Crowdsourcing Programming Assignments with CrowdSorcerer

Nea Pirttinen
University of Helsinki
Helsinki, Finland
nea.pirttinen@cs.helsinki.fi

Henrik Nygren
University of Helsinki
Helsinki, Finland
henrik.nygren@helsinki.fi

ABSTRACT

Small automatically assessed programming assignments are an of-
ten used resource for learning programming. Creating sufficiently
large amounts of such assignments is, however, time consuming.
As a consequence, offering large quantities of practice assignments
to students is not always possible. CrowdSorcerer is an embed-
dable open-source system that students and teachers alike can use
for creating and evaluating small automatically assessed program-
ming assignments. While creating programming assignments, the
students also write simple input-output -tests, and are gently in-
troduced to the basics of testing. Students can also evaluate the
assignments of others and provide feedback on them, which ex-
poses them to code written by others early in their education. In this
article we both describe the CrowdSorcerer system and our experi-
ences in using the system in a large undergraduate programming
course. Moreover, we discuss the motivation for crowdsourcing
course assignments and present some usage statistics.

CCS CONCEPTS

« Information systems — Crowdsourcing; « Human-centered
computing — Collaborative content creation; « Social and pro-
fessional topics — Computing education,;

KEYWORDS

crowdsourcing, automated assessment, assignment creation, peer
review, programming

ACM Reference Format:

Nea Pirttinen, Vilma Kangas, Irene Nikkarinen, Henrik Nygren, Juho Leinonen,
and Arto Hellas. 2018. Crowdsourcing Programming Assignments with
CrowdSorcerer. In Proceedings of 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE’18). ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3197091.3197117

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITiCSE’18, July 2-4, 2018, Larnaca, Cyprus

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5707-4/18/07...$15.00
https://doi.org/10.1145/3197091.3197117

Vilma Kangas
University of Helsinki
Helsinki, Finland
vilma.l kangas@helsinki.fi

Juho Leinonen
University of Helsinki
Helsinki, Finland
juho.leinonen@helsinki.fi

Irene Nikkarinen
University of Helsinki
Helsinki, Finland
irene.nikkarinen@helsinki.fi

Arto Hellas
University of Helsinki
Helsinki, Finland
arto.hellas@cs.helsinki.fi

1 INTRODUCTION

One of the recent trends in education has been the transition to-
wards shared educational resources and ownership of education; in-
structors may collaborate to create shared educational resources [19,
20] and students can create support content to courses [4]. At an
extreme, the students may even drive the course, deciding the topics
and directions that they wish to pursue [7].

In this work, we study the possibility of using novice program-
mers as a crowdsourcing resource for generating programming
assignments in the very first weeks of their first programming
course. Our belief is that when students are given the opportunity
and support to create programming assignments, they reflect on
prior tasks and content, consider how they would themselves solve
the problem they are creating, and also learn to articulate what it
means for a program to be correct (or incorrect). Moreover, they
may put themselves into the role of an instructor as they contribute
towards the course, which can increase retention through a feeling
of not only being a consumer but also a producer in the learning
community [1]. Finally, as they also read and comment the content
generated by other participants, they are exposed to code written
by others early, which has been proposed to be helpful for novices’
understanding of source code [22].

For the purposes of this work, we have generated an embed-
dable component for online course materials that makes it straight-
forward to generate assignments for programming courses. The
system, called CrowdSorcerer, provides students a view for intro-
ducing the problem statement, model solution, and a set of simple
test cases that are validated using a server. Students are also given
the opportunity to review and comment on the assignments created
by others.

The closest work to our research is PeerWise [4], which provides
students the opportunity of generating multiple choice questions
that can then be shared to other course participants, and Coding-
Bat [17], CloudCoder [16], and CodeWrite [5], which are online
systems for programming practice that provide some support for
exercise authoring. Our work, however, drills down to the explicit
generation and evaluation of programming assignments, which
then could be used as a part of various platforms that are used for
teaching and learning programming.

tThis article is organized as follows. In the next section, we
briefly go over previous work on crowdsourcing in the educational
context. Then, we outline the architecture and design of Crowd-
Sorcerer in Section 3 and explain how it is used to both create and

https://doi.org/10.1145/3197091.3197117
https://doi.org/10.1145/3197091.3197117

ITiICSE’18, July 2-4, 2018, Larnaca, Cyprus

review programming exercises. Then, in Section 4 we present our
experiences of using the tool for the first time. Lastly, we discuss
the tool in Section 5 and conclude the article in Section 6.

2 CROWDSOURCING IN EDUCATION

One of the first mentions of the term crowdsourcing appeared in
the Wired magazine in 2006, where Howe discussed tapping to the
latent talent of the crowd [10]. Since then, the term has become
synonymous with almost any collaborative activity, where typically
a large user base provides ideas and services to an organization or
some other party [8]. In the context of the world-wide web, the
term has been used for anything ranging from evaluation tasks
(e.g. reviews, voting) to artifact or idea sharing, as well as for social
networking and creating artifacts such as knowledge bases and
software [6].

Perhaps the best example of crowdsourcing is Wikipedia [25],
which is a free online encyclopedia that anyone with a free account
can edit. In early 2018, there were over 30 million Wikipedia ac-
counts and over 5.5 million articles in English, and millions more
in other languages. Each account in Wikipedia can be used to edit
and create articles, while reading the articles is free for anyone and
requires no registration.

Crowdsourcing has been used to generate various types of ed-
ucational content ranging from online books [20] and book sup-
plements [9] to course-specific rehearsal content such as multiple
choice questions [4]. Course participants in various institutions
and MOOC:s evaluate assignment responses that the participants
themselves have submitted as a part of their coursework — research
suggests that peers can give actionable and accurate feedback [13].

Crowdsourcing in education is not limited to artifacts generated
in courses, but can also be seen in community efforts and tools.
For example, one could view the ITiCSE Working Group “Canter-
bury QuestionBank” [19] from 2013 as an example of a small-scale
crowdsourcing effort, where researchers and teachers have gener-
ated practice content for programming courses. Similarly, using
peer assessment and tools that support peer assessment, which are
reviewed extensively in [15], can be seen as crowdsourcing.

In the same vein, crowdsourcing is not limited to the artifacts
that are created actively. The majority of data-driven approaches
in educational data mining and learning analytics rely on data that
is generated by students either actively or passively as they take
part in a course. Such data has been used, for example, to improve
learning materials [14], create predictive models that can be used
to identify at-risk students [12], and to study students’ behavior
and learning [12].

mor

3 CROWDSORCERER

CrowdSorcerer! is an embeddable system designed to first collect

student-created assignments and then let students evaluate each
others’ creations. The students can also write simple input-output
tests for their exercises. The gist of the system is to give students
the opportunity to reflect on what they have learned, write down
assignments, read others’ code, and to provide instructors ample
assignments for future introductory programming courses.

Ihttps://github.com/rage/crowdsorcerer

Pirttinen et al.

Material Backend
— [eee]
C— [eee]
[eee]
Embeddable widget //
Sandbox

r Runs tests

Figure 1: The tool consists of a widget that can be embed-

ded to a webpage, a backend for submissions, and a sandbox
server that tests the exercises.

Assignment

Write a program that asks the user how many fingers they have. If the
answer is 10, print "Great!". Otherwise, print "Oh, that's extraordinary!"

Figure 2: The user specifies instructions for the exercise here.
The user is able to for example bold the text and use other
enhancements.

3.1 Architecture and design

The students write the instructions for their exercise in a designated
field (Fig. 2), and then provide the code for the programming task
in the editor with syntax highlighting (Fig. 3). The lines marked as
a part of the model solution can be seen in blue, and the boilerplate
lines in gray. Lines can be marked by clicking on the line number
on the left hand side of the source code view.

The tool consists of a frontend that can be embedded to any on-
line course materials, a backend that stores the data, and a sandbox
server that can be used to verify whether the students’ code com-
piles and if the tests work as expected. The frontend is built with
React and the backend is built with Ruby on Rails. The frontend
uses a REST API provided by the backend to create the exercises
and peer reviews. The sandbox has been adapted from Test My
Code [23], which is an automated assessment system that can be
used to test students’ solutions to given programs and to provide
feedback to students. The architecture is illustrated in Figure 1.

Crowdsourcing Programming Assignments with CrowdSorcerer

Clear model solution

Source code
import java.util.Scanner;
public class Submission {
public static void main(String[] args) {
Scanner reader = new Scanner(System.in);

// Write your solution here

System.out.println("How many fingers do you have?");
int answer = Integer.parselnt(reader.nextLine(});

if (answer == 10) {
System.out.println("Great!");
} else {

System.out.println("0h, that's extraordinary!");
}

Figure 3: The lines belonging only to the model solution are
marked by clicking them, which turns the lines blue. The
gray lines indicate boilerplate code.

Tests
10 Great! x
-4 Oh, that's extraordinary! %
Input Output x

+ Add field

Figure 4: Test cases. The user gives expected inputs and out-
puts for the completed program. The image has been ad-
justed slightly to fit the article.

3.2 Creating exercises

Each exercise includes instructions, a model solution, a template,
input-output test cases and tags. The student is expected to make
the distinction between the model solution and template by “hiding”
the most relevant lines of the program. When a line is marked as
a part of the model solution (blue lines in Fig. 3), it will not be
showed to others once an exercise is downloaded by a user wishing
to complete it. The lines which are not hidden form the template.
Some tags, defined by course instructors, are recommended, but
new ones can also be created freely by ordinary users.

Some boilerplate lines can be defined for the model solution of
an exercise. Such boilerplate lines are shown to the user (Fig. 3), but
they cannot be modified. The boilerplate typically consists of useful
imports as well as a class and a main method definition. Since the
tool is intended to be used early on in an introductory programming

ITiCSE’18, July 2-4, 2018, Larnaca, Cyprus

Give feedback

Test inputs and outputs are reasonable OO0 @
Assignment is creative @ @ 0O
Exercise is challenging but not too difficult ® e @ Q@6

Free comments about the exercise
Great work! Maybe some more creativity could have been used.

scanner println Add a new tag

Figure 5: Peer review interface. The user is given the assign-
ment (Fig. 2), source code (Fig. 3) and the tests (Fig. 4) and
a list of questions designed by the course instructor, and is
supposed to answer them using scale from 1 to 5, illustrated
with smiley faces. The user can also add more tags for the
exercise.

course, providing the boilerplate code allows students to focus on
the key factors that they are working on.

Each exercise that a student generates involves a specific concept,
which defines the instructions for the creator of an exercise, the
way their program should accept and return information, and peer
review questions. For example, an administrator can specify that the
exercise should involve for-loops, accept input from the standard
input, and output it by printing to the standard output - this way
the test runner knows where to look for the output of the program.
The exact exercise is then left for the student to define.

After a student has created an exercise, the template and model
solution are separated from each other and sent to the sandbox. The
sandbox ensures that the template and model solution compile sepa-
rately and that the model solution prints or returns values as stated
in the test cases. The exercise is not marked as completed before the
program compiles and all tests pass. The exercises are versioned,
so that even if an exercise is completed, it can be resubmitted, and
the latest version will be considered in the reviews.

The students are also required to provide at least one test case
for their exercise (Fig. 4). Tests are given as input-output combi-
nations that contain the input (possibly as multiple lines) and the
output (possibly in multiple lines). By default, the system checks
for equality of the output, but it can be also changed to a more
relaxed check that verifies that the output lines are (or are not) a
part of the output. In the particular example shown in Figure 4, the
test cases consist of inputs and their expected outputs. In addition,
the students can provide tags or keywords related to their exercise.

The creator of an exercise is notified about the progression with
messages such as "Testing model solution” shown above a progress
bar. If there are any errors, the system informs the user about
it, providing slightly pruned Java error messages and suggests to
fix these before resubmission. An exercise cannot be resubmitted
without modifications.

ITiICSE’18, July 2-4, 2018, Larnaca, Cyprus

3.3 Reviewing exercises

The students can also write peer reviews of the completed exercises
through the widget’s peer reviewing feature. The administrator-
specified general instructions for the assignment are shown as a
reminder for the reviewers. The students can download the zipped
model solution and exercise template to inspect and run the pro-
gram locally in a development environment of their choosing, or
use the view provided by the tool. The view has two tabs — one for
the template, and one for the model solution. The given test cases
are also shown and reviewed.

For the peer review process, the tool provides a list of hand-
picked review questions that the course instructor can modify and
add, such as "The instructions for the exercise are clear”, "Template
and model solution are clearly divided" and "The exercise is appro-
priately difficult”. In the current version, the answer options are
depicted as smiley faces ranging from a sad face to a happy face.

All the submitted exercises and peer reviews can be examined
through an administrator interface. The information collected from
the assignment submissions includes timestamps, the source code
and test cases, exercise description, status (whether the exercise
is finished or if there was an error, or in the rare case of server or
system failure, some in-between status), possible error messages
and information provided by the test server. Administrators and
instructors can browse the assignments created by students and see
the peer reviews given to them along with a peer-reviewed grade
average for the assignment. The peer reviews can also be examined
individually.

4 EXPERIENCE REPORT
4.1 Context

The tool was first used on a seven-week CS1 Java programming
course during the fall of 2017. The course first covered the basics
of programming using an imperative programming style, and then
delved into object-oriented programming. The course is primarily
targeted at first-year computer science students, but it is also taken
by students who study other subjects. Majority of the participants in
the course have no previous programming experience. The course
material is an online textbook that consists of written theory sec-
tions with various topics and exercises which are scattered within
the theory sections. The crowdsourcing tool was included in the
material similar to the exercises, in-between theory sections.

On the second week of the course, students were asked to design
their own exercise according to the instructions given, after which
the students were given a prompt to review exercises created by
others. Each student was asked to design one exercise, and review
three, one of which was their own. The crowdsourcing exercise and
peer reviewing process were not obligatory, and no points were
awarded, so students could skip these tasks if they chose to do so.
The system was not introduced nor discussed in course lectures.

4.2 Sample assignment

Upon the task of creating a programming assignment, the students
were given the following description and a brief introductory video
that shows how the tool works.

Pirttinen et al.

Create an assignment in which the student is supposed
to create a program that reads in an integer from the
user, analyzes the input using a set of conditional
statements and then outputs a string. In addition to
the assignment, write the model solution, tag the rows
that need to be hidden from the model solution, and
write the tests for the assignment.

4.3 Student responses

From the total of 300 participants in the course, 123 students at
least tried to complete the task. From the 123 students, 103 created
assignments with model solutions that compiled.

One noticeable issue was that 49 students out of the 123 did not
select rows to hide from the model solution that they wrote, leading
to a situation where the model solution would be instantaneously
given to students who are expected to work on the assignment. As
a result, some of the exercise templates and model solutions were
exactly the same. It is likely that the concept of a model solution and
exercise template were unclear to the students, and future study is
required to figure out the best way to mark these lines in this kind
of a tool. The current publicly available version of the tool disallows
submitting assignments without any model solution lines.

Below we have provided the model solutions from two student
generated sample assignments. In these samples, the Java-specific
class and method declarations have been omitted. The first one is a
rather typical student generated assignment, while the second is an
example of an assignment that is too hard considering the desired
difficulty level.

Scanner reader = new Scanner(System.in);
System.out.println("Planets in our solar system?");
int response = Integer.parselnt(reader.nextLine());

if (response == 8) {
System.out.println("You got it!");
} else if (response == 9) {
System.out.println("Forget Pluto, you silly!");
} else {
System.out.println("Count again!");

}

While the assignment above follows the task that was given to
students, the assignment below is an example of an assignment
where the student chose to introduce loops to the assignment.

Scanner reader = new Scanner(System.in);
System.out.println("Type a number ");

int number = Integer.parselnt(reader.nextLine());

if (number == 1) {
System.out.println("Not a prime number.");
return;

}

for(int i = 2; i * i <= number; i++) {
if(number % i == 0) {
System.out.println("Not a prime number.");

Crowdsourcing Programming Assignments with CrowdSorcerer

return;

3

System.out.println("Optimus prime!");

The majority of the student-generated programming assign-
ments followed the task, while a small amount of the students
(approx 10-15%) sought to create more complex assignments than
expected, which included e.g. the above prime number detector and
a rock-paper-scissors game.

4.4 Peer reviews

To assess the suitability of the student constructed programming
assignments, each student who had constructed an assignment was
then given three assignments to review. From these assignments,
two came from others and one from the student themself.

The reviews were given using the peer review functionality of
the component, into which we added eight dimensions; (1) reason-
ableness of test inputs and outputs; (2) assignment matching the
solution; (3) assignment clarity; (4) program clarity; (5) appropriate-
ness of the difficulty; (6) sticking to the task; (7) separation between
the model solution and the template; and (8) creativity.

A total of 316 peer reviews were given; the majority of the stu-
dents completed three peer reviews, while a few chose not to do
any. If a student had completed the previous assignment, the last of
the three exercises was their own, creating the opportunity for self-
evaluation. The means and standard deviations for each dimension
are given in Table 1. Overall, much of the feedback from students
regarding the student generated assignments was positive, most of
the dimensions having average scores over 4.4 out of 5.

Appropriateness of the assignment difficulty, separation between
the model solution and the template, and the creativity of the assign-
ment were ranked lower. The average for the assignment difficulty
dimension was 3.87 out of 5. The notion of “appropriateness” or
“suitability” is problematic, as the result can be interpreted in mul-
tiple ways; some students may consider the assignment too easy,
while others may consider it too hard.

The separation between the model solution and the template
(4.01 out of 5) and the creativity of the assignment (3.95 out of 5)
were rated low when compared to the rest of the questions. The low
score in separation between the model solution and the template is
likely explained by the user interface issue in the first version of
the tool where 49 students out of the 123 (~40%) did not separate
the model solution and template at all, while the lower value for the
creativity is likely explained by the rather simple problem outline:
the students were to write an assignment that asks for a number,
works with conditionals, and then outputs a string.

5 DISCUSSION

Crowdsourcing is a great way to allow online courses to scale [24].
While there are existing tools that facilitate crowdsourcing in terms
of peer assessment [15] and content creation [4], only a few of the
existing tools are explicitly aimed at supporting novice program-
mers in both creating and evaluating programming assignments.

ITiCSE’18, July 2-4, 2018, Larnaca, Cyprus

Table 1: Peer review scores for student generated assign-
ments. Students were given the opportunity to review oth-
ers’ assignments. In the review, the scale was from 1 (lowest)
to 5 (highest) using the faces shown in Figure 5. The averages
and standard deviations have been calculated from a total of
316 responses.

Question Mean Std.dev.
The test inputs and outputs were reasonable ~ 4.48 0.74
Solution corresponds to the assignment 4.59 0.75
The assignment is clear 4.45 0.74
The code is clear 4.50 0.71
Assignment difficulty is appropriate 3.87 0.97
Assignment asks what was required 4.58 0.77
Separation between the model solution and 4.01 1.29
the template is meaningful

The assignment is creative 3.95 0.98

For example, while CodeWrite [5] provides an opportunity to au-
thor assignments, the assignments are focused on implementation
of methods, and the quantitative reviewing focuses narrowly on the
“quality” of the assignment. Similarly, while CloudCoder [16] has
authoring and assignments are not restricted to methods, users are
expected to be familiar with regular expressions. Both of the above
mentioned systems are standalone, and do not currently provide
an option for embedding them to course materials.

CrowdSorcerer is be embeddable into online learning materials,
reducing the amount of systems that students need to use. It allows
the generation of free-form assignments where testing is not re-
stricted to specific method signatures, while still seeking a balance
in making the assignment easy to test through a simple input/output
-mechanism, which is common in automated assessment [11].

There is still room for improvement when considering the four
essential components for open educational resources outlined by
Porcello and Hsi [18]. Porcello and Hsi suggest that open educa-
tional resources should have common metadata, quality control,
community input, and interoperability. In our tool, in the spirit
of community input, we have included the students in creating
course content. We also hope to get feedback from other educators
and researchers working in the computer science education field.
Additionally, we control the quality of the assignments the students
create by both having the students peer review the assignments
they have created as well as having a method for an administrator
to review the assignments. Common metadata and interoperability
are admirable goals, which a single tool cannot solve by itself. How-
ever, an ITiCSE working group from 2014 has sought to address
these goals in the computer science education field [2].

As with any system, the ease of use plays a role in how much the
system is used. CrowdSorcerer has been designed as an embeddable
component that can be used as an integrated part of online course
materials. In our experiment, CrowdSorcerer was embedded to the
second week of materials in a seven week introductory program-
ming course. While creation of assignments was not mandatory
and students did not receive any additional marks for creating as-
signments, approximately 40% of the students chose to participate

ITiICSE’18, July 2-4, 2018, Larnaca, Cyprus

in the activity. At the same time, likely due to a user interface is-
sue, a part of the students created assignments in which the model
solution and the assignment template were identical.

Some of the students who created an assignment did not com-
plete any peer reviews, while some of the students who did not
create an assignment reviewed three assignments. It might be that
providing peer reviews was seen as a less laborious task, or that
students have interest in the assignments, even though they did not
have the time, creativity or interest to create an assignment them-
selves. In the experiment, most of the peer reviews were construc-
tive and gave helpful instructions to the creator of the assignment.

As the quality of an assignment is evaluated based on self and
peer reviews, the validity of the reviews and given grades should
be taken with a grain of salt. In addition, since the reviews are not
graded, some students put more effort to their reviews than others.
The reliability of peer reviews in the educational context has been
studied in for example the medical field [21]. To reduce the possible
bias caused by students consistently rating assignments too high
or too low, the grades can be normalized in relation to each other,
as is done in e.g. the SWoRD system [3].

6 CONCLUSIONS AND FUTURE WORK

In this article, we presented a system called CrowdSorcerer that
is used to create and evaluate programming assignments. When
compared to previous similar efforts such as CodeWrite [5] and
CloudCoder [16], one of the benefits of CrowdSorcerer is that it is
embeddable to online learning materials. This means that students
do not need to access a separate system or a separate site to use it.
Similarly, the tool provides an easy way for the students to include
unit tests with the assignment without requiring the students to be
proficient programmers — due to this, the tool can also be used as a
gentle introduction to software testing, a topic usually encountered
later in software engineering related studies.

In our case study, CrowdSorcerer was embedded to the second
week course materials of a seven week introductory programming
course. While the system was not introduced or discussed in lec-
tures, and students were not given any points or compensated
otherwise for using the system, approximately 40% of the students
in the course chose to generate at least one programming assign-
ment. During peer evaluations, the meaningfulness and clarity of
the assignments and the associated tests were generally rated over
four out of five, which suggests that many of the assignments could
be used as a part of a programming course.

In our current work, we are both developing CrowdSorcerer
and studying its usage. We are currently working on a gradual
transition in the test generation process of CrowdSorcerer so that
it would support generation of different types of tests. While users
currently write simple input-output -tests, future users are able
to choose a variety of options for writing the tests ranging from
simple input-output -tests to writing actual unit test suites. We are
also studying what types of characteristics influence the created
assignments: are more proficient students more likely to create
(good) assignments, or are there other factors that come into play?

REFERENCES

[1] John Bean and Shevawn Bogdan Eaton. 2001. The psychology underlying suc-
cessful retention practices. Journal of College Student Retention: Research, Theory

—
- o

[12

=
&

[14

[15

[16

[17
[18]

[19

[20

[21

~
oS

[23

[24

[25]

Pirttinen et al.

& Practice 3, 1 (2001), 73-89.

Peter Brusilovsky, Stephen Edwards, Amruth Kumar, Lauri Malmi, Luciana
Benotti, Duane Buck, Petri Ihantola, Rikki Prince, Teemu Sirki4, Sergey Sos-
novsky, et al. 2014. Increasing adoption of smart learning content for computer
science education. In Proc. of the Working Group Reports of the 2014 on Innovation
& Technology in Computer Science Education Conference. ACM, 31-57.

Kwangsu Cho, Christian D Schunn, and Roy W Wilson. 2006. Validity and
reliability of scaffolded peer assessment of writing from instructor and student
perspectives. Journal of Educational Psychology 98, 4 (2006), 891.

Paul Denny, John Hamer, Andrew Luxton-Reilly, and Helen Purchase. 2008.
PeerWise: students sharing their multiple choice questions. In Proc. of the fourth
international workshop on computing education research. ACM, 51-58.

Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
CodeWrite: supporting student-driven practice of java. In Proceedings of the 42nd
ACM technical symposium on Computer science education. ACM, 471-476.
Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. 2011. Crowdsourcing
Systems on the World-Wide Web. Commun. ACM 54, 4 (April 2011), 86-96.
Stephen Downes. 2012. Connectivism and connective knowledge. Essays on
meaning and learning networks. National Research Council Canada (2012).
Enrique Estellés-Arolas and Fernando Gonzalez-Ladrén-De-Guevara. 2012. To-
wards an Integrated Crowdsourcing Definition. J. Inf. Sci. 38, 2 (April 2012),
189-200.

Edward F Gehringer, Karishma Navalakha, and Reejesh Kadanjoth. 2011. A
Student-Written Wiki Textbook Supplement for a Parallel-Architecture Course.
Jeff Howe. 2006. The rise of crowdsourcing. Wired magazine 14, 6 (2006), 1-4.
Petri Thantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppéld. 2010. Review
of Recent Systems for Automatic Assessment of Programming Assignments.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli Calling ’10). ACM, New York, NY, USA, 86-93.

Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jirgen Borstler,
Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
Miguel Angel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,
and Daniel Toll. 2015. Educational Data Mining and Learning Analytics in
Programming: Literature Review and Case Studies. In Proc. of the 2015 ITiCSE on
Working Group Reports (ITICSE-WGR °15). ACM, New York, NY, USA, 41-63.
Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia, Kathryn Papadopoulos,
Justin Cheng, Daphne Koller, and Scott R. Klemmer. 2013. Peer and Self Assess-
ment in Massive Online Classes. ACM Trans. Comput.-Hum. Interact. 20, 6, Article
33 (Dec. 2013), 31 pages.

Leo Leppénen, Juho Leinonen, Petri Thantola, and Arto Hellas. 2017. Using
and collecting fine-grained usage data to improve online learning materials. In
Proceedings of the 39th International Conference on Software Engineering: Software
Engineering and Education Track. IEEE Press, 4-12.

Andrew Luxton-Reilly. 2009. A systematic review of tools that support peer
assessment. Computer Science Education 19, 4 (2009), 209-232.

Andrei Papancea, Jaime Spacco, and David Hovemeyer. 2013. An Open Platform
for Managing Short Programming Exercises. In Proc. of the Ninth Annual Interna-
tional ACM Conference on International Computing Education Research (ICER ’13).
ACM, New York, NY, USA, 47-52.

Nick Parlante. 2007. Nifty reflections. ACM SIGCSE Bulletin 39, 2 (2007), 25-26.
Darrell Porcello and Sherry Hsi. 2013. Crowdsourcing and curating online
education resources. Science 341, 6143 (2013), 240-241.

Kate Sanders, Marzieh Ahmadzadeh, Tony Clear, Stephen H. Edwards, Mikey
Goldweber, Chris Johnson, Raymond Lister, Robert McCartney, Elizabeth Patitsas,
and Jaime Spacco. 2013. The Canterbury QuestionBank: Building a Repository
of Multiple-choice CS1 and CS2 Questions. In Proc. of the ITiCSE Working Group
Reports Conference on Innovation and Technology in Computer Science Education-
working Group Reports (ITiCSE -WGR ’13). ACM, New York, NY, USA, 33-52.
Clifford A Shaffer, Ville Karavirta, Ari Korhonen, and Thomas L Naps. 2011.
OpenDSA: beginning a community active-ebook project. In Proc. of the 11th Koli
Calling Int. Conference on Computing Education Research. ACM, 112-117.

Renée Speyer, Walmari Pilz, Jolien Van Der Kruis, and Jan Wouter Brunings.
2011. Reliability and validity of student peer assessment in medical education: a
systematic review. Medical Teacher 33, 11 (2011), e572-€585.

Errol Thompson, Jacqueline Whalley, RF Lister, and Beth Simon. 2006. Code
classification as a learning and asssessment exercise for novice programmers.
National Advisory Committee on Computing Qualifications (2006).

Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pértel. 2013.
Scaffolding students’ learning using Test My Code. In Proc. of the 18th ACM
conference on Innovation and Tech. in Computer Science Education. ACM, 117-122.
Daniel S Weld, Eytan Adar, Lydia Chilton, Raphael Hoffmann, Eric Horvitz,
Mitchell Koch, James Landay, Christopher H Lin, and Mausam Mausam. 2012.
Personalized online education—a crowdsourcing challenge. In Workshops at the
Twenty-Sixth AAAI Conference on Artificial Intelligence. 1-31.

Wikipedia. 2018. Statistics — Wikipedia, The Free Encyclopedia. (2018). https:
//en.wikipedia.org/wiki/Special:Statistics [Online; accessed 01-January-2018].

https://en.wikipedia.org/wiki/Special:Statistics
https://en.wikipedia.org/wiki/Special:Statistics

	Abstract
	1 Introduction
	2 CrowdSourcing in Education
	3 CrowdSorcerer
	3.1 Architecture and design
	3.2 Creating exercises
	3.3 Reviewing exercises

	4 Experience Report
	4.1 Context
	4.2 Sample assignment
	4.3 Student responses
	4.4 Peer reviews

	5 Discussion
	6 Conclusions and Future work
	References

