
Experiences from Learnersourcing SQL Exercises: Do They Cover
Course Topics and Do Students Use Them?

Nea Pirttinen
University of Helsinki

Helsinki, Finland
nea.pirttinen@helsinki.fi

Arto Hellas
Aalto University
Espoo, Finland

arto.hellas@aalto.fi

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

ABSTRACT
Learnersourcing is an emerging phenomenon in computing educa-
tion research and practice. In learnersourcing, a crowd of students
participates in the creation of course resources such as exercises,
written materials, educational videos, and so on. In computing ed-
ucation research, learnersourcing has been studied especially for
the creation of multiple-choice questions and programming exer-
cises, where prior work has suggested that learnersourcing can
have multiple benefits for teachers and students alike. One result in
prior studies is that when students create learnersourced content,
the created content covers much of the learning objectives of the
course. The present work expands on this stream of work by study-
ing the use of a learnersourcing system in the context of teaching
SQL. We study to what extent learnersourced SQL exercises cover
course topics, and to what extent students complete learnersourced
exercises. Our results continue the parade of previous learnersourc-
ing studies, empirically demonstrating that learnersourced content
covers instructor-specified course topics and that students indeed
actively work on the learnersourced exercises. We discuss the im-
pact of these results on teaching with learnersourcing, highlight
possible explanations for our observations, and outline directions
for future research on learnersourcing.

CCS CONCEPTS
• Social and professional topics → Computing education; • Ap-
plied computing→ Interactive learning environments; • Informa-
tion systems→ Crowdsourcing.

KEYWORDS
learnersourcing, crowdsourcing, SQL, exercise creation, SQL exer-
cises, coverage of course topics, topic coverage, quality of learner-
sourced content

ACM Reference Format:
Nea Pirttinen, Arto Hellas, and Juho Leinonen. 2023. Experiences from
Learnersourcing SQL Exercises: Do They Cover Course Topics and Do
Students Use Them?. In Australasian Computing Education Conference (ACE
’23), January 30-February 3, 2023, Melbourne, VIC, Australia. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3576123.3576137

This work is licensed under a Creative Commons Attribution International
4.0 License.

ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9941-8/23/01.
https://doi.org/10.1145/3576123.3576137

1 INTRODUCTION
Learnersourcing is increasingly used in computing classrooms as
a part of the contributing student pedagogy approach, where stu-
dents are encouraged to contribute to their peers’ learning and value
the contributions of their peers [17]. In learnersourcing, students
participate in the creation of educational resources such as exer-
cises [7, 27], videos [14, 16] and wiki-based course materials [1, 15].
One of the earliest systems that focused on exercise creation is
PeerWise [7, 8] in which students can create multiple-choice ques-
tions (MCQs) and complete MCQs created by other students. While
PeerWise originated in the field of computing, due to the generic
nature of the learnersourced materials, it has seen use in other
fields as well such as psychology [18] and biology [26]. More re-
cently, systems for creating programming exercises [11, 27] and
SQL exercises [24] have been developed.

One of the appeals of using learnersourcing is to reduce the
time the instructor needs to spend on the creation of course mate-
rials, leaving more time for, for example, face-to-face support to
students. However, a concern related to this approach is whether
the resources created by students are of similar quality to those
created by the instructor, and whether the created resources cover
varying course topics. If the created resources do not cover all
course topics, the value of learnersourcing is naturally not as high
compared to if all course topics are covered. To further alleviate
teachers’ workload, automatic assessment of the materials created
by students should be supported as much as is viable. Systems sup-
porting assessment for SQL exercises are widely in use, utilising
both automatic comparison checks [2, 23, 32], as well as peer review
[4].

Prior work into the coverage of course topics of learnersourced
materials has found that the materials seem to cover a wide varity of
course topics [9]. However, prior work into the coverage of course
topics in learnersourcing has focused mostly on multiple-choice
questions, and it is not clear whether the same holds for SQL exer-
cises. In another study on the use of learnersourcing in the context
of SQL exercises has focused on the ratings learnersourced SQL
exercises receive [24], but did not analyse the use of the system.
The research gap this study seeks to fill is to examine (1) the cover-
age of course topics of learnersourced SQL exercises and (2) how
students use the SQL learnersourcing system, including analysing
when during the course do students use the system. Our research
questions for this work are as follows:

RQ1. What topics do students create SQL exercises for and what
keywords are included in created exercises?

RQ2. What topics and keywords are present in students’ SQL ex-
ercise submissions?

123

https://orcid.org/0000-0001-5249-5162
https://orcid.org/0000-0001-6502-209X
https://orcid.org/0000-0001-6829-9449
https://doi.org/10.1145/3576123.3576137
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576123.3576137
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576123.3576137&domain=pdf&date_stamp=2023-01-30

2 RELATEDWORK
2.1 Crowdsourcing, Contributing Student

Pedagogy, and Learnersourcing
In computing education, crowdsourcing – that is, the practice of
using a group of people to produce an artefact by completing small
tasks – has typically been used to create course materials. Efforts
such as the ITiCSE 2013 working group Canterbury QuestionBank
[34] host a sizable set of instructor-created multiple-choice ques-
tions related to various CS1 and CS2 topics. However, in most
recent cases, reported crowdsourcing efforts rely on students as
the “crowd”, as one key purpose of crowdsourcing is to alleviate
teachers’ workload and free resources that would have to be used
for, for example, question creation.

Contributing Student Pedagogy (CSP) [17] “encourages students
to contribute into the learning of other students, and to value the
contributions of others”. As a closely related idea, learnersourcing
[22], a form of crowdsourcing where the crowd consists of students,
guides students to create learning artefacts for each other, and
encourages using the sourced artefacts either on the same or a
future course iteration. In computing education, learnersourcing
has been used in various ways, such as to have students create
multiple-choice questions [7, 21], SQL exercises [24], programming
exercises [11, 27], open-ended questions [25, 33], and wiki-type
learning materials [1, 15], to mention a few.

2.2 Effects of Learnersourcing
Creating content, as opposed to only reading it, has been shown to
lead to improved recall [3]. This phenomenon is referred to as the
generation effect, which has been demonstrated in various domains,
computing included [35]. While the generation effect was originally
established and studied with simple memorisation tasks, it has also
been shown to generalise to more complex learning situations, such
as arithmetic problems [31], and multiple-choice questions [20].

The effects of learnersourcing have been studied in various con-
texts in computing education. Participating in question creation as
a preparation and revision strategy for introductory programming
exams led to significantly better performance in exams compared
to students who practiced with exercises created by their peers but
did not create their own [5]. The effects were most noticeable when
students answered exam questions on topics they had created exer-
cises for, highlighting the usefulness of creating content. Students
who created programming exercises, in addition to solving them,
achieved more than 10 % higher scores than the group of students
who only solved practice questions [6]. However, the effects are not
always as clear, and studies in both multiple-choice question [36]
and programming exercise creation [19] contexts have reported
finding no statistically significant difference in exam results.

2.3 Quality and Coverage of Learnersourced
Content

Previous studies on the repository coverage of learnersourced con-
tent have provided promising results, regardless of how much in-
structor intervention there is in choosing topics. In their study
on PeerWise, Denny et al. [9] concluded that the coverage of a
repository consisting of student-created exercises, even without
the teacher’s explicit guidance on which topics to create content

for, can result in a sizeable database covering all the major top-
ics discussed on the course. In another study, Purchase et al. [30]
investigated the quality of a PeerWise multiple-choice question
repository, finding the general quality of student-created questions
to be good, and that the peer review system the tool provides was
useful for finding erroneous exercises, thus improving the quality of
the repository through student-driven effort. Looking further into
the quality of student-created exercises, Denny et al. [10] reported
that students’ questions are very commonly clearly formatted and
correct, and that, similar to [30], students are able to detect and
correct erroneous exercises. In learnersourcing programming ex-
ercises, a study on CodeWrite [11] reports that students using the
tool create and practice a majority of the expected course topics.

3 METHODS
3.1 System
For the present study, we used SQL Trainer [24] which is a learn-
ersourcing system for practicing SQL queries. The system uses
PostgreSQL1 as the database containing exercises, and the H2 data-
base2 for automatic assessment of the exercises.

Teachers who use the system can define topics and databases,
while students who use the system create and complete exercises
using the teacher-provided databases within topic-specific areas.
Exercise creation is done by selecting a topic and a database, enter-
ing a name for the exercise, providing an exercise description, and
writing a sample solution (one or more SQL queries) for the created
exercise. Created exercises are added to the pool of exercises for the
topic, which are then used for practicing SQL queries. An exercise
can only be categorised under one topic.

If a student wants to practice writing SQL queries, they only
need to pick a topic from the list of teacher-generated topics. The
system then randomly selects an exercise that the student has not
yet completed from the pool of exercises for the topic, and the
exercise will then be shown to the student for practice. Students
are allowed to make multiple submissions for the exercise. Once
the student successfully completes the exercise, they can ask for a
new exercise on the same topic. A new exercise can also be asked
if the students choose not to attempt to complete the presently
given exercise. This can happen, for example, if the given exercise
is poorly tailored (which may happen in learnersourcing).

When an exercise is submitted, correctness is checked by cre-
ating two in-memory H2 database instances. For both instances,
any queries used to create the database chosen by the creator of
the exercise are executed. This is followed by running the sample
solution on one of the database instances, and the student’s solution
on the other instance. After this, the structure and contents of the
two databases, including primary keys etc., are compared, which
is followed by a comparison of the outputs of the last database
query to both instances. Simpler checks are also used to verify that
the student’s code does not simply output expected data without
querying the database. If the structure, contents, and the outputs
match, the exercise is deemed correct, while in other cases, the
exercise is deemed incorrect. After assessment, the two in-memory
databases are dismantled.

1https://www.postgresql.org/
2https://www.h2database.com

124

Table 1: Topics used in SQL Trainer listed based on their order
of appearance.

Topic

1 Selecting data from a table
2 Filtering and ordering data selected from a table
3 Selecting data from multiple tables
4 Selecting data from even more tables
5 Other approaches for joining tables
6 Adding and removing tables
7 Adding data to a database
8 Updating and removing data
9 Aggregating data with functions
10 Aggregating data using group by
11 Advanced data aggregation: having, order, etc.

3.2 Context and Data
SQL Trainer was used in three iterations of a 7-week introductory
databases course3 in the University of Helsinki, Finland. The in-
troductory databases course covers principles of SQL and working
with database systems as well as the topics such as data model-
ing, normalisation techniques, non-relational databases, building
applications that use databases, and so on.

SQL was primarily trained in the first two weeks of the course
during which basics of SQL were trained to gain a hands-on under-
standing of working with a database (topics listed in Table 1). SQL
Trainer was used as a drill-and-practice tool for learning SQL, as
a basic understanding and basic skills to apply it was one of the
learning objectives of the course.

The topics in the SQL trainer system were created so that they
followed the course materials, and students were guided to use
the system during the course. The eleven topics are outlined in
Table 1. In the course, approximately 10 % of the grade was based
on completing and creating SQL exercises (for full points, students
were expected to complete four exercises and to create one exercise
per course topic). Completing and creating more exercises than
were required for full points was possible, although no additional
incentives to do so were provided.

During the course iterations where SQL Trainer was included
in the material, 1569 students launched the system. Out of these
students, 1419 completed at least one exercise (90.4 %), while a total
of 1187 created at least one exercise of their own (75.7 %). In total,
1085 students provided a review for at least one exercise (69.2 %).
As we only have the data from SQL Trainer and not the course
itself, we do not have demographic data about the students, or data
about other activities students engaged with on the courses.

3One of the authors of this article was the responsible teacher for the course and also
developed the system.

Table 2: Mean, median, standard deviation and maximum
for the number of created and submitted exercises over the
whole population.

Created Submissions
Topic Mean Med SD Max Mean Med SD Max

1 0.83 1 0.61 5 8.77 7 8.81 79
2 0.76 1 0.55 5 10.87 9 11.28 101
3 0.71 1 0.56 4 16.42 12 19.39 203
4 0.67 1 0.55 4 12.03 8 19.84 499
5 0.42 0 0.56 5 10.25 7 13.80 189
6 0.67 1 0.55 4 7.53 6 8.28 78
7 0.67 1 0.53 4 6.02 5 6.94 87
8 0.66 1 0.55 4 7.09 6 8.32 105
9 0.65 1 0.54 4 7.93 6 9.45 111
10 0.60 1 0.53 3 14.98 10 19.85 321
11 0.56 1 0.54 4 16.06 9 24.12 357

3.3 Research Approach
Our approach to answering the research questions are as follows.
To answer RQ1, “What topics do students create SQL exercises for
and what keywords are included in created exercises?”, we analyse
the learnersourced SQL exercises. We focus on how many exercises
are created for each instructor-specified topic, how many students
create exercises per topic, as well as on which SQL keywords are
present in the created exercises and whether these relate to the
instructor-specified topics.

To answer RQ2, “What topics and keywords are present in students’
SQL exercise submissions?”, we analyse student submissions for
learnersourced SQL exercises. We examine how many exercises
students submit for each topic, andwhich SQL keywords are present
in student submissions.

For extracting SQL keywords, we analyse model solutions to
the learnersourced SQL exercises as well as the student submitted
solutions using substring match for a set of SQL keywords that
the instructor of the course expects students to learn through the
material. We took into account that some keywords are substrings
of other keywords, for example, join is a substring of inner join,
and modified our matching criteria accordingly. The full list of SQL
keywords used was the following: select, from, order by, on, join,
left join, right join, inner join, create, table, drop, insert, into, update,
set, delete, group by, having, distinct, where, min, max, sum, and, or,
not, is null, primary key, foreign key, in. For further inspection, we
included keywords that appeared at least 5 % of the time for any
topic in either the created exercises or student submissions. This
excluded inner join, which is a synonym for join, as well as sum,
and, or, not, is null, in from the list.

4 RESULTS
The full list of short topic descriptions can be found in Table 1, used
in all the following sections and while discussing the results. All
the results for created and submitted exercises for each topic are
reported per student.

4.1 Exercise Creation
We present results related to the first research question “What topics
do students create SQL exercises for and what keywords are included
in created exercises?” in this section.

125

Figure 1: Distribution of created and submitted exercises over the entire duration of the first course where the system was used
(top row) and the first two weeks (bottom row) of that course.

Table 3: Mean, median, standard deviation and maximum for
the number created and submitted exercises over the active
population. A student is considered active if they have at
least one submission for the topic.

Created Submissions
Topic Mean Med SD Max Mean Med SD Max

1 0.93 1 0.57 5 9.84 8 8.75 79
2 0.92 1 0.47 5 13.06 10 11.14 101
3 0.88 1 0.49 4 20.50 15 19.63 203
4 0.91 1 0.44 4 16.51 11 21.60 499
5 0.59 1 0.58 5 14.40 10 14.42 189
6 0.94 1 0.41 4 10.51 9 8.02 78
7 0.95 1 0.37 4 8.57 7 6.84 87
8 0.95 1 0.39 4 10.24 8 8.23 105
9 0.95 1 0.38 4 11.49 9 9.41 111
10 0.89 1 0.39 3 22.18 17 20.59 321
11 0.89 1 0.42 4 25.45 19 26.13 357

Table 4: The number of exercises created per topic, 11 335 in
total. Arranged in the order the topics appear in the course
material. The percentage in parentheses from the total cre-
ated exercises.

Topic Exercises created
1 1301 (11.6 %)
2 1205 (10.7 %)
3 1113 (9.9 %)
4 1048 (9.3 %)
5 666 (5.9 %)
6 1063 (9.5 %)
7 1047 (9.3 %)
8 1037 (9.2 %)
9 1028 (9.1 %)
10 948 (8.4 %)
11 879 (7.8 %)

126

Figure 2: The number of SQL keywords used per topic for
exercises created by students. Color legend: keyword used in
over 80 % of the created exercises for that topic in dark blue,
over 40 % light blue, over 10 % yellow, under 10 % gray, and 0
occurrences white.

The total number of exercises created for each topic can be found
in Table 4, arranged in the order in which the topics appear in the
course material. In total, 11 335 exercises were created across eleven
topics, ranging from the maximum of 1301 exercises for topic 1,
selecting data from a table, to minimum of 666 exercises for topic 5,
other approaches for joining tables. The exercises are fairly equally
distributed across all the topics, with topic 5 as the only notable
outlier. The distribution of created exercises can be seen on the
left-hand side of Figure 1, over the duration of the first 7-week
course where the system was used on the top and for the first two
weeks of that course on the bottom. Students were prompted to use
the system on weeks 1, 2, 4, and 7 – these can be seen as increase
in created exercises near the deadlines of those weeks. Creation of
exercises is mostly focused on the first two weeks of the course,
peaking at the very beginning of the course and before weekly
deadlines.

The numbers of occurrences of the different SQL keywords on
each topic for the created exercises are summarised in Figure 2.
Overall, students were able to recognise which keywords to use for
the task at hand and use them suitably to create functioning SQL
query exercises. There are some outliers, such as distinct, which,
while not strictly related to any given topic, occurs more often in
exercises created for topics 3-5.

For the overall user population, accounting for students who
used the system at some point but did not necessarily do so for each
topic, the mean number of created exercises per student per topic
ranges from 0.83 to 0.42 (Table 2), showing a general downward
trend with topic 5 as an outlier (mean 0.42). This indicates that
generally, students created fewer exercises as the course went on
(Table 4 and Figure 1). The standard deviation varies between 0.61
and 0.53, again showing a downward trend as the course progressed.

Table 5: The number of exercise submissions, 185 050 in
total. Arranged in the order the topics appear in the course
material. Correctness is the percentage of submissions for
the topic that were correct.

Topic Exercise submissions Correctness
1 13 753 (7.4 %) 59%
2 17 061 (9.2 %) 42%
3 25 763 (13.9 %) 23%
4 18 869 (10.2 %) 25%
5 16 090 (8.7 %) 28%
6 11 812 (6.4 %) 47%
7 9442 (5.1 %) 51%
8 11 119 (6.0 %) 43%
9 12 440 (6.7 %) 40%
10 23 507 (12.7 %) 19%
11 25 194 (13.6 %) 15%

The median for created exercises per students was 1 on all topics
except topic 5, other approaches for joining tables, where the median
was 0. The maximum of created exercises ranged from 3 to 5 per
topic.

Similar trends occur when inspecting the active student popula-
tions, as seen in Table 3, though not as clearly as with the whole
student population. A student is considered active for a topic if they
have made at least one submission to at least one exercise related
to that topic or if they created at least one exercise for the topic.
Across the topics, the mean ranges from 0.95 to 0.59, again with
topic 5 as the clearest outlier with a mean of 0.59. For the active
students, the standard deviation of created exercises varies between
0.57 and 0.37, with slightly lower variations in the latter topics.
At most, students create five exercises for one topic (maximum of
topics 1, 2, and 5). The median for created exercises is 1 per student
for all topics, and the maximum ranges again from 3 to 5.

4.2 Exercise Submissions
This section outlines results for RQ2, “What topics and keywords
are present in students’ SQL exercise submissions?”

The number of exercises submitted for each topic is outlined
in Table 5, arranged in the order the topics appear in the course
material. A total of 185 050 exercise submissions were made across
the eleven topics, ranging from the maximum of 25 763 exercises
for topic 3, selecting data from multiple tables, to minimum of 9442
exercises for topic 7, adding data to a database. Again, the exercise
submissions are fairly equally distributed across all the topics. Table
5 also includes the average correctness for each topic, that is, the
percentage of correct submissions out of all submissions. Typically,
a student makes more than one submission attempt before answer-
ing the exercise correctly, as the only way to get feedback for the
answer is through submitting the exercise. This means that several
incorrect submissions will lower the average correctness.

The distribution of submitted exercises can be seen on the right-
hand side of Figure 1, over the duration of a 7-week course on
the top and for the first two weeks on the bottom. Similarly to
the creation of exercises, submitting exercises is focused on the
first two weeks of the course, peaking at the very beginning and

127

Figure 3: The number of SQL keywords used per topic for
exercises submitted by students. Color legend: keyword used
in over 80 % of the exercise submissions for that topic in dark
blue, over 40 % light blue, over 10 % yellow, under 10 % gray,
and 0 occurrences white.

before weekly deadlines, as well as smaller increases when students
were reminded of the system in the material (weeks 1, 2, 4, and 7).
However, exercise submissions also have a notable spike at the end
of the course, just before the last deadline on week 7.

The numbers of occurrences for SQL keywords on each topic
for submitted exercises are summarised in Figure 3. Similar to the
created exercises, students were able to recognise which keywords
to use to complete the exercise. However, students used a much
wider range of keywords in their submissions, as almost all of the
inspected keywords appeared in every single topic at least once
(only 1 to 3 keywords missing in 7 topics total).

From the overall user population, the mean for the number of
submissions ranges from 6.02 to 16.42 (Table 2) for submitted exer-
cises with no obvious upward or downward trends. The standard
deviation varies between 6.94 and 24.12, again with no clear up-
ward or downward trends. The median for submissions per student
ranges from 6 to 12.

When inspecting the active student populations for each topic
(Table 3), the mean for the number of submissions ranges from
8.57 to 25.45, and the standard deviation between 6.84 and 26.13,
with slightly lower variations in the latter topics. The median for
submissions per student ranges from 7 to 19.

Curiously, the maximum number of attempts for a student for
exercise submissions was 499 on topic 4, selecting data from even
more tables. These attempts were made across six different exercises
on the topic, with one exercise amassing 267 submissions from one
student. Thus, the maximum number of submissions per student
ranges from 78 to 499.

5 DISCUSSION
In this section, we discuss how our results can be used to reflect
on the learnersourcing process, course topic coverage and course

structures. Generally, we can see from our results that students use
the keywords we would expect them to based on the topics and the
course material, and that these keywords match between exercise
creation and submission.

5.1 Course Structure and Topic Coverage
The topics in the data we used were created by the teacher and
followed the structure in the course. As there are a number of
students who drop out during the course, or skip some parts of the
course, there are students who may not practice some topics at all.
Dynamic online learning environment could allow changes in the
structure and order of course topics in the material, and seek to
have students practice all topics regardless of students omitting
some parts. One possibility would be utilising spaced repetition,
that is, reviewing newer and more difficult topics more often, and
older and more practiced topics less frequently. Similar topics could
be introduced at the same time and taught fully over a longer period
of time, as opposed to focusing on one topic at a time.

While in general the created exercises used the keywords that
were discussed in the course and highlighted by the topic, we also
observed that some students may not have used the material in
order. This was visible e.g. in the use of the SQL keyword distinct,
for which we saw some occurrences already in the third topic,
which students are directed to before they learn about distinct in
the course. Thus, it seems that some students are prone to using
new keywords, even if they are not required or necessarily expected
for the topic; this also highlights the possibility of students having
some prior experience on the topic.

Such behaviour can lead to learnersourced exercises that are
more advanced than the topic requires and may, in some cases, be
too complex for the topic’s expected level of difficulty. If the diffi-
culty of the topic is evaluated, for example, by peer review, more
difficult exercises could be offered as more advanced practice ques-
tions for students with prior knowledge. An interesting point for
future work could be studying whether the creation of too difficult
exercises could be automatically assessed with keyword parsing or
with other methods. Students could be then either noted through
the system that the keywords they are using are not necessarily
relevant or expected for the topic at hand, or the system could
automatically classify and move the exercises to another topic.

We also observed that combining concepts under a single topic
can lead to one keyword being used more than others in learner-
sourced exercises. For example, in topic 6, adding and removing
tables, the keyword create was used in 702 exercises, while the
keyword drop was used in 358 exercises. This suggests that the
teacher can, unintentionally, affect the contents and coverage of the
exercise repository by having multiple concepts under one topic.

There were also some keywords that we expected to be more
prominent, such as right join, inner join, and delete. If some key-
words are found lacking in a repository, they could be enforced
by introducing them as topics, or using them as examples in the
instructions. All the keywords shown in Figures 2 and 3 appeared
at least 5 % of the time for at least one topic in either the created
exercises or student submissions. Many keywords were used some
tens of times, but not enough to appear in our analysis.

128

5.2 Students’ Use of the System
Overall, students used SQL Trainer for practice quite nicely, as
outlined in Figure 1 and Tables 2, 3, and 5. For the most part, the
behaviour was in line with the grading criteria, where students were
expected to create at least one exercise per topic and to complete at
least four exercises. We did notice some students being more active
though, where some created multiple exercises, and some practiced
with the system considerably more than expected.

Students were prompted to use the system on weeks 1, 2, 4, and
7, and these can be seen as notable increases in both created ex-
ercises as well as submissions in Figure 1. Additionally, it seems
that students have used the system as a revision method before the
exam, as the submissions also increase notably at the end of the
course, just before the course exam. This is in line with student
behaviour patterns observed by Denny [5] with the learnersourc-
ing tool PeerWise. Denny et al. [12] have also found that in their
case, practice using student-created questions is strongly predic-
tive of subsequent test performance. This is something we would
be interested in investigating in the future in the context of SQL
exercises.

Correctness, reported per topic in Table 5, varies quite a bit
between topics. As correctness is reported as the percentage of
correct submissions out of all submissions, and the percentage
decreases the more submissions are made before correct submission,
we can discern between topics that seem easier or more difficult to
students. Topics do not seem to become linearly more difficult as
the course progresses – while the highest correctness percentage
if for topic 1 (59 %) and the lowest for topic 11 (15 %), there are
some notable outliers, such as topic 7, adding data to a database
with higher correctness at 51 %. We propose some future work on
the details of this in Section 6.1.

5.3 Keywords Used by Students
We also took a cursory look at the data related to the number
of distinct keywords present in the created exercises and student
submissions using an SQL parser instead of substring matching of
predefined keywords. The advantage to this is to not miss rarely
occurring keywords that are potentially missing from a predefined
keyword list. We found that the created exercises had fewer used
keywords per topic – for example, around 15 keywords were used
in the created exercises for topic 1, while in the submissions for
the same topic, approximately 65 unique keywords appeared in the
data. Most of the occurrences are very rare, and no new keywords
that would have passed the 5% appearance threshold we used in
the substring matching were found. This does, however, show that
students are aware of keywords that are not strictly related to the
topic at hand – or keywords that are not even mentioned in the
course –, and are able to use these to solve exercises, even if it is not
necessarily required. This may also indicate that the title and the
wording of the topic may limit students’ creation process to include
only keywords that are strictly relevant. This is not necessarily
unfavourable, as ideally, the created exercises should be as clear
as possible and such that students without prior knowledge are
able to complete them. In contrast, having keywords not taught
in the course (or keywords from latter course parts) in students’
submissions does not involve similar issues.

Inspecting some of the topics more closely, we can see that
the submissions for even the simplest selection exercises (topic 1,
selecting data from a table) have some occurrences of late-course
keywords that are clearly unnecessary for the topic, such as update.
One possibility here is that students who are already familiar with
the subject are trying out more advanced topics for fun, or some
students could be trying to hack or break the system. The system in
use did have protective measures in place to catch students trying to
trick (or hack) the system; these caused the student to be rickrolled
– that is, involuntarily redirected to YouTube page for Rick Astley’s
“Never GonnaGive YouUp”. It is also possible that, upon finding this,
some students may have been encouraged to explore the system
further than necessary, discussed next.

During data analysis, we also identified a student who had ex-
cessive submissions to topic 4, selecting data from even more tables,
totaling 499 submissions. These submissions were made on six dif-
ferent exercises related to this topic, with the maximum of 267
submissions for one exercise. While this could indicate tinkering,
i.e. doing repeated minor modifications to the query without a clear
plan in the hope that these modifications will eventually make
the query correct, it is also possible that the student was trying to
push the boundaries of the system; the course discussed some basic
security concepts including SQL injections.

5.4 Topics and Use of Learnersourcing in
Context

We acknowledge that all learnersourcing systems are used in con-
text, which influences how and when students use the system.
Further, learnersourcing systems have design decisions, which in-
fluence their use. As an example, the system that we used had
teacher pregenerated topics that students would then utilise. We do
not see that this is the only possible approach and envision three
variations when it comes to guiding the learnersourcing process
with topics, all with benefits and possible issues.

The first variation would be full freedom of topic selection, which
has been typical with PeerWise [7]. This can lead into unbalanced
repositories if students tend to lean towards creating exercises for
one topic more than others, typically at the beginning of the course
when topics are simpler. However, Denny et al. [9] have reported
that even with full freedom of choice, student-created exercises
formed a repository that covered all the major topics of the course.

The second variation would be to have major topics outlined
(e.g. by the instructor), but provide students freedom to create the
content of the exercises. This is the case presented in our study.
Based on our results, we report that the chosen topics receive
almost equal numbers of created exercises, even if there is a slight
decrease for topics that are introduced later in the course. This
may be partially because of student dropouts – there are simply
fewer students on the course at the time of topic 11. However, the
instructor is able to better enforce the practice of certain keywords
or topics through the use of the system, and possibly affect the
coverage of the repository if it seems to be lacking in some areas.
At the same time, this may lead to unwanted content in topics,
although based on our data the risk is not substantial.

The third variation would be to restrict keywords that students
can use when creating exercises. We are currently not aware of a

129

https://www.youtube.com/watch?v=dQw4w9WgXcQ

learnersourcing system that would not only outline the topic, but
also prevent students from using keywords that have been deemed
irrelevant for the topic. While a system like this would most likely
help create exercises that are easily classifiable and relevant to the
course content, it could be too restricting for the learnersourcing
process, hindering students’ creativity when they are creating an
exercise, or their engagement with the system.

More scaffolding might be beneficial for systems that create more
complex exercises, such as programming or SQL exercises. Multiple-
choice questions can be fairly easy to create, even with full freedom
of choice when it comes to the topic and the contents of the exercise,
and this freedom may allow for more creativity for the students.
For more complex creation tasks, some level of scaffolding may be
necessary, as just the act of creating an exercise is most likely new
(and somewhat daunting) to the students. Determining the correct
level of support students need for the creation task is important, as
the lack of proper instruction may lead to lower participation rates
and lower quality of created exercises.

5.5 Limitations
We acknowledge that our study comes with some limitations, which
we outline here.

The system was used in our specific context of an introductory
SQL course at a single university. Thus, it is possible that some of
the results would not generalise to other contexts. For example, it
is possible that there would be differences between creating SQL
exercises and other types of artefacts.

Our study did not inspect the difficulty of the student-created
exercises. Varying levels of difficulty is important for a comprehen-
sive repository, and it is possible that students are mostly creating
exercises that are on the simpler side, even for the more advanced
topics [28]. However, a previous study in the programming context
has found that students are able to create exercises with varying lev-
els of difficulty, even in an introductory programming course [29].

Creating and submitting answers to exercises awarded course
points that have an effect towards the final grade, which may en-
courage students to use the system more. It is possible that partici-
pation rates would be lower if no points were awarded.

As we used an author-created list of SQL keywords for the sub-
string matching, we acknowledge that our list of keywords is not
complete. However, based on the additional – although cursory –
check with an SQL parser, we did not find any additional commonly
used keywords that would have been missing from the list of key-
words created by the authors. Depending on the exact contents of
the course, this list of keyword could look very different in another
context.

The topic granularity was chosen by the teacher when the sys-
tem was first taken into use on the courses. However, the system
supports all levels of granularity, thus, making it possible to utilise
both coarser and finer topics if necessary.

6 CONCLUSION
In this paper, we studied the topic coverage of student-created SQL
exercises. To summarise, the answers to our research questions are
as follows:

RQ1. What topics do students create SQL exercises for and what
keywords are included in created exercises? Answer: Stu-
dents create exercises for all the major course topics. Slightly
more exercises are created for topics that occur near the
beginning of the course.

RQ2. What topics and keywords are present in students’ SQL exer-
cise submissions? Answer: Similar to the created exercises,
students submit answers to exercises of all of the major
course topics. Submissions do not have a clear downward
trend – instead, students seem to focus on a few specific
topics at the beginning and at the end of the course.

Based on our results, students are able to create a database of
SQL exercises with great course topic coverage with only a little
guidance from the lecturer. While there are still many angles to
consider, outlined in Section 6.1, learnersourcing SQL exercises
seems to show great potential of functioning as a study support
mechanism that can also alleviate teachers’ workload.

6.1 Future work
In the future, we are interested in studying the difficulty of student-
created SQL exercises – whether students create exercises with
varying difficulty levels, and if it is possible to classify the exercises
manually or automatically by their difficulty. Based on our results
on the correctness of the exercise submissions, we would also like
to investigate what makes some topics more difficult for students
than others.

Another important piece of future work would be evaluating the
learning effects of the system: whether creating and answering to
learnersourced SQL exercises affects students’ performance on the
course, as it has done in other learnersourcing contexts [5, 12, 13].
We are interested in examining the effect of giving course credit
on student behaviour and tool usage. One example could be testing
how students create and submit answers to exercises when credit
is given based on the number of created or submitted exercises
overall, not per topic.

Lastly, we would like to extend our current study to include
analysis on the quality of student questions. Additionally, we are
interested in students’ opinions of the system, and would like to
collect feedback to further improve system where necessary.

ACKNOWLEDGMENTS
We are grateful for the doctoral research grant awarded by Jenny
and Antti Wihuri Foundation to the first author.

REFERENCES
[1] Chris Bennett. 2009. Student-authoredwiki textbook in CS1. Journal of Computing

Sciences in Colleges 24, 6 (2009), 50–56.
[2] Amol Bhangdiya, Bikash Chandra, Biplab Kar, Bharath Radhakrishnan, K. V. Ma-

heshwara Reddy, Shetal Shah, and S. Sudarshan. 2015. The XDa-TA system for au-
tomated grading of SQL query assignments. In 2015 IEEE 31st International Confer-
ence on Data Engineering. 1468–1471. https://doi.org/10.1109/ICDE.2015.7113403

[3] Robert J Crutcher and Alice F Healy. 1989. Cognitive operations and the genera-
tion effect. Journal of Experimental Psychology: Learning, Memory, and Cognition
15, 4 (1989), 669.

[4] Michael de Raadt, Stijn Dekeyser, and Tien Yu Lee. 2006. Do Students SQLify? Im-
proving Learning Outcomes with Peer Review and Enhanced Computer Assisted
Assessment of Querying Skills (Baltic Sea ’06). Association for Computing Ma-
chinery, New York, NY, USA, 101–108. https://doi.org/10.1145/1315803.1315821

[5] Paul Denny. 2015. Generating Practice Questions as a Preparation Strategy for
Introductory Programming Exams. In Proceedings of the 46th ACM Technical

130

https://doi.org/10.1109/ICDE.2015.7113403
https://doi.org/10.1145/1315803.1315821

Symposium on Computer Science Education (Kansas City, Missouri, USA) (SIGCSE
’15). Association for Computing Machinery, New York, NY, USA, 278–283.

[6] Paul Denny, Diana Cukierman, and Jonathan Bhaskar. 2015. Measuring the Effect
of Inventing Practice Exercises on Learning in an Introductory Programming
Course. In Proceedings of the 15th Koli Calling Conference on Computing Education
Research (Koli, Finland) (Koli Calling ’15). Association for Computing Machinery,
New York, NY, USA, 13–22.

[7] Paul Denny, John Hamer, Andrew Luxton-Reilly, and Helen Purchase. 2008.
PeerWise: students sharing their multiple choice questions. In Proceedings of the
fourth international workshop on computing education research. 51–58.

[8] Paul Denny, Andrew Luxton-Reilly, and John Hamer. 2008. The PeerWise system
of student contributed assessment questions. In Proceedings of the tenth conference
on Australasian computing education-Volume 78. Citeseer, 69–74.

[9] Paul Denny, Andrew Luxton-Reilly, John Hamer, and Helen Purchase. 2009.
Coverage of Course Topics in a Student Generated MCQ Repository (ITiCSE
’09). Association for Computing Machinery, New York, NY, USA, 11–15. https:
//doi.org/10.1145/1562877.1562888

[10] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2009. Quality of Student
ContributedQuestions Using PeerWise. In Proceedings of the Eleventh Australasian
Conference on Computing Education - Volume 95 (Wellington, New Zealand) (ACE
’09). Australian Computer Society, Inc., AUS, 55–63.

[11] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
CodeWrite: Supporting Student-Driven Practice of Java. In Proceedings of the
42nd ACM Technical Symposium on Computer Science Education (Dallas, TX, USA)
(SIGCSE ’11). Association for ComputingMachinery, New York, NY, USA, 471–476.
https://doi.org/10.1145/1953163.1953299

[12] Paul Denny, Fiona McDonald, Ruth Empson, Philip Kelly, and Andrew Petersen.
2018. Empirical Support for a Causal Relationship Between Gamification and
Learning Outcomes. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1–13.

[13] Paul Denny, Ewan Tempero, Dawn Garbett, and Andrew Petersen. 2017. Examin-
ing a Student-Generated Question Activity Using Random Topic Assignment. In
Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education (Bologna, Italy) (ITiCSE ’17). Association for Computing Ma-
chinery, New York, NY, USA, 146–151. https://doi.org/10.1145/3059009.3059033

[14] Pablo Frank-Bolton and Rahul Simha. 2018. Docendo discimus: Students learn by
teaching peers through video. In Proceedings of the 49th ACM technical symposium
on computer science education. 473–478.

[15] Edward F Gehringer, Lillian Cassel, Katherine Deibel, and William Joel. 2008.
Wikis: collaborative learning for cs education. ACM SIGCSE Bulletin 40, 1 (2008),
379–380.

[16] Ana I González-Tablas and Pablo Martín-González. 2019. Student-Generated
Videos for Promoting Better Attitudes Towards Cryptography. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. 372–378.

[17] John Hamer, Quintin Cutts, Jana Jackova, Andrew Luxton-Reilly, Robert McCart-
ney, Helen Purchase, Charles Riedesel, Mara Saeli, Kate Sanders, and Judithe
Sheard. 2008. Contributing student pedagogy. ACM SIGCSE Bulletin 40, 4 (2008),
194–212.

[18] Piers DL Howe, Meredith McKague, Jason M Lodge, Anthea G Blunden, and
Geoffrey Saw. 2018. PeerWise: Evaluating the effectiveness of a web-based
learning aid in a second-year psychology subject. Psychology Learning & Teaching
17, 2 (2018), 166–176.

[19] Vilma Kangas, Nea Pirttinen, Henrik Nygren, Juho Leinonen, and Arto Hellas.
2019. Does Creating Programming Assignments with Tests Lead to Improved
Performance in Writing Unit Tests?. In Proceedings of the ACM Conference on
Global Computing Education (Chengdu,Sichuan, China) (CompEd ’19). Association
for Computing Machinery, New York, NY, USA, 106–112.

[20] Matthew R. Kelley, Elizabeth K. Chapman-Orr, Susanna Calkins, and Robert J.
Lemke. 2019. Generation and Retrieval Practice Effects in the Classroom Using
PeerWise. Teaching of Psychology 46, 2 (2019), 121–126.

[21] Hassan Khosravi, Kirsty Kitto, and Joseph Jay Williams. 2019. RiPPLE: A Crowd-
sourced Adaptive Platform for Recommendation of Learning Activities. Journal of
Learning Analytics 6, 3 (2019), 91–105. https://doi.org/10.48550/arXiv.1910.05522

[22] Juho Kim. 2015. Learnersourcing: improving learning with collective learner activity.
Ph. D. Dissertation. Massachusetts Institute of Technology. https://dspace.mit.

edu/handle/1721.1/101464
[23] Carsten Kleiner, Christopher Tebbe, and Felix Heine. 2013. Automated Grading

and Tutoring of SQL Statements to Improve Student Learning. In Proceedings of
the 13th Koli Calling International Conference on Computing Education Research
(Koli, Finland) (Koli Calling ’13). Association for Computing Machinery, New
York, NY, USA, 161–168. https://doi.org/10.1145/2526968.2526986

[24] Juho Leinonen, Nea Pirttinen, and Arto Hellas. 2020. Crowdsourcing Content
Creation for SQL Practice. In Proceedings of the 2020 ACMConference on Innovation
and Technology in Computer Science Education. 349–355.

[25] Andrew Luxton-Reilly, Beryl Plimmer, and Robert Sheehan. 2010. StudySieve:
A Tool That Supports Constructive Evaluation for Free-Response Questions. In
Proceedings of the 11th International Conference of the NZ Chapter of the ACM
Special Interest Group on Human-Computer Interaction (Auckland, New Zealand)
(CHINZ ’10). Association for Computing Machinery, New York, NY, USA, 65–68.
https://doi.org/10.1145/1832838.1832849

[26] Heather A McQueen, Cathy Shields, DJ Finnegan, J Higham, and MW Simmen.
2014. PeerWise provides significant academic benefits to biological science
students across diverse learning tasks, but with minimal instructor intervention.
Biochemistry and Molecular Biology Education 42, 5 (2014), 371–381.

[27] Nea Pirttinen, Vilma Kangas, Irene Nikkarinen, Henrik Nygren, Juho Leinonen,
and Arto Hellas. 2018. Crowdsourcing programming assignments with Crowd-
Sorcerer. In Proceedings of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. 326–331.

[28] Nea Pirttinen and Juho Leinonen. 2021. Exploring the Complexity of Crowd-
sourced Programming Assignments. In Seventh SPLICE Workshop at SIGCSE
2021 “CS Education Infrastructure for All III: From Ideas to Practice”. https:
//cssplice.github.io/SIGCSE21Workshop.html SPLICE@SIGCSE’21 Workshop CS
Education Infrastructure for All III: From Ideas to Practice, SPLICE’21 ; Confer-
ence date: 15-03-2021 Through 16-03-2021.

[29] Nea Pirttinen and Juho Leinonen. 2022. Can Students Review Their Peers?
Comparison of Peer and Instructor Reviews. In Proceedings of the 27th ACM
Conference on on Innovation and Technology in Computer Science Education Vol. 1
(Dublin, Ireland) (ITiCSE ’22). Association for Computing Machinery, New York,
NY, USA, 12–18. https://doi.org/10.1145/3502718.3524762

[30] Helen Purchase, John Hamer, Paul Denny, and Andrew Luxton-Reilly. 2010. The
Quality of a PeerWise MCQ Repository. In Proceedings of the Twelfth Australasian
Conference on Computing Education - Volume 103 (Brisbane, Australia) (ACE ’10).
Australian Computer Society, Inc., AUS, 137–146.

[31] Bethany Rittle-Johnson and Alexander Kmicikewycz. 2008. When generating
answers benefits arithmetic skill: the importance of prior knowledge. Journal of
Experimental Child Psychology 101, 1 (2008), 75–81.

[32] Uwe Röhm, Lexi Brent, Tim Dawborn, and Bryn Jeffries. 2020. SQL for Data
Scientists: Designing SQL Tutorials for Scalable Online Teaching. Proc. VLDB
Endow. 13, 12 (sep 2020), 2989–2992. https://doi.org/10.14778/3415478.3415526

[33] Sam Saarinen, Shriram Krishnamurthi, Kathi Fisler, and Preston Tunnell Wilson.
2019. Harnessing theWisdom of the Classes: Classsourcing andMachine Learning
for Assessment Instrument Generation. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19).
Association for Computing Machinery, New York, NY, USA, 606–612. https:
//doi.org/10.1145/3287324.3287504

[34] Kate Sanders, Marzieh Ahmadzadeh, Tony Clear, Stephen H. Edwards, Mikey
Goldweber, Chris Johnson, Raymond Lister, Robert McCartney, Elizabeth Patitsas,
and Jaime Spacco. 2013. The Canterbury QuestionBank: Building a Repository
of Multiple-Choice CS1 and CS2 Questions. In Proceedings of the ITiCSE Working
Group Reports Conference on Innovation and Technology in Computer Science
Education-Working Group Reports (Canterbury, England, United Kingdom) (ITiCSE
-WGR ’13). Association for Computing Machinery, New York, NY, USA, 33–52.
https://doi.org/10.1145/2543882.2543885

[35] Dominique L Scapin. 1982. Generation effect, structuring and computer com-
mands. Behaviour & Information Technology 1, 4 (1982), 401–410.

[36] Anjali Singh, Christopher Brooks, Yiwen Lin, andWarren Li. 2021. What’s In It for
the Learners? Evidence from a Randomized Field Experiment on Learnersourcing
Questions in a MOOC. In Proceedings of the Eighth ACM Conference on Learning @
Scale (Virtual Event, Germany) (L@S ’21). Association for Computing Machinery,
New York, NY, USA, 221–233.

131

https://doi.org/10.1145/1562877.1562888
https://doi.org/10.1145/1562877.1562888
https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1145/3059009.3059033
https://doi.org/10.48550/arXiv.1910.05522
https://dspace.mit.edu/handle/1721.1/101464
https://dspace.mit.edu/handle/1721.1/101464
https://doi.org/10.1145/2526968.2526986
https://doi.org/10.1145/1832838.1832849
https://cssplice.github.io/SIGCSE21Workshop.html
https://cssplice.github.io/SIGCSE21Workshop.html
https://doi.org/10.1145/3502718.3524762
https://doi.org/10.14778/3415478.3415526
https://doi.org/10.1145/3287324.3287504
https://doi.org/10.1145/3287324.3287504
https://doi.org/10.1145/2543882.2543885

	Abstract
	1 Introduction
	2 Related Work
	2.1 Crowdsourcing, Contributing Student Pedagogy, and Learnersourcing
	2.2 Effects of Learnersourcing
	2.3 Quality and Coverage of Learnersourced Content

	3 Methods
	3.1 System
	3.2 Context and Data
	3.3 Research Approach

	4 Results
	4.1 Exercise Creation
	4.2 Exercise Submissions

	5 Discussion
	5.1 Course Structure and Topic Coverage
	5.2 Students' Use of the System
	5.3 Keywords Used by Students
	5.4 Topics and Use of Learnersourcing in Context
	5.5 Limitations

	6 Conclusion
	6.1 Future work

	Acknowledgments
	References

