
whole blocks of code from scratch [38], it has the potential to
scaffold student learning like never before—or remove all critical
thinking from the curriculum.

Two important factors in student learning are metacognition
and self-efficacy [32]. Several proposals for using GenAI to support
metacognition and self-regulation have been published in the past
year [36, 41], but none have measured how the use of GenAI im-
pacts these critical skills. This paper reports on a mixed-methods,
repeated measures study that explores the use of GenAI tools in an
undergraduate introductory programming course. In particular, this

1https://www.zdnet.com/article/microsofts-github-copilot-pursues-the-absolute-
time-to-value-of-ai-in-programming/
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study examines student motivations for using GenAI, student pat-
terns of use, and how GenAI use relates to students’ self-regulation,
self-efficacy, and fear of failure while learning programming. Our
research questions were:

• RQ1: How do novice programmers use GenAI tools to solve
programming problems?

• RQ2: How does the use of AI-generated solutions relate to
students’ self-regulation and self-efficacy in an introductory
programming course?

• RQ3: How does fear of failure interact with students’ use of AI,
self-regulation, and self-efficacy?

2 RELATEDWORK
2.1 GenAI in Programming Education
Programming education is already being impacted by GenAI [3],
with many opportunities and challenges ahead [4]. However, given
that GenAI only broke into the mainstream with the release of
ChatGPT a little over a year ago, empirical evidence is still lacking
while educators must consider or implement big changes. Zingaro
& Porter authored a book, “Learn AI-Assisted Python Programming
with GitHub Copilot and ChatGPT” [35] that Porter used in his
CS1 class in Sept. 2023. In an interview, Porter articulated the role
of GenAI as that of an unavoidable catalyst for change with the
potential to lower the barrier for learning to program and bring
broader and more diverse professionals to industry, in part by ad-
dressing the so-called “hidden curriculum problem”. GenAI might
help overcome these barriers by scaffolding student learning. Tools
such as Copilot provide syntactically correct code completions [12],
and are proficient in explaining, and often eliminating, syntax er-
rors [27]. GenAI can also impact help-seeking behaviors [20], and
students find GenAI worked examples useful for their learning [22].
However, these findings are based on expert evaluations or stu-
dent perceptions. Some empirical evaluations are starting to appear,
such as work on using GenAI to interpret cryptic syntax errors that
found student subsequent error rates decreased [42, 43]. While not
measuring learning, it is a step toward understanding how GenAI
can be used to scaffold student learning.

2.2 Metacognition & Self-Regulation in
Programming Education

Metacognition and self-regulation are important factors in learn-
ing that improve academic motivation and performance [2, 34, 37,
46]. Metacognition, as explained by Flavell, describes a learner’s
knowledge of their cognitive abilities and strategies [17], and self-
regulation describes a learner’s cyclical process of setting goals,
monitoring their progress, and adjusting their behavior to achieve
those goals [2, 46]. Additionally, Pintrich suggested that the process
of self-regulated learning is influenced by prior knowledge, moti-
vation, behavior, and context [32, 33]. Besides these foundational
theories, there are two metacognitive theories in the CS domain
relevant to learning with AI. Xie et al.’s theory of instruction for
introductory programming skills suggests incremental instruction
on four skills: 1) Tracing code, 2) Writing correct syntax, 3) Un-
derstanding templates and their use, and 4) Using templates for

solving problems. According to the theory, sequencing and provid-
ing explicit instruction for these skills support students [32, 45].
The second theory, Loksa et al.’s theory of programming problem-
solving, suggests teaching programming problem-solving through
six stages: 1) Reinterpreting problem prompts, 2) Searching for
analogous problems, 3) Searching for solutions, 4) Evaluating po-
tential solutions, 5) Implementing a solution, and 6) Evaluating the
implemented solution. Loksa et al. suggest learners define their
problem-solving stage when they ask for help [31, 32]. AI tools can
support students in each of these skills and stages.

Research shows self-regulation skills affect learning in CS courses.
For example, students who frequently used metacognitive strategies
typically have higher grades in CS1 courses (e.g., [6]) while students
without metacognitive control are more likely to fail to understand
and implement problems (e.g., [18]). Some of the most popular
interventions to improve self-regulation include reflective activi-
ties and visualization of progress, which in turn improve students’
self-efficacy and performance [37]. A recent systematic review sug-
gests that fostering self-regulation skills among students can lead
to improved learning outcomes for programming tasks [37].

2.2.1 GenAI, Metacognition, and Self-Regulation. Metacognitive
knowledge is difficult to achieve in domains about which the learner
has little content knowledge [17]. GenAI can provide context-aware
explanations and scaffolding to bridge this gap early in the learn-
ing process. Furthermore, monitoring learning outcomes (i.e., a
component of self-regulation) is complex [46], and learners can use
GenAI to support the monitoring by tracking progress, highlighting
areas for improvement, and creating personalized feedback. Imme-
diate and personalized feedback is important in the development
of metacognition and self-regulation strategies [8, 10].

While the opportunities and challenges of GenAI in terms of
metacognition are being discussed, there is little empirical evidence
to date. Denny et al. note that the developers of Codex named
over-reliance as a key risk of GenAI and caution that relying too
heavily on GenAI tools could hinder the development of crucial
metacognitive skills [14], something that Becker et al. name as a
critical competency in programming [3]. Prather et al. interviewed
CS1 educators who mentioned that GenAI may push metacognitive
demands upon learners early, perhaps before they are ready [38].

2.3 Self-Efficacy in Programming Education
Self-efficacy is an individual’s belief in themselves to achieve spe-
cific goals across different situations [1]. According to Bandura’s
self-efficacy theory, it affects individuals’ resilience in different
situations; people with lower self-efficacy tend to avoid and quit
challenging situations more frequently than those with higher self-
efficacy [1]. Students with higher self-efficacy set higher goals and
persist in achieving their goals while students with lower self-
efficacy view setbacks and challenges as proof of a lack of ability,
causing them to give up on the task, influencing their persever-
ance [21, 30]. In CS education, self-efficacy has been identified as
a strong predictor of student success and achievement [25, 29, 30].
Correlational research has found that self-efficacy is the root cause
of other student success predictors, such as gender [7, 30]. Experi-
mental research in introductory CS courses shows that self-efficacy
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interventions, which increase CS-specific self-efficacy, improve per-
formance in those courses [21, 25, 29].

GenAI might improve self-efficacy in programming courses by
providing students with support, feedback, and resources while
learning. According to Bandura, feedback and performance are
two of the four main influences on self-efficacy [1]. Specifically,
Schunk (1991) discovered that self-efficacy improved when students
received feedback that they were making progress and provided
information about how to continue [39]. Further, successfully com-
pleting tasks, especially early in the learning process, increases
self-efficacy, even when students are given ample support [1, 39].
AI tools can help students receive this additional support. They can
provide timely, positive feedback that helps students identify and
correct their errors. Additionally, they can provide resources, such
as starter code or debugging support, that help students complete
tasks, building their self-efficacy.

2.4 Fear of Failure
Overcoming failure is part of the learning process [23]. However,
failure can damage learners’ self-efficacy, which is especially fragile
in novices with little experience in a field [2]. Further, fear of failure,
which predicts how strongly one will try to avoid failure, varies
significantly from person to person [11]. Though there is little
work on fear of failure in CS education, research on academic
fear of failure shows that a high fear of failure can result in task
avoidance, either through procrastination or quitting [9]. Thus, fear
of failure, like self-efficacy, is an important predictor of student
persistence [9]. GenAI might help students work through a fear of
failure by providing more support. Two aspects of programming in
which students typically struggle are interpreting error messages
and debugging [5, 24]. In these, students are facing failure and
unsure of how to proceed, but GenAI may help in both cases.

3 METHODOLOGY
Data were collected from students in an introductory programming
course at Towson University, a mid-size, public US university, that
ran from January to May 2023. Students were encouraged to use
GenAI tools to support their learning and problem-solving as they
wished. Full IRB approval was received to run this study.

3.1 Measurements & Procedures
Students in the course were asked to describe their use of AI tools in
addition to submitting their assignments six times throughout the
semester. Responses to AI use questions were optional. Collecting
data regularly afforded detecting changes in AI use over time. Two
types of data were collected quantitatively with checkboxes:
• Timing of AI use: 1) before attempting solution, 2) before com-
pleting solution, 3) after completing solution, or 4) not used.

• Why AI was used: 1) problem statement understanding/explana-
tion, 2) assistance to speed up writing lines of code, 3) to add a
feature of the solution, 4) to add multiple features of the solution,
5) helped with debugging, 6) other.

To complement these data, researchers collected qualitative data by
asking students to complete a short reflection in which they com-
pared their code to AI-generated code and described their process
for completing the assignment with AI.

To examine the effect of these patterns of AI use, several de-
pendent variables were measured at the beginning and end of the
semester to track how they changed over time.

Self-Regulation. Self-regulationwasmeasuredwith theMotivated
Strategies for Learning Questionnaire (MSLQ) self-regulation sub-
scale [33], which is the most commonly used scale of self-regulation
in computing and general education research [32, 37]. It uses a 7-
point Likert-type scale, ranging from 7=“very true of me” to 1="not
very true of me”.

Self-Efficacy. Self-efficacy was measured with the self-efficacy
scale developed explicitly for programming students designed by
Steinhorst et al. [40]. The scale has been validated with data col-
lected from multiple institutions and compared with similar self-
efficacy measures to establish validity [40]. It uses a 7-point Likert
scale, ranging from 7="Strongly Agree" to 1="Strongly Disagree"
with an additional choice of "No Answer".

Fear of Failure. Academic fear of failure was measured with the
Fear of Failure in Learning Scale [9]. The scale has four subscales–
feelings of shame, performance avoidance, learned helplessness,
and self-handicapping. It uses a 5-point Likert scale, ranging from
5="Strongly Agree" to 1="Strongly Disagree".

Performance. To determine whether students’ behaviors, self-
regulation, self-efficacy, and fear of failure affected their perfor-
mance, final grades were collected.

3.2 Participants
In total, 54 students participated in the study. For the quantitative
analysis, students missing either the pre-test or post-test for the
self-regulation, self-efficacy, or fear of failure measures (n = 11)
and students missing more than one of the six measurements for
AI use and reflection (n = 3) were excluded. As a result, the final
quantitative dataset included 40 participants (i.e., 74% inclusion rate,
which is reasonable for a semester-long repeated measures design).
No systematic differences were found for those excluded based on
final grade, demographic characteristics, or other measures. For the
qualitative analysis, the data were used to explore how students
used AI, which does not require complete datasets. Thus, all data
available were used in the qualitative analysis. Of the 40 participants
with complete datasets, 6 were missing demographic data. Learner
characteristics are described below.
• Gender: 20 men, 14 women, 0 other
• Age: M = 20.85, SD = 4.5
• Employment: 76% full-time students, 24% employed
• Race: 10% Asian, 37% Black, 3% Hispanic/Latino, 31% White, 19%
Mixed

• Major: 74% CS, 26% IT or Information Systems
• High school grades/GPA: M = 3.54, SD = .45
• College grades/GPA: M = 3.13, SD = .58
• College year: 53% 1st-year, 24% 2nd-year, 23% 3rd-year+
• Expected grade: 65% A, 32% B, and 3% C
The researchers examined correlations between learner charac-

teristics and other data collected to determine whether any charac-
teristics should be considered as covariates. Because this analysis
was not primary to the research questions and because some sta-
tistical artifacts are expected when running dozens of correlations,
we will report only those relationships with a medium-to-large
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Table 1: Correlation trends between learner characteristics
and AI use. Negative relationships indicate that a high score
in one variable corresponds to a low score in the other.

Use of AI College GPA Expected Grade
r p r p

Speed up code writing -0.42 .02 -0.13 .47
Solve one part of solution -0.41 .02 -.35 .04
Solve 2+ parts of solution -0.45 .01 -0.38 .02
Help understand problem -0.55 <.01 -0.43 .01
Explain code to me -0.61 <.01 -0.44 .01

effect (i.e., r > 0.4). In this analysis, we found that women tended
to use AI later in the problem-solving process, r = 0.41, p = .02. In
addition, students with higher high school grades/GPA tended to
use AI later, r = 0.50, p = .01. We also found a consistent trend that
students with higher college grades/GPA and those who expected
to earn a higher grade in the CS1 course used AI less (see Table 1).

3.3 Limitations
While the researchers tried to capture various aspects of the learn-
ing experience and environment related to the effect of using GenAI
tools on self-regulation strategies, it was not practical to collect
other data that might provide additional relevant information. First,
because students were completing assignments outside of class, we
do not know what other tools they were using to support their
problem-solving, such as IDEs. Similarly, we do not know how
much time they spent on assignments. While both of these vari-
ables might affect how students use AI tools, we did not want to
overburden students with data collection. For the same reason, we
also did not ask students about their attitudes or philosophy about
using AI as a tool. While these factors might affect their behavior,
we assumed that they were likely to evolve over the semester, given
the novelty of GenAI. Similarly, we did not ask students about their
prior experience with AI tools.

3.4 Data Analysis Procedures
Because data from the same instruments were collected from stu-
dents multiple times throughout the semester, repeated measures
ANOVA was the primary statistical test used. This analysis links all
data from one participant together to improve the statistical power
and account for non-independent data points. Thus, it affords com-
parisons between students and how a student changes over time.
The Huynh-Feldt adjustment was used when the assumption of
sphericity was violated, which is common, to make the results more
conservative. Because the study used non-experimental methods,
the results of these analyses should be interpreted as relational,
rather than causal, effects. When correlations were used to analyze
data, Spearman’s correlation coefficient was used when both vari-
ables were continuous, and the point biserial correlation coefficient
was used when one was continuous and the other was dichotomous.

To check assumptions for inferential statistics, the distribution,
kurtosis, and skewness of each quantitativemeasure were examined.
The kurtosis and skewness for all measures were within the -2 to +2
acceptable range. The measures of self-regulation, self-efficacy, fear
of failure, and performance were all normally distributed. However,

the measures of how students used AI all followed a bi-modal
distribution with a peak for low AI use (used AI on 1-2 out of
6 assignments), a peak for high AI use (used AI on 5-6 out of 6
assignments), and a smaller number in the middle (used AI on 3-4
out of 6 assignments). Thus, the measurements for how students
used AI were reclassified into bins for low, medium, and high AI
use for analysis. The timing of AI use followed the same pattern,
and students were reclassified into bins for early AI users (i.e., used
AI before attempting to write code or before creating a working
solution), late AI users (i.e., used AI after creating aworking solution
or not at all), or mid AI users (i.e., mix of both). Before students were
reclassified, data were visually inspected to determine whether any
trends could better describe their patterns of use (e.g., increasing use
over time), but no clear trends were found for over 90% of students
(i.e., about four students), leaving too little statistical power to
account for potential other use cases.

To analyze qualitative data, four authors applied content analysis
to review the free-form question “Please describe the process you
went through to complete this assignment. If you can, include when
you decided to use AI, why you decided to use the AI each time you
did, and if you were successful using the AI for what you wanted.
How was the AI helpful to you? Was it ever not helpful? If not,
how was it not helpful?” For one of the labs, they coded one or
two words for each of the ‘sub-questions’ and then met to compare
and agree on words before coding the remaining labs. After all
labs had been coded, two authors met to review that questions had
been correctly coded. At that point, there were 74 unique words
describing answers across all labs. Those words were then grouped
according to the current categories described below in Section 4.1.

4 RESULTS
4.1 Novices’ Use of AI Tools
Our first research question explored how novices used GenAI tools
to solve programming problems. To address this exploratory ques-
tion, we used a mixed methods approach with quantitative data
related to when and for what purpose students used AI tools and
qualitative data related to strategies students used for solving prob-
lems with AI. We also collected quantitative data about how useful
students found AI. These data were collected six times throughout
the semester to examine how timing, use, and strategies changed.

In the quantitative data, we found a consistent correlation be-
tween the timing of AI use and different types of AI use (see Table 2).
These data show that students who used AI earlier in the problem-
solving process also tended to use AI more consistently over the
six assignments, except to speed up code writing. We also found
that the perceived usefulness of AI linearly decreased over time, F
= 7.20, p = .01. In addition, students classified into the high AI use
group found it more useful than those classified into the low AI use
group, F = 39.31, p < .01, partial eta2 = .72, unsurprisingly.

To examine patterns of AI timing and use, we used a repeated
measures analysis to determine whether AI timing and use were
consistent within participants across time. We found no strong
linear effect over time, F = 2.12, p = .08. However, the data did show
a U-shaped curve, F = 5.01, p = .03. In this pattern, students tended
to use AI earlier in the problem-solving process during the middle
of the semester compared to the beginning or end.
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Table 2: Correlation between timing of AI use and type of
AI use over six assignments. Negative relationships indicate
that earlier use relates to more consistent use over time

Timing of AI Use
r p

Speed up code writing -0.22 .19
Solve one part of solution -0.46 <.01
Solve 2+ parts of solution -0.41 .01
Help understand problem -0.57 <.01
Explain code to me -0.52 <.01

Related to how students used AI, the patterns vary. AI was used
to speed up code writing by an average of 46% of students with no
change over time, F = 1.78, p = .12. Similarly, AI was used to explain
code by a larger percentage of students, 66%, with no significant
change over time, F = 2.14, p = .07. AI was intermittently used to
solve one part of a problem by an average of 63% of students, F =
2.69, p = .03, but only the 4th order equation was significant, F =
7.17, p = .01, meaning that the direction of the slope changed three
times across six time points. This result likely means that whether
students used AI in this way depended on the assignment rather
than following a pattern over time.

The last two types of AI use followed consistent patterns. AI
was used to solve multiple parts of the problem by an average of
50% of students, F = 4.99, p < .01. This pattern followed a strong
U-shaped curve, F = 13.56, p < .01, with more students using AI for
this purpose mid-semester, as the complexity of problems increased,
than earlier or later. In contrast, while many students used AI to
understand the problem on average, 67%, this type of use decreased
linearly throughout the semester, F = 8.17, p = .01.

The qualitative data provide more information about these pat-
terns (see Figure 1). When asked why they used AI, the responses
were most commonly classified as “Problem-Solving and Solution”
with an average of 20 mentions across all labs. Some of the 22 items
in this theme were: explain, solution, starting, example, compare,
and advice. This fits well with the noted trends of students using
AI to explain code and help solve pieces of the problem. The sec-
ond most popular theme was “Process and Improvement” with an
average of 12 mentions per lab. Some of the 17 items in this theme
were: speed, save time, accelerate, explore, and unstuck. This also
fits well with the trend that students used AI to speed up code
writing. The theme “Understanding and Clarification” contained
9 items such as: didn’t understand, could not explain, unfamiliar
solutions, need context, and confusion. This theme shows a low
but consistent trend in students’ confusion at responses from the
AI tools they were using.

When asked how AI was helpful, the most popular answers
across all labs (except for labs 1 (15 vs 13) and lab 4 (11 vs 9)) was also
“Problem-Solving and Solutions.” Students wrote about using AI to
check their own complete solutions, helping them start a solution,
or helping them get over the syntax barrier for a new programming
language. Interestingly, this pattern changed drastically over time,
peaking in labs 2 and 5. This supports our quantitative findings on
students using AI to solve one part of a problem.

The most frequent category for "How Was AI Not Helpful" was
"Coding Challenges and Errors" (18). The top two concepts included

Figure 1: Occurrences of qualitative themes in student lab
responses from week to week based on three questions we
asked: (a) Why use AI? (b) How was AI helpful? (c) How was
AI not helpful?

errors and foreign syntax. The second most identified category was
"Trust and Doubt" (17), which included concepts like code looked
odd, wrong language, incorrect, and inaccurate. It is not surprising
that students did not trust a system that sometimes gave answers
in a different programming language.

4.2 Effects of AI on Self-Regulation,
Self-Efficacy, & Performance

Our second research question examined how students’ use of AI
tools related to their self-regulation and self-efficacy through their
introductory programming course. In these repeated measures anal-
yses, the between-subjects factors were timing and use of AI (i.e.,
early, mid, and late timing and low, medium, and high use), and
the within-subjects factors were self-regulation and self-efficacy,
which were collected at the beginning and end of the semester. As
described in the previous section (4.1), individual AI use behav-
iors were highly correlated (i.e., students who used AI earlier also
tended to use it more consistently and for more types of tasks).
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Table 3: Means and standard deviations for self-efficacy (S-E)
scores (scale of 1-5) differentiated by AI use behaviors.

Pre-Test S-E Post-Test S-E
M SD M SD

Low AI Use 3.31 .54 4.25 .73
Medium AI Use 3.03 .70 3.77 .38
High AI Use 2.77 .72 3.35 .67

While we explored all individual behaviors, the analyses followed
the same pattern, so we also created an overall AI use variable as
the between-subjects variable to simplify the results: low AI use n
= 12, mid AI use n = 8, high AI use n = 19.

Between AI use and self-regulation, the results show no relation-
ship. Self-regulation behaviors did not change from the pre-test, M
= 3.27, SD = .40, to the post-test,M = 3.22, SD = .47, F = 0.46, p = .50.
There were also no differences between different types of AI use,
F = 0.52, p = .60, nor an interaction, F = 0.13, p = .88, suggesting
students’ self-regulation behaviors and AI use were unrelated.

Between AI use and self-efficacy, however, the results show large
changes. There was a large increase across time, F = 40.60, p < .01,
partial eta2 = .53, and a difference between different levels of AI use,
F = 6.10, p = .01, partial eta2 = .25 (see Table 3). Independent sub-
scales of Steinhorst’s [40] self-efficacy in programming instrument
were considered separately but followed the same pattern. Thus,
the overall score was used. In this pattern, students who used AI
more and earlier had lower self-efficacy, and students who used AI
less and later had higher self-efficacy. There was no interaction be-
tween time and AI use, F = 1.01, p = .37, suggesting that all students’
self-efficacy increased at about the same rate.

To complement these analyses, we also explored the relationship
between AI use behaviors and students’ final grades in the course.
Consistently, we found that students who use AI later or less also
had higher grades: timing, r = 0.33, p = .04; speed up code writing,
r = -0.45, p < .01; solve one part of solution, r = -0.37, p = .02; solve
2+ parts of solution, r = -0.54, p < .01; help understand problem, r
= -0.57, p < .01; and explaining code, r = -0.59, p < .01.

4.3 Effects of Fear of Failure on AI Use
Our last research question explored whether students’ academic
fear of failure interacted with their use of AI, self-regulation, self-
efficacy, or performance. The latter three were analyzed with Spear-
man’s correlation, given the continuous nature of each variable.
We found that there were no correlations between fear of failure
and self-regulation, self-efficacy, or performance for either pre- or
post-tests. These results suggest that fear of failure is a unique
characteristic of students that is unrelated to these other factors.

That fear of failure is a unique characteristic is important because,
like self-efficacy and performance, it was related to how students
used AI. To explore this relationship, we again used a repeated
measures analysis to account formeasures of fear of failure collected
at the beginning and end of the semester and classified participants
with the low, medium, and high AI use categories. We found no
change across time, F = 0.02, p = .89, but a substantial difference
between different types of AI use, F = 4.62, p = .02, partial eta2 = .22,
with no interaction effect, F = 0.32, p = .73. Students with a higher

Table 4: Means and standard deviations for fear of failure
(FoF) (scale of 1-5) differentiated by AI use behaviors.

Pre-Test FoF Post-Test FoF
M SD M SD

Low AI Use 3.17 .76 3.07 .97
Medium AI Use 3.23 .87 3.38 .78
High AI Use 3.84 .61 3.84 .70

fear of failure tended to have high and earlier AI use rather than
the low or medium use (see Table 4).

5 DISCUSSION & CONCLUSION
Students in our study entered the class with a baseline level of AI
use and all but a few students maintained that baseline level of use
relative to other students. This study provides the first empirical
evidence that instructor fears of over-reliance [4, 26] might be
overblown as our findings indicate at least some students use GenAI
to support, not replace, their own problem-solving. Furthermore,
the perceived usefulness of AI linearly decreased over time. Our
qualitative findings indicate students utilize AI to help them when
needed but are still interested in learning and that some do not
inherently trust the answers that it gives and recognize when the
AI does not provide useful or correct responses.

It has recently been postulated that LLMs have the potential
to support less prepared students by providing rich, on-demand
scaffolding [3, 38]. We found that student factors such as prior
grades, self-efficacy, and fear of failure correlated with students’
use of AI, and lower-performing students tended to use AI more.
This finding could be an empirical indication that LLMs can, with
proper guidance, provide scaffolding to help less prepared and
less confident students. While we found that AI use is related to
performance, the same factors that correlate with AI use are also
predictors of performance, so these data do not suggest that AI use
directly affects performance. Further experimental work is needed.

Our qualitative data also suggest that students might need help
productively using GenAI (e.g., a good prompt should not give an-
swers in the wrong language). One way to support students would
be to integrate metacognitive support strategies in GenAI tools
and their design [36, 41]. Emerging pedagogical techniques that
integrate LLMs, such as “Prompt Problems” are attempting to do
this by helping students to learn how to use AI while still learning
to code [13]. This approach organizes the process of problem speci-
fication and solution evaluation in an iterative form, which fits well
into emerging self-regulation frameworks that promote classic pro-
gramming metacognition and self-regulation strategies and skills
while using LLMs [36]. Explicitly teaching students to use GenAI
serves much the same purpose that teaching them self-regulation
strategies does—to help them help themselves.
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