IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 31 January 2023, accepted 26 February 2023, date of publication 6 March 2023, date of current version 10 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3253642

== PErsPECTIVE

Lessons Learned From Four Computing Education
Crowdsourcing Systems

NEA PIRTTINEN ', PAUL DENNY 2, ARTO HELLAS?, AND JUHO LEINONEN?

! Department of Computer Science, University of Helsinki, 00014 Helsinki, Finland
2School of Computer Science, The University of Auckland, Auckland 1142, New Zealand
3Department of Computer Science, Aalto University, 00076 Espoo, Finland

Corresponding author: Nea Pirttinen (nea.pirttinen @helsinki.fi)

The work of Nea Pirttinen was supported by the Jenny and Antti Wihuri Foundation. The work of Juho Leinonen was supported by the Ulla
Tuominen Foundation.

ABSTRACT Crowdsourcing is a general term that describes the practice of many individuals working
collectively to achieve a common goal or complete a task, often involving the generation of content. In an
educational context, crowdsourcing of learning materials — where students create resources that can be used
by other learners — offers several benefits. Students benefit from the act of producing resources as well as from
using the resources. Despite benefits, instructors may be hesitant to adopt crowdsourcing for several reasons,
such as concerns around the quality of content produced by students and the perceptions students may have of
creating resources for their peers. While prior work has explored crowdsourcing concerns within the context
of individual tools, lessons that are generalisable across multiple platforms and derived from practical use
can provide considerably more robust insights. In this perspective article, we present four crowdsourcing
tools that we have developed and used in computing classrooms. From our previous studies and experience,
we derive lessons which shed new light on some of the concerns that are typical for instructors looking
to adopt such tools. We find that across multiple contexts, students are capable of generating high quality
learning content which provides good coverage of key concepts. Although students do appear hesitant to
engage with new kinds of activities, various types of incentives have proven effective. Finally, although
studies on learning effects have shown mixed results, no negative outcomes have been observed. In light of
these lessons, we hope to see a greater uptake and use of crowdsourcing in computing education.

INDEX TERMS Contributing student pedagogy, crowdsourcing, crowdsourcing systems, learnersourcing.

I. INTRODUCTION participate in crowdsourcing efforts. One such effort, com-

Crowdsourcing is the practice of having a large group of indi-
viduals contribute towards a common goal. The common goal
may be grandiose such as building the largest encyclopedia in
the world (i.e. Wikipedia) or something more modest, such as
coming up with ideas for improving the local neighborhood.
Often, reaching the common goal can be divided into smaller
tasks, such as writing a single entry into Wikipedia, which
then contributes towards reaching the common goal.

While there exist paid crowdsourcing services, such as
Amazon MTurk, researchers and educators have had students

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott

22982

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

monly used in education, is to have students create assign-
ments into assignment pools [1], [2], which then can be
shared to other students for learning and rehearsal. This act
of using students as a crowd in a crowdsourcing activity is
sometimes referred to as learnersourcing [3] — in this article,
we include learnersourcing under the more commonly used
banner of crowdsourcing. In computing education research,
crowdsourcing has been used, for example, to create multiple
choice questions [1], [4], introductory programming assign-
ments [2], [5], and SQL exercises [6].

An instructor who considers adopting a crowdsourcing
system for the first time may have several concerns. One
concern is related to the quality of the crowdsourced content:

VOLUME 11, 2023

https://orcid.org/0000-0001-5249-5162
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0002-0945-2674

N. Pirttinen et al.: Lessons Learned From Four Computing Education Crowdsourcing Systems

IEEE Access

(1) can students really create artefacts such as assignments
or course materials with high enough quality that they could
serve as useful resources for other students? Instructors might
also be hesitant to start using crowdsourcing systems due to
(2) concerns around the time needed to set up and configure
the tools. While this concern is relevant to the adoption of any
new technology, students may require additional guidance
to appreciate the benefits of crowdsourcing and support to
use the tools effectively. Related to this are concerns around
engagement — (3) if students do not apply appropriate effort
to cooperate, the benefits of crowdsourcing are lost. Perhaps
most importantly, instructors may question whether (4) the
time students spend engaging with crowdsourcing tools is
well spent, or whether different tasks would lead to supe-
rior learning outcomes. This paper strives to address these
concerns using previous studies and the authors’ perspectives
from the use of educational tools that utilise crowdsourcing.

In this perspective article, we present four existing crowd-
sourcing tools we have developed and used in computing
classrooms. We describe our motivations behind developing
the systems and their purpose, what types of artefacts students
create in the systems, and how these artefacts are evaluated.
The primary contribution of this work is synthesizing lessons,
supported by existing literature, that directly target some of
the previously identified concerns.

This article is organised as follows. In Section II, we pro-
vide a background to research in crowdsourcing in education,
as well as outline some known challenges. In Section III,
we introduce four crowdsourcing systems used in the con-
text of computing education. Section IV summarises various
lessons learned, both from previous research on the crowd-
sourcing tools, as well as from the authors’ own experiences.
Section V concludes our perspective, addressing known chal-
lenges and potential solutions.

Il. BACKGROUND

A. STUDENTS AS CONTRIBUTORS

While traditional models of teaching can be viewed as sepa-
rating students and teachers into consumers and producers,
the contributing student approach described by Collis and
Moonen [7] involves students in preparing learning materials
that can be shared with the class. A key part of the con-
tributing student approach is the (technical) infrastructure,
which supports the creation and dissemination of learning
resources to others. Within computing education research,
Hamer [8] described experiences from using the contributing
student approach in a data structures course and in a formal
methods course — many weaker students thrived using the
approach.

This work, alongside that of an ITiCSE working group, led
to the introduction of the term Contributing Student Peda-
gogy (CSP) to the computing education community. CSP is
defined as a pedagogy that encourages students to contribute
to the learning of others and to value the contributions of

VOLUME 11, 2023

others [9]. The ITiCSE working group emphasized the dual
view to student contributions; (1) students contribute to the
learning of others through a variety of forms, and (2) the stu-
dents value the contributions of others [9]. The working group
further outlined common characteristics of CSP, including
a focus on content instead of collaboration, assessing the
quality of contributions, and facilitating the contributions
through technology [9].

One aspect that is often given too little attention is students’
contributions in peer assessment and peer-review activities,
including the key step of evaluating artefacts. While peer
assessment is often used to support the assessment pro-
cess conducted by the teacher (see e.g. [10]), it involves
students evaluating the contributions of other students [11]
and, potentially, valuing these contributions where they pro-
vide actionable feedback that can improve the quality of a
piece of work [12]. Such evaluation can serve multiple pur-
poses, including providing insight on the created resources
to the instructor, providing constructive feedback to the cre-
ators of the resources, and learning during the evaluation
process [13].

B. CREATING, USING, LEARNING

When students engage in creating content that targets the con-
cepts they are learning in a course, there are multiple learning
effects at play. Before or during the process of creating an
artefact, for example, a question or problem to be answered
by their peers, students create self-explanations of the learned
content for themselves [14]. This effect is particularly acute
when students are expected to provide model solutions for
their problems. There are differences in the quality and quan-
tity of self-explanations between students; some are better at
monitoring their comprehension failures and successes than
others [14]. In general, however, the self-explanation effect
suggests that students who explain examples to themselves
learn better than those who do not [15].

Creating content, as opposed to simply reading content,
also leads to improved recall [16]. This is referred to as the
generation effect, which has been demonstrated in a wide
variety of domains [17], [18], [19]. The effect was originally
established within the context of memorisation tasks, where
participants required to complete partial words in a list of
word pairs tended to exhibit greater recall of the words com-
pared to participants presented with an already completed list.
Beyond simple memorisation of word pairs, the generation
effect has been shown to generalise to more complex learning
materials such as arithmetic problems [20], pictures of objects
or scenes [18] and multiple-choice questions [21].

The generation effect is also related to the more broad
testing effect, which states that being tested on previously
studied material — taking tests — improves retention of the
studied content [22], [23]. When compared to simply study-
ing learning materials, taking tests during studying has been
shown to improve recall especially in delayed tests, where a

22983

IEEE Access

N. Pirttinen et al.: Lessons Learned From Four Computing Education Crowdsourcing Systems

final retention test is given at a later time [22]. In problem-
solving, creating a solution is key; if a student simply tries to
remember a solution presented to them, instead of actively
solving the problem themselves, subsequent recall of the
solution will be more difficult [24].

In general, having more learning content that provides
opportunities for testing, be it from a crowdsourcing system
or from the teacher, is beneficial for students. Providing feed-
back during testing can further enhance the testing effect [25],
although there are some specific conditions where feedback
may not be beneficial [26]. A large quantity of learning mate-
rial can also support learning by facilitating distributed prac-
tice, i.e. distributing the learning over time and rehearsing the
to-be-learned content repeatedly [27]. Distributed practice
(and spaced repetition) has been shown to be more effective
than massed practice, i.e. studying the source material for a
longer duration in a single session [27], [28].

C. KNOWN CHALLENGES

There are a multitude of challenges related to CSP and crowd-
sourcing that have been voiced by researchers. In paid crowd-
sourcing, there have been concerns about the quality of data;
researchers have posited that collected data can be inaccurate
or even completely invalid [29], [30]. Although paid crowd-
sourcing has been used within computing education research
(see e.g. [31], [32], [33], [34], [35], [36]), data quality has
not received significant attention [33]. The concerns about
data quality apply equally to learnersourcing contexts where
students are not paid; this is a common instructor concern that
we look to address in the lessons we synthesize in the current
work.

Other concerns when using crowdsourcing in education
include possible problems in fairness or uneven exposure to
the content [8]; if, for example, content is distributed at ran-
dom across all students, one could argue that many students
may not gain access to the highest quality content available.
Similarly, if content is created jointly, there is a need to dis-
tinguish between individual and group contributions [7], so as
to minimise the risks associated with freeloading. One might
also worry about the possible reduced role of the teacher, who
no longer is in full control over the content that students see.
Students’ expectations towards their own roles in the course
must also change — students could, for example, question why
they should create content for their peers, as they may view
this as the responsibility of the teacher [7].

Student engagement with crowdsourced activities also
varies. For example, some students may contribute to cre-
ating materials, but they might not read what others have
created [8]. Requiring all students to contribute content to a
shared resource may lead to an increased incidence of plagia-
rism [7]. When publishing content that is visible to others,
students who lack confidence may have concerns around
being identified. Indeed, being identifiable influences how
students behave and rate content produced by others, includ-
ing introducing biases around gender and nationality [37].

22984

PeerWise*

Introduction to Science (Sem 1, 2022)

You are logged in as - Logout

Home | Main menu

Reputation score

@ You have a new connection request! MO View my peers 2176
Questioning: 34
Answering: 561
Rating: 152
Your questions
Answer score
view » | You have published 4 guestions 184

@ You have 3 new comments on your questions view...

Answered questions

You have answered 39 questions

V¥ 1 wou have written 12 comments about these questions

Unanswered questions

There are currently 693 guestions you may answer
© 18 unanswered questions by the 3 authors you are following view...

o g <
- ®®® e

Start a new quiz View my peers View leaderboards Provide feedback

view »

FIGURE 1. The main menu of the PeerWise system.

Ill. CROWDSOURCING SYSTEMS

A. PeerWise

PeerWise [1] is a web-based platform on which students cre-
ate, publish and answer multiple-choice questions. Instruc-
tors and students use the same interface, although additional
features are available for instructors to run reports and man-
age permissions.

The main artefacts produced in PeerWise are multiple-
choice questions, consisting of three primary components:
the question text (or stem), a set of answer options (including
one correct answer), and an explanation. In addition to this,
each published question has an associated comment thread
to support student discussion, tags (or topics) which can be
used for searching, and ratings for both quality and difficulty
(which are also aggregated and used for filtering questions).
As soon as a student publishes a question, it is visible for
other students to answer. A student attempting a question is
shown the question text and the list of answer options, and
only after submitting an answer are they shown the correct
option and the explanation as provided by the author. At this
stage, they can also write comments and submit a rating for
the question. Instructors can suggest a set of tags for students
to choose from, and can assign ‘‘administrator comments”’
to questions which are highlighted separately from student
written comments.

A common use of question repositories in PeerWise
by students is for review and practice purposes leading
up to summative tests and exams. Prior work has shown
that answering activity in PeerWise typically increases
rapidly before a test [38], and that answering questions is
strongly predictive of subsequent test performance [39], [40].

VOLUME 11, 2023

N. Pirttinen et al.: Lessons Learned From Four Computing Education Crowdsourcing Systems

IEEE Access

TABLE 1. An overview of the differences in the creation phase of the crowdsourcing process between the four tools: PeerWise, CodeWrite, CrowdSorcerer,

and SQL trainer.

Artefact type Instructor provides Student creates Artefact destination
PeerWise MCQs - Question text, correct answer, explanation, tags Other students
CodeWrite Programming exercises - Question text, function header, model solution, test cases, tags ~ Other students
CrowdSorcerer ~ Programming exercises Topic Question text, template, model solution, test cases, tags Instructor, other students (review only)
SQL Trainer SQL exercises Topic, databases Question text, model solution Other students

TABLE 2. An overview of the differences in the artefact review phase of the crowdsourcing process for the four tools.

Artefact verification Artefact review

Other students see

PeerWise No verification Other students after they complete assignment
CodeWrite Has to compile and pass created tests ~ Other students after they complete assignment
CrowdSorcerer ~ Has to compile and pass created tests ~ Other students as a separate task

SQL Trainer Has to compile Other students after they complete assignment

Question text, MCQ options, correctness of answer and explanation
Question text, function header, failing tests

Question text, model solution, test cases (when reviewing)

Question text, database schema, expected output, correctness of answer

Instructors are also able to make use of the questions, for
example by reviewing a question repository to identify topics
that are challenging for students, or by selecting high-quality
questions for use on summative tests and exams.

Questions are published immediately, without any auto-
matic verification. When students attempt to answer ques-
tions, their answers are assessed automatically by PeerWise,
through comparison with the question author’s suggested
answer, and the answers submitted to the question by other
students. Finally, students can rate the quality and difficulty
of questions as they answer them.

PeerWise has gained widespread use, attracting contri-
butions from 900,000 students across 3,000 institutions,
including more than 80% of the Association of Common-
wealth Universities (ACU) institutions across the UK and
Canada [41]. The tool hosts more than 6,500,000 multi-
ple choice questions, and 240,000,000 answers, ratings, and
comments.

B. CodeWrite

CodeWrite [5] is a web-based platform on which students cre-
ate, publish and answer function-based programming exer-
cises. Given the need to safely execute student-submitted
code for programming exercises, CodeWrite uses the Jobe-
Server test server! which supports a wide variety of program-
ming languages.

The primary artefacts produced in CodeWrite are
function-based programming exercises. Each exercise con-
sists of four main components: a text description of the
problem to be solved, a function header (with function name,
inputs and output type where necessary), a set of func-
tional test cases described as input/output pairs, and a model
solution.

When a student creates a question in CodeWrite, they
must provide a model solution that successfully passes all
of the test cases. Tests which fail are highlighted, and the
author is able to correct these components of the question
and resubmit. Questions are only published, and visible to

1 https://github.com/trampgeek/jobe

VOLUME 11, 2023

other students in the course, once a working model solution
is provided. Question authors can also tag their questions with
relevant topics.

Students attempting questions in CodeWrite are shown the
text description of the problem and the function header, and
they edit their code within the browser. Upon submitting,
any failing tests are highlighted to the student and they can
edit their solution and resubmit. Once a successful solution
has been submitted, the student can access a comment thread
for the question, as well as submit a quality and difficulty
rating. In addition, all previous successful submissions made
by other students are revealed. This allows students to observe
the variety of ways that the problem can be solved, and to
compare their own code with potentially more efficient and
elegant solutions.

All submitted code — either model solutions submitted by
authors, or attempts submitted by other students — is executed
in a test server. If the code does not compile, or otherwise
contains syntax errors, the error messages generated by the
corresponding compiler or interpreter are displayed to the
student. If the code runs and passes all of the test cases it
is considered successful, otherwise the failing test cases are
highlighted to the student (passing tests are also shown).
Students can rate the quality of the questions themselves,
as well as evaluate the solutions submitted by other students
using a simple up/down voting mechanism.

CodeWrite has been used in two institutions, the University
of Auckland and Simon Fraser University on over 80 pro-
gramming courses by 21,000 students.

C. CrowdSorcerer
CrowdSorcerer [2] is a computing education tool for learning
programming. The artefacts produced with CrowdSorcerer
are full, working programming assignments with handouts,
model solutions, and test cases, all designed by the student
using the tool. Teachers typically provide some guidance
to this process, such as “Create an assignment that uses
for-loops™.

Test cases for checking attempted solutions are designed
by the assignment author. Building of the test cases is

22985

IEEE Access

N. Pirttinen et al.: Lessons Learned From Four Computing Education Crowdsourcing Systems

Assignment

Write a program that asks what kind of a drink the user wants and then tells its price.
Use a hashmap and write your code inside the method runProgram.
Drinks and their prices:

1. Coffee, 3.5€

2 Tea, 2.5 €
3. Coke, 3 €
Source code

import java.util.*;
public class Submission {

public static void main(Stringll args) {
Scanner sc = new Scanner(System.in);
runProgram(sc);

public static veid runProgram(Scanner sc) {
// Write your code here

HashMap<string, String> menu = new HashMap<>();
menu.put("Coffee", "3.5 €");

menu.put("Tea”, "2.5 €");

menu.put("Coke", *3 €");

System.out.println("Here's our menu: ");
menu. forEach((drink, price) -> System.out.println(drink + *, *
System.out.println("what can I get you?");

+ price));

String drink = sc.nextLine();
System.out.println("Here you go! It is " + menu.get(drink));

DODODEEODODEOOENEEEOODOODODODDOD

FIGURE 2. The basic assignment creation view of CrowdSorcerer.

scaffolded so that students are introduced to the process step-
by-step: first, creating simple input-output pairs, and later,
full test methods. Created assignments can also be tagged,
using common tags suggested by the system (e.g. “if-else”,
“for-loop”’) or custom tags.

Students attempting an assignment in CrowdSorcerer only
see the handout, and are provided with the model solution
only after completing the assignment. The assignments are
open-ended — even though the students provide a model solu-
tion to their programming assignment, it is possible that the
correct end result can be achieved through different means.
For teachers, CrowdSorcerer can be an easy way of adding
different types of practice into the course material, and col-
lecting a database of simple programming assignments that
can be used in future course iterations.

CrowdSorcerer assesses the programming assignments
automatically after they are submitted. The model solution
is sent to an adapted Test My Code?® [42] test server that
acts as an automated assessment system. The test server
checks for any compilation errors, and if there are none,
runs the student-provided test cases for the model solution.
An assignment is only marked ‘finished’, and published to
other students, when all tests pass. All finished assignments
are moved into a peer review pool and, during the peer review
process, students answer an instructor-provided set of review
statements on a Likert scale and give short written feedback.
The reviewers also give the assignment tags they find suitable,
and these tags can be cross-referenced with the assignment
creator’s tags when categorising the assignments.

‘While CrowdSorcerer is not in active use at the moment,
during previous years, it has been used to create over 13,300
exercises and 17,000 peer reviews.

2https:// github.com/testmycode

22986

D. SQL TRAINER

SQL Trainer [6] is a semi-standalone system for practicing
SQL queries. Students using the system work on SQL assign-
ments from a range of topics (specified by the teacher); these
topics can range from simple and complex SQL queries to
queries that modify the database schema including creating,
removing, and updating tables.

Two views are provided for artefact creation. Teachers
(identified by a role received through the OAuth protocol)
can define databases and topics, as well as create SQL assign-
ments. Databases are defined by providing a publicly visible
name for the database and a set of SQL statements used for
creating the database. Topics, which are effectively assign-
ment categories, are defined by providing a name, a descrip-
tion, and an ordering that is used when listing the topics. Both
students and teachers can create assignments. When creating
an assignment, a database and a topic are selected first, after
which the author writes an assignment handout and a sample
solution — i.e. the SQL statements needed to complete the
assignment.

When students enter the system, they see a list of topics
and their progress in those topics (often, for each topic,
students are expected to complete a specific number of SQL
assignments as well as create one or more new assignments
for the specific topic). Students then choose a topic, after
which they are given an assignment that they work on. The
assignment is chosen randomly from the pool of assignments
for that topic, although the system can also be used so that
students are first given assignments created by the teacher,
and only after completing these are they given assignments
created by other students.

During the creation of an assignment, the entered SQL
statements are evaluated against the chosen database to verify
that they can be executed. Correctness of the assignment, e.g.
whether the assignment handout and the provided SQL state-
ments match, is not verified automatically. Created assign-
ments are then added to the pool of assignments available for
the particular topic.

When an assignment is successfully completed, the student
can provide feedback on it by completing an instructor-
created rubric. Feedback collected over time provides teach-
ers information on the assignments, permitting data-driven
insights into which assignments are likely good and which
faulty. Faulty assignments can also be identified by the
teacher as ones with many submissions but few completions,
and such assignments can be removed.

Although SQL Trainer is not currently in use, the tool has
been used to collect over 11,300 SQL exercises and, in total,
185,000 submissions to attempt to complete these exercises.
Around 1,500 students have used the system.

IV. LESSONS LEARNED

A. CONTENT QUALITY

The quality of the content created by students is of primary
concern when that content is intended to be used to support

VOLUME 11, 2023

N. Pirttinen et al.: Lessons Learned From Four Computing Education Crowdsourcing Systems

IEEE Access

the learning of other students in a course. In their seminal
paper advancing the use of contributing student pedagogies
in computing education, Hamer et al. make this explicit by
stating that ““if students’ contributions are to play an impor-
tant role in their peers’ learning [...] then the quality of their
contribution is important” [9]. In fact, they argue that if the
student-created content is to genuinely assist the learning
of other students, then the quality of the content must be
assessed. Abdi et al. similarly argue for the need for qual-
ity assessment of learnersourced content, and propose that
learners themselves perform such evaluations [43]. Not only
is this a scalable solution compared to having domain experts
make quality assessments, but it serves to encourage students
to think critically and make analytical judgements about the
content they are interacting with.

1) ERRONEOUS CONTENT

There are several ways in which quality assessments can be
made, both for individual items and more holistically across
an entire repository. Perhaps of greatest concern in the context
of a learnersourced activity is when content is incorrect and
therefore potentially misleading. This is a particular concern
for tools like PeerWise, where there are no tool-supported
checks on the content itself. On the other hand, with tools like
CodeWrite and CrowdSorcerer, there is at least a verification
step prior to a question being published that confirms a model
solution has been provided that compiles successfully and
passes the supplied tests. Additionally, with CrowdSorcerer,
the created assignments are not published automatically —
thus, an added quality assurance step of expert review can
be utilised. Similarly, SQL Trainer tests whether the SQL
statements provided by the question author can be executed,
but, there is no automated way to verify that the entered
SQL statements are relevant to the accompanying question
handout.

Although some errors are to be expected in any sufficiently
large student-created resource, serious errors such as incor-
rect answers appear to be relatively infrequent and readily
identified by students. Purchase et al. examined the quality of
a repository of questions created using PeerWise by students
in a Java-based CS1 course [44]. They found that 11% of
the questions did not have the correct answer provided and
selected by the author. Similar numbers were found in SQL
Trainer, where 9.6% of the assignments created by students
were not solved by any student [6]. A similar analysis to
the one by Purchase et al. was conducted by Denny et al.;
using a different repository, they reported almost identical
findings, with 11.5% of questions published with an incorrect
answer [45]. However, Denny et al. also found that students
could effectively detect such errors. They analysed all of
the questions in their sample classified as being incorrect,
and found that in all cases the errors were discovered by
students and discussed in associated comment threads. More-
over, where a correct option was available for these questions,
it was the most popular option selected by students.

VOLUME 11, 2023

2) RATINGS

One of the strengths of learnersourcing is that large reposi-
tories of learning resources can be generated quickly. Often,
such resources will grow to contain more content than any
individual student can use, and thus there is a need to help
students find content that is both relevant to them, and high
quality. Using a rating system is a common way of collect-
ing quality scores for learnersourced content, and there is
evidence that it can work well. Abdi et al. explore several
approaches for aggregating scores provided by students in a
learnersourcing task, and find that in general student-assigned
ratings correlate strongly with those provided by domain
experts [43].

When examining the four tools, it can be observed that
aggregating student-assigned ratings provides useful infor-
mation. In PeerWise, students provide a holistic quality rating
on a 6-point scale (from 0-5) for each question, as well as a
difficulty rating on a 3-point scale (from 0-2). Purchase et al.
found that the aggregated difficulty ratings correlated well
with a more objective measure of difficulty — the proportion
of answers to a question that were correct [44]. Similarly,
Denny et al. found that not only did student-assigned quality
ratings correlate with instructor-assigned ratings, but students
used the ratings to identify useful content and avoid questions
with low quality scores [45].

Aggregated quality ratings also provide some insight into
the perceived quality of a repository as a whole. For example,
Figure 3 shows the distribution of average quality ratings for
approximately 2.25m questions in PeerWise (each of which
have at least 10 quality ratings). Although the distribution is
normal, it is not centered at the mid-point halfway between 2
(“fair”’) and 3 (““good”). In fact, 78% of questions have an
average quality rating above this mid-point, with 5.5 times
more questions rated above 3 (““good’”) than below 2 (““fair’’),
and 7.6 times more questions rated as above 4 (“‘very good”’)
than below 1 (““poor™).

400k —]

300k —]

200k —

100k —

I T T T T 1

0 1 2 3 4 5
Very poor Poor Fair Good Very good Excellent

FIGURE 3. Average quality ratings of 2,253,546 questions in PeerWise
with more than 10 ratings. Most questions have an average rating above
the mid-point on the scale.

In CrowdSorcerer, students peer review the programming
assignments using a five-point Likert scale (from a frowning
face to a happy face). Based on a previous study, students

22987

IEEE Access

N. Pirttinen et al.: Lessons Learned From Four Computing Education Crowdsourcing Systems

rate assignments created by experienced students and novice
students similarly, and the peer review ratings do not differ
significantly regardless of the previous programming experi-
ence of the reviewer [46].

For SQL Trainer, a previous study found that both assign-
ments created by students and those created by the instructor
were rated highly, although the instructor-created ones were
on average rated slightly higher than those created by stu-
dents [6]. The feedback questions with statistically signifi-
cant differences — in favor of the teacher — were the clarity,
suitability, and educational value of the questions, while no
differences were observed in the easiness of the questions,
or the confidence or frustration of the student towards their
solution attempt.

3) CONCEPT COVERAGE

All four of the tools share the common goal of providing
students with opportunities to apply the knowledge and skills
they are learning. Therefore, an important criteria for assess-
ing quality is the extent to which a repository provides these
opportunities by covering all relevant concepts.

For tools like PeerWise and CodeWrite, students are typ-
ically given the freedom to select the topics and concepts
that are targeted by the questions they author. Despite this,
taken as a whole, student-generated repositories appear to
provide at least some coverage of all topics relevant to
a course. One study analysed 280 programming exercises
published in CodeWrite by students in a Java-based CS1
course, classifying the questions with respect to the core
language features that were used in student solutions [5].
In this case, not only were all topics targeted by the questions
(with the least targeted language feature, arrays, being used
in solutions to 17% of the questions) but nearly 90% of
students who met the minimum participation requirements
for the task (authoring one and answering 10 exercises) prac-
tised with 7 of the 8 core language features. Similar anal-
yses involving student-authored MCQs with PeerWise have
shown that the distribution of student-created questions with
respect to topic correlates strongly with the topic distribution
of instructor-authored questions that appear on summative
assessments [47], and that good quality questions (with aver-
age student ratings above the overall repository mean) exist
for all topics covered by chapters in the course textbook [44].

Where CrowdSorcerer has been used previously, guidance
has been provided by the course teacher, influencing concept
coverage directly. With the instructions given, students tend
to create programming assignments that are on the easier and
simpler side [48], at least in the beginning of an introductory
course. Students rarely create completely off-topic assign-
ments, and are mainly able to follow the instructor-given
instructions for the general topic of their assignment [49].
Similarly, for SQL Trainer, the instructor can choose the
topics that are presented to students under which they create
their assignments, and thus can somewhat influence topic
coverage. The actual distribution of topics across assignments

22988

varies however since students can choose freely which of the
presented topics they prefer to target.

B. ENGAGING STUDENTS

The way that learners perceive the value of an activity is an
important element for success. In this context, Expectancy-
Value Theory postulates that motivation to engage in a learn-
ing task is determined by a combination of two primary
factors: the expectation that a learner has for succeeding, and
the subjective value of engaging in the task [50]. For many
students, creating learning content for use by their peers is an
unfamiliar activity, and one where they may not immediately
appreciate the value. Indeed, when adopting PeerWise for the
first time in an object-oriented programming course at the
University of Guyana, Singh notes that students reported a
preference for answering questions, a more familiar learn-
ing task, compared to authoring questions [51]. Similarly,
with CrowdSorcerer, students tend to slightly favour peer
reviewing over creating assignments [2], which the authors
hypothesise could be due to students perceiving peer review-
ing as a less laborious task compared to assignment creation;
however, another possibility is that peer reviewing is more
familiar to students than assignment creation.

Marks are an effective motivator for students in many
courses, partly as a signal to students for how they are
expected to spend their time [52]. It has been observed that
even a relatively small amount of credit, usually rewarded to
students for creating or answering some minimum number of
items, is sufficient for encouraging most students to partici-
pate. For example, the use of 1% credit for authoring one exer-
cise in CodeWrite resulted in 75% class participation [53],
whereas Devon et al. report close to 95% participation in
PeerWise across a range of database, artificial intelligence
and web development courses when offering 10% course
credit [54]. Similarly, without incentive, only 40% of stu-
dents used CrowdSorcerer [2]. In subsequent course itera-
tions where a small mark incentive was added, a majority of
students used the system.

Motivating students to participate, and in particular to cre-
ate content, is critical in small courses where resources are
being learnersourced by few students. If too little content is
created, the resulting resource will not be useful as a practice
repository. However, in very large courses where even a small
proportion of active students can generate a repository of a
useful size, there may be value in allowing students to choose
whether to create or simply use the generated resources.
In a very recent exploration of this idea in the context of
a MOOC, Singh et al. find that when content creation is
optional, learners perceive more value in creating questions
and create higher quality questions than when content gener-
ation is required [55].

Although marks are clearly an effective motivator for most
students, it is not always possible or appropriate to assign
a large number of marks to learnersourced activities for
which the quality of the artefacts are typically not graded by

VOLUME 11, 2023

N. Pirttinen et al.: Lessons Learned From Four Computing Education Crowdsourcing Systems

IEEE Access

experts. It is possible to impact student engagement, to some
extent, through user interface design that is independent of
course grading schemes. One approach which has shown
some promise is the use of gamification, in which game-
like elements are used as rewards to incentivise behaviours
that are known to be useful [56], [57], [58]. In the context
of education, Landers’ theory of gamified learning posits
that game attributes can affect behaviours or attitudes (such
as cognitive effort or time-on-task) that are known to influ-
ence learning [59]. A recent study involving PeerWise found
empirical support for this theory, establishing a causal link
between gamification and learning outcomes [39]. In that
work, the PeerWise badge system that rewards students for
answering questions for practice elicited significantly higher
levels of activity, and this translated to positive effects on
subsequent exam scores.

C. STUDENT LEARNING

In designing a course and the associated learning activities,
instructors make many decisions about how students are
expected to spend their time. Instructors may be hesitant to
adopt a learnersourced activity, and encourage their students
to engage with it, if they are unsure of the learning benefits.
In theory, students can benefit from both creating resources,
and using the resources created by others (as discussed in
Subsection II-B). There is a growing body of evidence in
favour of both of these activities, although there is less focus
in the literature on the benefits of generating resources [55].

In courses that utilise MCQs as part of the summative
assessment, there appear to be clear benefits to students
in generating their own MCQs. A randomised controlled
experiment using PeerWise found that students who created
practice questions performed significantly better on a sub-
sequent exam compared to students who used the questions
for practice but did not create their own [38]. In this work,
students were randomly assigned to either an experimental
group, who authored and answered questions, or to a control
group who only answered the questions created by others
but did not author any. The learning effects were most pro-
nounced when students answered exam questions on topics
that were targeted by the questions they created. A follow-
up study, which randomly assigned students the topics that
their questions should target to control for a topic-selection
bias, found similar positive effects on exam scores for the
generating students [60].

Automated programming assessment tools, which provide
automatic feedback to students on programming tasks, are
now ubiquitous in many introductory programming courses
as the benefits of this type of practice are widely accepted by
both students and instructors [61]. In fact, their use is now so
ingrained that educators often observe students relying exces-
sively on the feedback generated by the autograder rather
than carefully planning out their solutions [62]. However,
the exercises that students tackle in such tools are typically
created by the instructor or domain expert. The generation

VOLUME 11, 2023

of the programming tasks can be learnersourced, and there
is evidence that students benefit from this. A randomised
controlled experiment using CodeWrite had students in an
experimental group create the programming tasks, which
included designing the test cases and a model solution [63].
Students in both the experimental and control conditions were
able to use these tasks for practice within CodeWrite. To con-
trol for time-on-task, students in the experimental group were
required to solve fewer tasks overall. On a subsequent exam
that included a programming component, students in the
experimental group performed significantly better, achieving
scores more than 10% higher than the control group.

Learning effects are not always so clear. Although Crowd-
Sorcerer mainly focuses on programming assignment cre-
ation, the system does require students to create test cases for
their assignment. Three versions of test case creation exist:
1) the student provides an input-output pair, 2) the student fills
in parts of a test method, and 3) the student writes the entire
test method. An investigation of which of these versions most
helped students in testing-related exam questions yielded no
significant differences [64]. A similar result has later been
observed by Singh et al. [55] who found no significant dif-
ferences between students who created MCQs and those who
only answered them.

D. SYSTEM DESIGN

Our primary focus in this work was to present lessons
that would be of interest to instructors considering adopt-
ing crowdsourcing tasks. We have also gathered several
potentially useful lessons around tool design, namely around
account management and student anonymity, which may be
of interest to developers.

1) AUTHENTICATION AND COURSE ORGANISATION
One of the benefits of providing tools as a free service is that it
is easy for instructors to adopt them without the need to install
software or set up servers. For example, in PeerWise, a new
instructor can request an account by submitting a form and
providing only their name, institution and email address. This
automatically sets up an institutional login page for them,
through which they can log in and begin creating new courses
and granting their students access. Although an LTI module
is available for PeerWise which permits integration with
learning management systems, it is still most common for
local accounts to be created and stored within the PeerWise
database. One of the advantages of this organisation is that
multi-institutional activities can be set up easily. Denny et al.
describe a collaborative activity involving students at the Uni-
versity of Auckland in New Zealand and students at Simon
Fraser University in Canada using CodeWrite [65]. They
found that students at both institutions reported learning from
the activity and were positive about having resources that they
had created be shared with students at other institutions.
While CrowdSorcerer can be modified to function with
each institution’s authentication and servers, this does require

22989

IEEE Access

N. Pirttinen et al.: Lessons Learned From Four Computing Education Crowdsourcing Systems

significantly more time and effort from both the developers
and the new institution. Following the integration work pre-
sented in [66], CrowdSorcerer has been successfully used in
an introductory Python course at the University of Toronto.

2) STUDENT ANONYMITY

All four of the tools we explored presented an anonymous
interface to students. That is, when students are using the tools
they cannot identify the authors of any of the crowdsourced
learning content. This design decision was deliberate — pri-
marily intended to promote engagement for students who
may lack confidence. There is also some evidence that allow-
ing anonymity in crowdsourced environments may help lead
to more useful peer feedback and avoid biases during review
phases. For example, Hui et al. [67] report that anonymous
peer reviews provide more specific criticism and praise than
reviews from identifiable reviewers, and students find the
specificity of the reviews more helpful. Similar findings are
reported by Lu and Bol [68] and Howard et al. [69] who
note that anonymous reviews are more critical than non-
anonymous ones. One multi-institutional study conducted
using PeerWise found that when students were able to iden-
tify each other, racial and gender biases affected the way that
they selected and reviewed each other’s content [37].

E. POSITIONALITY

As the authors of this paper are also the developers of the
tools inspected, we acknowledge the possibility of bias in our
reporting. Additionally, as all of the authors are profession-
als in the field of computer science, this article focuses on
lessons from computer science courses. Although one of the
mentioned crowdsourcing tools (PeerWise [1]) has been used
in other educational contexts, the impact on other fields is
outside the scope of this paper.

V. CONCLUSION
Enrolments in computing courses often grow to many
hundreds (or even thousands) of students. At such scale,
crowdsourcing offers potentially large benefits to computing
students and instructors. However, instructors may have valid
concerns about incorporating student-generated learning con-
tent into their course. We conclude this paper by summarising
several key lessons from those presented in Section IV, relat-
ing to common instructor concerns listed in Section I. We also
mention some open challenges that are yet to be solved.
First of all, learnersourcing can work well, at least for
the specific tasks presented in this paper — that is, creating
multiple-choice questions, both small-scale and large-scale
programming assignments, and assignments targeting SQL.
One of the most pressing concerns related to crowdsourced
material for educational use is its quality. We find ample
evidence that the quality of learnersourced assignments — at
least as supplementary materials alongside instructor-created
resources — is sufficiently high to support learning in mean-
ingful ways. Appropriate tool support can help, by provid-
ing mechanisms such as aggregated rating scores, to allow

22990

students to locate high quality, relevant and effective con-
tent. Future studies regarding peer review as an evaluation
mechanism are required, though some preliminary results
exist [70].

Secondly, we presented some lessons that might be of
interest to developers of crowdsourcing tools, as well as
computing education tool developers in general. We noted
that having centralised account management is helpful for
enabling cross-institutional studies whereas embedded sys-
tems can require significant integration work for this purpose.
There may also be specific benefits to providing anonymity
for students within crowdsourcing tools. There is emerg-
ing evidence that anonymity can result in more useful peer
reviews of learnersourced content [67] and expose fewer
biases related to gender and race [37].

Thirdly, we find that incentives may be necessary to engage
students with crowdsourcing systems, especially since these
systems are often supplementary in nature. Successful meth-
ods for engaging students include providing marks for partic-
ipating in crowdsourcing activities and utilising gamification
in the systems to increase engagement. However, since gami-
fication is not a universal solution for all students [71], future
research is needed to examine different ways of engaging
students with crowdsourcing systems. There are suggestions
that the intervals at which the materials are studied could
be adjusted to optimize learning [28]; one possibility to
encourage specific intervals for students would be gamifica-
tion of the crowdsourcing systems that provide access to the
content.

Finally, there are promising, but mixed, results related to
the learning benefits of crowdsourcing activities. Students
who participate in generating practice questions for exams
have achieved higher marks when subsequently tested [38],
[60]. However, similar results were not seen when students
created test cases for crowdsourced programming assign-
ments and were then later examined on their knowledge
of testing [64]. Future work should examine more thor-
oughly the relationship between participating in crowdsourc-
ing activities and learning outcomes.

Although caution regarding new approaches to teaching
are understandable, given the documented benefits associ-
ated with learnersourcing, we would encourage computing
instructors to explore what tool support is available and con-
sider incorporating such tasks into their teaching.

ACKNOWLEDGMENT

The authors are grateful for the doctoral research grants
awarded by Jenny and Antti Wihuri Foundation to the first
author. Additionally, they are grateful for the postdoctoral
research grant awarded by the Ulla Tuominen Foundation for
the last author.

REFERENCES

[1] P. Denny, A. Luxton-Reilly, and J. Hamer, “The PeerWise system of
student contributed assessment questions,” in Proc. 10th Conf. Australas.
Comput. Educ., 2008, pp. 69-74.

VOLUME 11, 2023

N. Pirttinen et al.: Lessons Learned From Four Computing Education Crowdsourcing Systems

IEEE Access

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

N. Pirttinen, V. Kangas, I. Nikkarinen, H. Nygren, J. Leinonen, and
A. Hellas, “Crowdsourcing programming assignments with CrowdSor-
cerer,” in Proc. 23rd Annu. ACM Conf. Innov. Technol. Comput. Sci. Educ.
New York, NY, USA: Association for Computing Machinery, Jul. 2018,
pp. 326-331.

J. Kim, “Learnersourcing: Improving learning with collective learner
activity,” Ph.D. thesis, Massachusetts Inst. Technol., Cambridge, MA,
USA, 2015.

H. Khosravi, K. Kitto, and J. J. Williams, “RiPPLE: A crowdsourced
adaptive platform for recommendation of learning activities,” J. Learn.
Anal., vol. 6, no. 3, pp. 91-105, Dec. 2019.

P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, “CodeWrite:
Supporting student-driven practice of Java,” in Proc. 42nd ACM Tech.
Symp. Comput. Sci. Educ. New York, NY, USA: Association for Comput-
ing Machinery, Mar. 2011, pp. 471-476.

J. Leinonen, N. Pirttinen, and A. Hellas, ‘“Crowdsourcing content creation
for SQL practice,” in Proc. ACM Conf. Innov. Technol. Comput. Sci. Educ.,
Jun. 2020, pp. 349-355.

B. Collis and J. Moonen, “The contributing student: Learners as
co-developers of learning resources for reuse in web environments,”
in Engaged Learning With Emerging Technologies. Berlin, Germany:
Springer, 2006, pp. 49-67.

J. Hamer, “Some experiences with the contributing student approach,” in
Proc. 11th Annu. SIGCSE Conf. Innov. Technol. Comput. Sci. Educ., 2006,
pp. 68-72.

J. Hamer, Q. Cutts, J. Jackova, A. Luxton-Reilly, R. McCartney,
H. Purchase, C. Riedesel, M. Saeli, K. Sanders, and J. Sheard, ““Contribut-
ing student pedagogy,” ACM SIGCSE Bull., vol. 40, no. 4, pp. 194-212,
Nov. 2008.

F. Fagerholm and A. Vihavainen, ‘Peer assessment in experiential learn-
ing assessing tacit and explicit skills in agile software engineering cap-
stone projects,” in Proc. IEEE Frontiers Educ. Conf. (FIE), Oct. 2013,
pp. 1723-1729.

A. Luxton-Reilly and P. Denny, “Constructive evaluation: A pedagogy
of student-contributed assessment,” Comput. Sci. Educ., vol. 20, no. 2,
pp. 145-167, Jun. 2010.

T. D. Indriasari, A. Luxton-Reilly, and P. Denny, “Investigating accuracy
and perceived value of feedback in peer code review using gamification,”
in Proc. 26th ACM Conf. Innov. Technol. Comput. Sci. Educ. New York,
NY, USA: Association for Computing Machinery, Jun. 2021, pp. 199-205.
T. D. Indriasari, A. Luxton-Reilly, and P. Denny, ““A review of peer code
review in higher education,” ACM Trans. Comput. Educ., vol. 20, no. 3,
pp- 1-25, Sep. 2020.

M. T. H. Chi, M. Bassok, M. W. Lewis, P. Reimann, and R. Glaser, “Self-
explanations: How students study and use examples in learning to solve
problems,” Cognit. Sci., vol. 13, no. 2, pp. 145-182, Apr. 1989.

K. VanLehn, R. M. Jones, and M. T. H. Chi, “A model of the self-
explanation effect,” J. Learn. Sci., vol. 2, no. 1, pp. 1-59, Jan. 1992.

R. J. Crutcher and A. F. Healy, “Cognitive operations and the generation
effect.,” J. Experim. Psychol., Learn., Memory, Cognition, vol. 15, no. 4,
pp. 669-675, Jul. 1989.

P. A. DeWinstanley and E. L. Bjork, “Processing strategies and the gener-
ation effect: Implications for making a better reader,” Memory Cognition,
vol. 32, no. 6, pp. 945-955, Sep. 2004.

H. Kinjo and J. G. Snodgrass, “Does the generation effect occur for
pictures?” Amer. J. Psychol., vol. 113, no. 1, p. 95, 2000.

D. L. Scapin, “Generation effect, structuring and computer commands,”
Behaviour Inf. Technol., vol. 1, no. 4, pp. 401-410, Oct. 1982.

B. Rittle-Johnson and A. O. Kmicikewycz, “When generating answers
benefits arithmetic skill: The importance of prior knowledge,” J. Experim.
Child Psychol., vol. 101, no. 1, pp. 75-81, Sep. 2008.

M. R. Kelley, E. K. Chapman-Orr, S. Calkins, and R. J. Lemke, “Gen-
eration and retrieval practice effects in the classroom using PeerWise,”
Teaching Psychol., vol. 46, no. 2, pp. 121-126, Apr. 2019.

H. L. Roediger and J. D. Karpicke, ‘“Test-enhanced learning: Taking
memory tests improves long-term retention,” Psychol. Sci., vol. 17, no. 3,
pp. 249-255, Mar. 2006.

M. Carrier and H. Pashler, “The influence of retrieval on retention,”
Memory Cognition, vol. 20, no. 6, pp. 633-642, Nov. 1992.

L. L. Jacoby, “On interpreting the effects of repetition: Solving a problem
versus remembering a solution,” J. Verbal Learn. Verbal Behav., vol. 17,
no. 6, pp. 649-667, Dec. 1978.

VOLUME 11, 2023

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(38]

(39]

[40]

(41]

(42]

(43]

(44]

[45]

[46]

(47]

R. E. Eisenkraemer, A. Jaeger, and L. M. Stein, “A systematic review of
the testing effect in learning,” Paidéia (Ribeirdo Preto), vol. 23, no. 56,
pp. 397-406, Sep. 2013.

B. Pastotter and K.-H.-T. Bduml, “Reversing the testing effect by feedback:
Behavioral and electrophysiological evidence,” Cognit., Affect., Behav.
Neurosci., vol. 16, no. 3, pp. 473-488, Jun. 2016.

H. Ebbinghaus, “Memory: A contribution to experimental psychology,”
Ann. Neurosci., vol. 20, no. 4, p. 155, 2013.

P. Smolen, Y. Zhang, and J. H. Byrne, “The right time to learn: Mechanisms
and optimization of spaced learning,” Nature Rev. Neurosci., vol. 17, no. 2,
pp. 77-88, Feb. 2016.

M. Chmielewski and S. C. Kucker, “An MTurk crisis? Shifts in data quality
and the impact on study results,” Social Psychol. Personality Sci., vol. 11,
no. 4, pp. 464-473, May 2020.

R. Kennedy, S. Clifford, T. Burleigh, R. Jewell, and P. Waggoner,
“The shape of and solutions to the MTurk quality crisis,” SSRN Electron.
J., vol. 8, no. 4, pp. 614-629, 2018.

M. Mulvey, “Effects of visualization on algorithm comprehension,”
M.S. thesis, Dept. Comput. Sci., Univ. Wisconsin-Milwaukee, Milwaukee,
WI, USA, 2015.

M. J. Lee and A. J. Ko, “Personifying programming tool feedback
improves novice programmers learning,” in Proc. 7th Int. Workshop Com-
put. Educ. Res., Aug. 2011, pp. 109-116.

A. Hellas, A. Zavgorodniaia, and J. Sorva, “‘Crowdsourcing in computing
education research: Case Amazon MTurk,” in Proc. 20th Koli Calling Int.
Conf. Comput. Educ. Res., Nov. 2020, pp. 1-5.

M. J. Lee and A. J. Ko, “Investigating the role of purposeful goals on
novices engagement in a programming game,” in Proc. IEEE Symp. Vis.
Lang. Human-Centric Comput. (VL/HCC), Sep. 2012, pp. 163-166.

P. T. Wilson, J. Pombrio, and S. Krishnamurthi, “Can we crowdsource
language design?”’ in Proc. ACM SIGPLAN Int. Symp. New Ideas, New
Paradigms, Reflections Program. Softw., Oct. 2017, pp. 1-17.

M. J. Lee and A. J. Ko, “Comparing the effectiveness of online learning
approaches on CS1 learning outcomes,” in Proc. 11th Annu. Int. Conf. Int.
Comput. Educ. Res., Aug. 2015, pp. 237-246.

G. Morales-Martinez, P. Latreille, and P. Denny, “Nationality and gen-
der biases in multicultural online learning environments: The effects of
anonymity,” in Proc. CHI Conf. Hum. Factors Comput. Syst., Apr. 2020,
pp. 1-14.

P. Denny, “Generating practice questions as a preparation strategy for
introductory programming exams,” in Proc. 46th ACM Tech. Symp. Com-
put. Sci. Educ. New York, NY, USA: Association for Computing Machin-
ery, Feb. 2015, pp. 278-283.

P. Denny, F. McDonald, R. Empson, P. Kelly, and A. Petersen, “Empirical
support for a causal relationship between gamification and learning out-
comes,” in Proc. CHI Conf. Hum. Factors Comput. Syst. New York, NY,
USA: Association for Computing Machinery, Apr. 2018, pp. 1-13.

S. Snow, A. Wilde, P. Denny, and M. C. Schraefel, “A discursive ques-
tion: Supporting student-authored multiple choice questions through peer-
learning software in non-STEMM disciplines,” Brit. J. Educ. Technol.,
vol. 50, no. 4, pp. 1815-1830, Jul. 2019.

P. Denny, “Four million questions and a few answers: Lessons from
research on student-generated resources,” in Proc. ACM Conf. Global
Comput. Educ. New York, NY, USA: Association for Computing Machin-
ery, May 2019, p. 1.

A. Vihavainen, T. Vikberg, M. Luukkainen, and M. Pirtel, ““Scaffolding
students learning using test my code,” in Proc. 18th ACM Conf. Innov.
Technol. Comput. Sci. Educ. New York, NY, USA: Association for Com-
puting Machinery, Jul. 2013, pp. 117-122.

S. Abdi, H. Khosravi, S. Sadiq, and G. Demartini, ‘“Evaluating the quality
of learning resources: A learnersourcing approach,” IEEE Trans. Learn.
Technol., vol. 14, no. 1, pp. 81-92, Feb. 2021.

H. Purchase, J. Hamer, P. Denny, and A. Luxton-Reilly, “The quality of a
PeerWise MCQ repository,” in Proc. 12th Australas. Conf. Comput. Educ.,
vol. 103, 2010, pp. 137-146.

P. Denny, A. Luxton-Reilly, and B. Simon, “Quality of student contributed
questions using PeerWise,” in Proc. 11th Australas. Conf. Comput. Educ.,
vol. 95, 2009, pp. 55-63.

N. Pirttinen, V. Kangas, H. Nygren, J. Leinonen, and A. Hellas, “Analysis
of students peer reviews to crowdsourced programming assignments,” in
Proc. 18th Koli Calling Int. Conf. Comput. Educ. Res., Nov. 2018, pp. 1-5.
P. Denny, A. Luxton-Reilly, J. Hamer, and H. Purchase, “Coverage of
course topics in a student generated MCQ repository,” ACM SIGCSE Bull.,
vol. 41, no. 3, pp. 11-15, Jul. 2009.

22991

IEEE Access

N. Pirttinen et al.: Lessons Learned From Four Computing Education Crowdsourcing Systems

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

N. Pirttinen and J. Leinonen, “Exploring the complexity of crowdsourced
programming assignments,” in Proc. 7th SPLICE Workshop (SIGCSE),
2021, pp. 1-4.

N. Pirttinen, “On the quality of crowdsourced programming assignments,”
M.S. thesis, Dept. Comput. Sci., Univ. Helsinki, Helsinki, Finland, 2020.

A. Wigfield, “Expectancy-value theory of achievement motivation:
A developmental perspective,” Educ. Psychol. Rev., vol. 6, no. 1,
pp. 49-78, Mar. 1994.

L. Singh, “Technology enhanced peer learning with PeerWise: Expe-
riences and perceptions from a developing country,” Caribbean Teach.
Scholar, vol. 4, no. 1, pp. 5-22, 2014.

J. Biggs and C. Tang, Teaching for Quality Learning at University. Berk-
shire, U.K.: Open Univ. Press, 2011.

P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, ‘““Understand-
ing the syntax barrier for novices,” in Proc. 16th Annu. Joint Conf. Innov.
Technol. Comput. Sci. Educ. New York, NY, USA: Association for Com-
puting Machinery, Jun. 2011, pp. 208-212.

J. Devon, J. H. Paterson, D. C. Moffat, and J. McCrae, “Evaluation
of student engagement with peer feedback based on student-generated
MCQs,” Innov. Teaching Learn. Inf. Comput. Sci., vol. 11,no. 1, pp. 27-37,
Jun. 2012.

A. Singh, C. Brooks, Y. Lin, and W. Li, “What’s in it for the learners?
Evidence from a randomized field experiment on learnersourcing questions
in a MOOC,” in Proc. 8th ACM Conf. Learn. Scale. New York, NY, USA:
Association for Computing Machinery, Jun. 2021, pp. 221-233.

S.D. S. Borges, V. H. S. Durelli, H. M. Reis, and S. Isotani, “A systematic
mapping on gamification applied to education,” in Proc. 29th Annu. ACM
Symp. Appl. Comput. New York, NY, USA: Association for Computing
Machinery, Mar. 2014, pp. 216-222.

J. Hamari, J. Koivisto, and H. Sarsa, ““Does gamification work? A literature
review of empirical studies on gamification,” in Proc. 47th Hawaii Int.
Conf. Syst. Sci., Washington, DC, USA, Jan. 2014, pp. 3025-3034.

T. D. Indriasari, A. Luxton-Reilly, and P. Denny, “‘Gamification of student
peer review in education: A systematic literature review,” Educ. Inf. Tech-
nol., vol. 25, no. 6, pp. 5205-5234, Nov. 2020.

R. N. Landers, “Developing a theory of gamified learning: Linking serious
games and gamification of learning,” Simul. Gaming, vol. 45, no. 6,
pp. 752-768, Dec. 2014.

P. Denny, E. Tempero, D. Garbett, and A. Petersen, “Examining a student-
generated question activity using random topic assignment,” in Proc. ACM
Conf. Innov. Technol. Comput. Sci. Educ. New York, NY, USA: Association
for Computing Machinery, Jun. 2017, pp. 146-151.

H.-M. Chen, B.-A. Nguyen, Y.-X. Yan, and C.-R. Dow, “Analysis of
learning behavior in an automated programming assessment environment:
A code quality perspective,” IEEE Access, vol. 8, pp. 167341-167354,
2020.

E. Baniassad, L. Zamprogno, B. Hall, and R. Holmes, “STOP THE
(AUTOGRADER) INSANITY: Regression penalties to deter autograder
overreliance,” in Proc. 52nd ACM Tech. Symp. Comput. Sci. Educ. New
York, NY, USA: Association for Computing Machinery, Mar. 2021,
pp. 1062-1068.

P. Denny, D. Cukierman, and J. Bhaskar, ‘““Measuring the effect of invent-
ing practice exercises on learning in an introductory programming course,”
in Proc. 15th Koli Calling Conf. Comput. Educ. Res. New York, NY, USA:
Association for Computing Machinery, Nov. 2015, pp. 13-22.

V. Kangas, N. Pirttinen, H. Nygren, J. Leinonen, and A. Hellas, “‘Does cre-
ating programming assignments with tests lead to improved performance in
writing unit tests?”” in Proc. ACM Conf. Global Comput. Educ. New York,
NY, USA: Association for Computing Machinery, May 2019, pp. 106-112.
P. Denny, D. Cukierman, A. Luxton-Reilly, and E. Tempero, ““A case study
of multi-institutional contributing-student pedagogy,” Comput. Sci. Educ.,
vol. 22, no. 4, pp. 389-411, Dec. 2012.

N. Pirttinen and J. Leinonen, “Integrating CrowdSorcerer: Lessons
learned,” in Proc. Workshop Comput. Sci. Educ. Infrastruct.,
2019, pp. 24-25.

J. Hui, A. Glenn, R. Jue, E. Gerber, and S. Dow, “Using anonymity and
communal efforts to improve quality of crowdsourced feedback,” in Proc.
AAAI Conf. Human Comput. Crowdsourcing, vol. 3, Sep. 2015, pp. 72-82.
R. Lu and L. Bol, “A comparison of anonymous versus identifiable
e-peer review on college student writing performance and the extent
of critical feedback,” J. Interact. Online Learn., vol. 6, pp. 100-115,
Jun. 2007.

22992

[69]

[70]

[71]

C. D. Howard, A. F. Barrett, and T. W. Frick, “Anonymity to pro-
mote peer feedback: Pre-service teachers comments in asynchronous
computer-mediated communication,” J. Educ. Comput. Res., vol. 43, no. 1,
pp. 89-112, Jul. 2010.

N. Pirttinen and J. Leinonen, ““Can students review their peers? Compari-
son of peer and instructor reviews,” in Proc. 27th ACM Conf. Innov. Tech-
nol. Comput. Sci. Educ. New York, NY, USA: Association for Computing
Machinery, Jul. 2022, pp. 12-18.

L. Hakulinen, T. Auvinen, and A. Korhonen, “Empirical study on the effect
of achievement badges in TRAKLA2 online learning environment,” in
Proc. Learn. Teaching Comput. Eng., Mar. 2013, pp. 47-54.

NEA PIRTTINEN is currently a Doctoral
Researcher with the University of Helsinki,
Finland. Her research interests include the use
of crowdsourcing in computer science education
and analysis of the quality of student-created
assignments.

PAUL DENNY is currently an Associate Pro-
fessor of computer science with The Univer-
sity of Auckland, New Zealand. His research
interests include developing and evaluating tools
for supporting collaborative learning, particularly
involving student-generated resources and explor-
ing the ways that students engage with these
environments.

ARTO HELLAS is currently a Senior Univer-
sity Lecturer with Aalto University, Finland.
His current research interest includes understand-
ing and improving learning in digital learning
environments.

JUHO LEINONEN is currently a Postdoctoral
Researcher with The University of Auckland.
His research focuses on how to best support
and engage diverse learner populations with edu-
cational technology and artificial intelligence.
In particular, by developing deeper insights into
students’ learning through fine-grained learning
analytics, by utilizing educational technology, arti-
ficial intelligence, and large language models for
supporting students and teachers alike, and by

leveraging learner sourcing to create ample learning opportunities tailored
to distinct student needs.

VOLUME 11, 2023

