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ABSTRACT
Large language models (LLMs) have recently taken many fields,
including computer science, by storm. Most recent work on LLMs
in computing education has shown that they are capable of solving
most introductory programming (CS1) exercises, exam questions,
Parsons problems, and several other types of exercises and ques-
tions. Some work has investigated the ability of LLMs to solve CS2
problems as well. However, it remains unclear how well LLMs fare
against more advanced upper-division coursework, such as proofs
in algorithms courses. After all, while known to be proficient in
many programming tasks, LLMs have been shown to have more
difficulties in forming mathematical proofs.

In this paper, we investigate the ability of LLMs to solve mathe-
matical proofs by using Proof Blocks, a tool previously shown to
efficaciously teach proofs to students. Our results show that GPT-
3.5 is almost completely unable to provide correct solutions (11.4%),
while GPT-4 shows a significant increase in correctness (64.8%).
However, even given this improvement, current models still strug-
gle to correctly order lines in a proof. It remains an open question
whether this is a temporary situation or if LLMs will continue to
struggle to solve these types of exercises in the future.
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1 INTRODUCTION
Large language models have quickly revolutionized computing ed-
ucation [10, 36]. Tools such as GPT-4, Codex, and Github Copilot
can write code from English language prompts [9], solve first and
second semester programming assignments [15, 16], generate as-
signments [41], interpret programming error messages [24], and
more. Students are already using them to write code and help solve
their programming homework assignments in both helpful and
unhelpful ways [37]. Researchers have been quick to point out the
risks in student utilization of these tools, such as over-reliance and
not recognizing inherent biases [2, 10].

Although it is clear that LLMs can easily solve much of the
programming curriculum, one key area not explored yet is that
of proofs. As a core part of a discrete mathematics course, proof
writing remains a critical piece of computer science curriculum
[45], forming a foundation for many upper-level algorithms courses.
When GPT-4 was introduced, one of the key results researchers at
OpenAI touted was its performance on math problems compared to
GPT-3.5 [29]. This continued a trend of the latest model’s increase
in capability in solving math equations, similar to the increase seen
from GPT-3 to GPT-3.5 [21]. How this performance increase can
be applied to a computer science curriculum remains unseen. One
recent (static) attempt to provide automated feedback for proof-
writing by Poulsen et al. implemented Proof Blocks [35]. Proof
Blocks, similar to Parsons Problems [14], is a drag-and-drop inter-
face for arranging lines in a mathematical proof [35]. Recent work
has shown that LLMs can be used to solve Parsons problems [38].
In this paper, we extend previous work on both Proof Blocks and
solving Parsons problems via LLMs by benchmarking GPT-3.5 and
GPT-4 against 128 Proof Blocks questions.

In our work we are guided by the following research questions:
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RQ1 How do GPT-3.5 and GPT-4 perform in solving Proof Blocks
problems?

RQ2 Are there Proof Blocks problems that are challenging to solve
for GPT-3.5 and GPT-4?

This article is organized as follows. In Section 2, we discuss
related work. Section 3 presents our methodology, including the
data used in the study and how solutions generated by LLMs were
evaluated.We present the results of the study in Section 4, which are
then discussed in Section 5. Section 5 also outlines the limitations
of our work. Section 6 concludes the work, presenting answers to
our research questions and outlining avenues for future work.

2 RELATEDWORK
In this section, we discuss related work on the use of generative AI
coding tools, proof blocks in general, and using AI for proofs.

2.1 Use of Generative AI Coding Tools
Generative AI tools such as ChatGPT and Copilot are widely ex-
pected to drastically change the landscape of programming [1, 4, 8,
10] and software engineering [7] education. Such tools have proven
proficient in producing code for CS1 [15], can work with Parsons
problems [38], and can also deal with more advanced CS2 prob-
lems [16] and object-oriented concepts [6]. Despite the fact that
these tools are not perfect, their progress in the last two years has
been rapid and this improvement shows no signs of abating. A new
book aimed at university-level introductory programming even ad-
vocates learning AI-assisted programming from day one [31]. These
tools are also capable of more advanced tasks such as code compe-
tition problems [25], are being used by professional developers [3],
and are expected to add trillions of dollars to global GDP [11].

These tools raise several challenges and opportunities for com-
puting education beyond simply allowing students to generate
code and the obvious academic integrity concerns [2, 10]. In partic-
ular, they can help instructors with many tasks [26]. For instance,
they can generate programming questions including test cases and
solutions [41], provide feedback to students [22], be used for grad-
ing [27] and for answering help requests [19], and classify and
answer student questions on discussion boards [48].

As students begin to use these tools, several of the threats iden-
tified by researchers have come into clearer focus. For instance,
Prather et al. observed students using Github Copilot, which is a
generative AI coding tool that can produce highly accurate code
suggestions [37]. They found that students often do not understand
the code automatically generated by the tool simply because they
did not write it. They also found that students will quickly accept
incorrect code suggestions and tinker with that code before discov-
ering they don’t need it and deleting it, only to start the process over
again. Their final finding was that some students used the AI tool
to help them toward their goal, discovering new ways to achieve it,
and doing so more quickly. Other user studies have found similar
results [20, 46]. Although Proof Blocks are a different kind of exer-
cise than open-ended code writing, there are similar concerns. Any
kind of LLM-based tool for Proof Blocks would need to ensure that
students do not become over-reliant on it and that it does not over-
whelm them with feedback they don’t understand (this is especially
possible with proofs). The present work focuses on benchmarking

Proof Blocks against LLMs, but future work that utilizes LLMs to
provide feedback, hint generation, or even exploratory features,
must keep these concerns in mind.

2.2 Proof Blocks
Understanding and constructing mathematical proofs is an essen-
tial aspect of the discrete mathematics curriculum, yet it is a very
difficult topic for many students [18, 28]. Although there are many
individual aspects that can be challenging for learners [43], even
when all prerequisite knowledge is known, students are often un-
able to put the different elements together to correctly construct a
proof without appropriate scaffolding [47]. To address this, Poulsen
et al. introduced the idea of ‘Proof Blocks’ in 2021, which was
a novel software tool leveraging a drag-and-drop mechanism to
enable learners to assemble proofs from pre-written lines [34]. In-
spired by the idea of Parsons problems [12, 14], the goal of Proof
Blocks was to provide scaffolding to students learning to write
mathematical proofs, in much the same way as Parsons problems
provided scaffolding to students learning to write code. However,
unlike a Parsons problem in which code lines typically must be ar-
ranged into a unique order, Proof Blocks problems are more flexible
in the sense that only those lines in the proof that depend on other
lines must appear before them.

Research exploring Proof Blocks has shown their significant
potential for improving learners’ proof comprehension and for
fostering efficient learning [32, 35]. Students in the early phases of
learning about proof by induction learned just as much from reading
lecture notes and using Proof Blocks as they did by reading lecture
notes and writing proofs from scratch, and did so while saving
significant time [32]. Not only do students believe that Proof Blocks
accurately represent their ability to write proofs, but when used
as test questions they provide approximately the same amount of
information about student knowledge as do written proofs [35].

To facilitate efficient grading of Proof Blocks, Poulsen et al. de-
scribe an auto-grader that uses a dependency graph to capture the
relationships between subsets of blocks, and which grades as cor-
rect any topological sort of the graph [35]. The autograder allows
for swift feedback to students and provides extensive opportunities
for problem generation. Work on autograding Proof Blocks prob-
lems has been expanded to include partial credit grading, an aspect
that poses computational challenges due to the vast solution space,
and the expense of calculating the difference between an incorrect
solution and a model solution. One novel algorithm for computing
such an edit distance exhibited enormous performance improve-
ments, up to two orders of magnitude, when compared to a naïve
approach. This algorithm can also be used to provide feedback to
students when solving Proof Blocks problems, and could be applied
to other problems such as Parsons problems [33].

Figure 1 shows an example of a proof blocks problem taken from
https://www.proofblocks.org/. The figure also gives an idea of how
the Proof Blocks user interface looks like for students when they
are solving Proof Blocks problems.

2.3 AI for Mathematical Proofs
Mathematicians and computer scientists have chased the promise
of automating the construction of mathematical proofs for years.

https://www.proofblocks.org/
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Figure 1: An example Proof Blocks problem and the user
interface of the Proof Blocks tool.

The earliest history starts with heuristic search algorithms over a
search space limited by a formal theorem proving language [39].
More recently, these search algorithms have been supplanted by
reinforcement learning approaches, but even the best attempts have
less than a 50% success rate in proving the lemmas and theorems
in benchmark data sets [17, 40]. Researchers have sought improve-
ments to these heuristic search algorithms using LLMs [49].

In parallel, researchers have worked on creating language mod-
els to solve math problems formulated as the informal mathematical
language typically used by mathematicians rather than in formal
theorem proving languages, an approach that has proved extremely
difficult for many years [30, 44]. Most recently, GPT-4 has posted
surprisingly good metrics in this area with huge improvements
from GPT-3.5 to GPT-4 in all its math related benchmarks, which
included AP Calculus exams, the quantitative portion of the GRE
examination, and problems from the AMC series of high school
mathematics competitions [29]. None of the above present bench-
marks on questions like the mathematical proofs used for intro-
ductory discrete mathematics courses that are taught by the math
and/or computer science departments of most universities. Thus, it
remains an open question what the success rate of any AI powered
system would be on such questions.

3 METHODOLOGY
3.1 Data
3.1.1 Proof Blocks problems. As our data set, we obtained from
the authors all Proof Blocks problems that have been used in the
data sets for prior publications [32–34]. Questions were originally
written for Discrete Mathematics courses in computer science de-
partments at two large research universities in the midwestern
United States, one public and one private, as well as for a research
study designed to measure learning gains of students using Proof

Blocks. The dataset had in total 128 Proof Blocks questions, of
which 91 did not have distractors (additional lines).

3.1.2 Proof Blocks problem solutions. We explored a variety of
prompts to identify ones that could be used to produce Proof Blocks
solutions with GPT-3.5 and GPT-4. As the final prompt, we used
the format outlined in Listing 1, where the prompts start with the
theorem, a prompt to reorder the lines to form a proof for the
theorem, an additional instruction to disallow altering the text in
lines, and the scrambled lines. Because the input to LLMs is ascii
text, notice the example prompt forgoes mathematical symbols and
uses textual descriptions such as \frac{a+b}{2} to encode

𝑎 + 𝑏
2

.
For each of the 128 Proof Blocks questions in the dataset, we

generated five sets of scrambled lines and prompted both GPT-3.5
and GPT-4 to generate solutions for them1. The prompting was
done with temperatures 0.0 and 0.7, where the temperature is used
to control the degree of randomness in the outputs. In total, this
yielded 𝑛 = 2560 Proof Blocks problem solutions.

Listing 1: Example prompt
Cons ide r the f o l l ow i n g theorem :
For any non− neg a t i v e r e a l numbers $a , b$ ( i . e . , $a , b \ geq

0$ ) , $ \ f r a c { a+b } { 2 } \ geq \ s q r t { ab } $ .
Reorder the f o l l ow i n g l i n e s to form a proo f o f the

theorem .
Do not a l t e r the t e x t in the l i n e s .

$ \ f r a c { a+b } { 2 } \ geq \ s q r t { ab } $ .
S i n c e $a , b \ geq 0$ , $ \ s q r t { a } $ and $ \ s q r t { b } $ a r e r e a l .
$ ( \ s q r t { a } − \ s q r t { b } ) ^2 \ geq 0$ , s i n c e the squa re o f any

r e a l number i s non− neg a t i v e .
$a+b − 2 \ s q r t { ab } \ geq 0$ .
$a+b \ geq 2 \ s q r t { ab } $ .
Le t $a , b$ be a r b i t r a r y non− neg a t i v e r e a l numbers .

3.2 Evaluating Solutions
The Proof Blocks problem solutions were programmatically ex-
tracted from the LLM output. The resulting data were analyzed us-
ing the automated Proof Blocks grading algorithm outlined in [33],
which relies on determining the edit distance from a given solution
to a correct solution. For the present evaluation of Proof Blocks
problem solutions, we focused on absolute correctness. That is, if
the distance from a given solution to the model solution was greater
than zero, it was considered incorrect.

When outlining the results, we first provide an overall model
performance in Section 4.1. The subsequent results, outlined in
Sections 4.2 and 4.3, focus on 𝑛 = 640 solutions created with the
best-performing model and temperature, which was in our case
GPT-4 with the temperature 0.0.

4 RESULTS

1The data was generated using OpenAI APIs in August 2023. GPT-4 corresponds to
the gpt-4 model, while for GPT-3.5, we used the most recent gpt-3.5-turbo.
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Listing 2: Example solutions from GPT-3.5 and GPT-4
SCRAMBLED BLOCKS :
We are t r y i n g to match each s t ud en t to the sum of e i g h t

numeric d i g i t s .
S i n c e each d i g i t r anges from 0 to 9 , the p o s s i b l e sums

range from 0 to $8 \ t imes 9 = 72 $ .
There fo re , t h e r e a r e 73 p o s s i b l e sums .
S i n c e t h e r e a r e 39 s t u d e n t s e n r o l l e d , each s t u d en t can

have a unique sum .
To gua r an t e e t h a t t h e r e a r e two s t u d en t s who have the

same sum , we need s t r i c t l y more s t u d e n t s than
p o s s i b l e sums .

S i n c e t h e r e a r e 73 p o s s i b l e sums , we r e q u i r e 74 s t u d e n t s .

GPT− 3 . 5 SOLUTION : ( s c o r e 33%)
We are t r y i n g to match each s t ud en t to the sum of e i g h t

numeric d i g i t s .
S i n c e each d i g i t r anges from 0 to 9 , the p o s s i b l e sums

range from 0 to $8 \ t imes 9 = 72 $ .
S i n c e t h e r e a r e 73 p o s s i b l e sums , we r e q u i r e 74 s t u d e n t s .
To gua r an t e e t h a t t h e r e a r e two s t u d en t s who have the

same sum , we need s t r i c t l y more s t u d e n t s than
p o s s i b l e sums .

There fo re , t h e r e a r e 73 p o s s i b l e sums .
S i n c e t h e r e a r e 39 s t u d e n t s e n r o l l e d , each s t u d en t can

have a unique sum .

GPT−4 SOLUTION : ( s c o r e 100%)
We are t r y i n g to match each s t ud en t to the sum of e i g h t

numeric d i g i t s .
S i n c e each d i g i t r anges from 0 to 9 , the p o s s i b l e sums

range from 0 to $8 \ t imes 9 = 72 $ .
There fo re , t h e r e a r e 73 p o s s i b l e sums .
S i n c e t h e r e a r e 39 s t u d e n t s e n r o l l e d , each s t u d en t can

have a unique sum .
To gua r an t e e t h a t t h e r e a r e two s t u d en t s who have the

same sum , we need s t r i c t l y more s t u d e n t s than
p o s s i b l e sums .

S i n c e t h e r e a r e 73 p o s s i b l e sums , we r e q u i r e 74 s t u d e n t s .

4.1 Overall Model Performance
Themodel performance for GPT-4 and GPT-3.5 is outlined in Table 1
for temperatures 0.0 and 0.7. The overall success rate for GPT-3.5
is 11.4% and 11.7% for temperatures 0.0 and 0.7 respectively, while
for GPT-4 the overall success rate was 64.8% and 61.9% for the
same temperatures. This suggests that lower temperatures work
slightly better for solving Proof Blocks problems, but the effect is
not large (+3% points for GPT-4). More interestingly, GPT-4 vastly
outperforms GPT-3.5, correctly solving Proof Blocks problems over
half of the time compared to GPT-3.5’s ∼11%. An example of how
GPT-3.5 and GPT-4 solves a combinatorics Proof Blocks problem is
shown in Listing 2. In this case, GPT-4 got the problem fully correct,
while GPT-3.5 was partially correct, scoring 33%.

4.2 Proof Blocks without Distractors
We continued the analysis by focusing on the performance of GPT-
4 in solving a variety of Proof blocks without distractors. The
overview of the results, including the topics of the problems and the
correctness of the GPT-4 produced solutions is outlined in Table 2.
From the table, we can see that overall, GPT-4 can solve Proof Blocks
problems quite accurately when there are no distractors, being able
to solve them on average 73% of the time. There are differences
between topics in how well GPT-4 can solve Proof Blocks, ranging
from 54% for questions related to ‘combinatorics’ (see Listing 2) to
100% for questions on ‘algorithm analysis’ and ‘sets, functions’.

Model Temperature Overall Success Rate

GPT-3.5 0.0 11.4%
0.7 11.7%

GPT-4 0.0 64.8%
0.7 61.9%

Table 1: Comparison of performance of models. This is con-
sistent with prior results that lower temperature is better for
more technical and less creative tasks, and that GPT-4 vastly
outperforms prior models on mathematical tasks.

4.3 Proof Blocks with Distractors
Finally, we studied the performance of GPT-4 in solving a variety
of Proof blocks with distractors. The overview of the questions and
topics, as well as correctness of the GPT-4 produced solutions is
outlined in Table 3. Altogether, having distractors seems to hurt
GPT-4’s performance in solving Proof Blocks problems as the over-
all performance for questions without distractors was 73%, but only
44% for questions that had distractors. From the table, we can see
that there are again differences between topics. Similar to the prob-
lems without distractors, ‘combinatorics’ problems are the hardest
for GPT-4 to solve, with performance at 20%. When distractors are
used, the easiest topic for GPT-4 is ‘Pigeonhole Principle’ with a
success rate of 77%. Interestingly, GPT-4’s performance on prob-
lems on this topic was actually better compared to performance
without distractors (70%). Also interestingly, out of the topics that
had questions with distractors, ‘Cardinality’ had the best perfor-
mance without distractors (93%) but this was not reflected on the
problems with distractors.

5 DISCUSSION
5.1 LLMs and Solving Proof Blocks
Our results highlight that state-of-the-art LLMs such as GPT-4
are rather capable of solving Proof blocks. Distractors make the
problems harder to solve, as Proof blocks with distractors were
solved only 44% of the time, while those without distractors were
solved 73% of the time. This is in line with the performance of LLMs
in solving Parsons problems, where problems with distractors were
in general harder to solve than problems without distractors [38].

There were considerable differences in the performance between
topics. For problems without distractors, the worst performance
was for combinatorics (54% correctness), while two topics were
solved perfectly (Algorithm analysis and Sets and functions). For
problems with distractors, the correctness ranged from 20% for the
combinatorics problems to 77% for the pigeonhole principle. Similar
observations of the performance of LLMs varying by problem have
also been observed when using LLMs to solve programming-related
help requests [19], where the ability to address the help requests
depended heavily on the problem and the manner in which the
help request was phrased.

One reason for this difference in performance between topics
could be the training data for the model. It could be that GPT-4 used
more training data related to algorithms and sets and functions
than it did combinatorics. Another explanation could be that GPT-4,
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Topic Questions Attempts Attempts Correct Percentage Correct
Algorithm analysis 4 20 20 100%
Cardinality 9 45 42 93%
Combinatorics 7 35 19 54%
Graph Theory 8 40 26 65%
Logic 12 60 50 83%
Number Theory 14 70 41 59%
Pigeonhole Principle 6 30 21 70%
Probability 9 45 33 73%
Proof by Induction 18 90 62 69%
Sets, functions 4 20 20 100%
Total 91 455 334 73%

Table 2: GPT-4 Performance on Proof Blocks problems without distractors, grouped by topic.

Topic Questions Attempts Attempts Correct Percentage Correct
Cardinality 8 40 20 50%
Combinatorics 4 20 4 20%
Logic 4 20 10 50%
Number Theory 1 5 2 40%
Pigeonhole Principle 6 30 23 77%
Proof by Induction 14 70 22 31%
Total 37 185 81 44%

Table 3: GPT-4 Performance on Proof Blocks problems with distractors, grouped by topic.

as a next-token-predictor, is not actually searching the state space
for these problems and therefore naturally lends itself better to
certain types of Proof Blocks problems.

One implication of the results is that, for the topics where perfor-
mance is good, LLMs could most likely be used to support students
who are solving Proof Blocks problems. If the LLM can solve the
problem, it might be able to generate a hint for students on what
block to move next and where the block should be moved.

Although GPT-4 provided the best results, it is possible that
others may not observe similar results even with the same prompts.
Recent research has shown that the performance of GPT-3.5 and
GPT-4 has changed over time, and the change has not always been
an improvement [5]. This highlights a worrisome issue in relying on
closed LLMs for research and practice; in effect, these observations
call for further developments and research into open LLMs.

5.2 Comparison to Student Performance
In general, Proof Blocks problems are harder for students than
typical multiple choice questions, but not as difficult as written
proof questions [34]. The exam data from the evaluation of Proof
Blocks questions as test questions from Poulsen et al. [34] contained
22 questions across 6 different topics. On these problems, students
got the problem correct 61% of the time on their first attempt,
and had gotten the problem correct by their third attempt 85% of
the time [34]. Student data is only publicly available for the some
of the questions, and which questions students were given with
distractors is confounded with the topics. Thus, while we cannot
draw any particular comparisons between GPT-4 and students on
particular topics, we see that the performance of GPT-4 is roughly

similar to the performance of students who have been taught the
material–slightly better on problems without distractors, and worse
on problems with distractors.

The finding that the performance of GPT-4 is similar to students
in solving Proof Blocks problems suggests that they are more diffi-
cult for GPT-4 compared to, for example, code writing tasks and
creating code explanations. Prior work has found that even Codex,
which is an earlier, less capable model compared to GPT-4, per-
formed better than the average student in code writing tasks [15].
Similarly, GPT-3 seems to outperform students in its ability to ex-
plain code in natural language as the explanations generated by
GPT-3 were rated as being easier to understand and being bet-
ter summaries of the code compared to explanations created by
students in prior work [23].

5.3 Evolution of LLMs
Our results also highlight the impact of the evolution of LLMs. In
our case, GPT-3.5 had an average success rate of 11.4%, while GPT-4
had an average success rate of 64.8% (both for temperature 0.0). Such
an improvement is considerable, and suggests that future improve-
ments to LLMs might also yield improvements in their capability
of solving Proof blocks. In the broader CER literature, the improve-
ment and evolution of LLMs has been highlighted in multiple areas.
As an example, there is a considerable difference in the performance
of Codex and GPT-3.5 in solving students’ programming-related
help requests [19]. Similarly, the performance of GPT-4 in passing
various programming assessments is better compared to earlier
models [42]. Using data from three Python courses with varying
assessments including multiple-choice questions, programming
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exercises, and large projects, Savelka et al. found that GPT-3’s per-
formance was such that it would have failed the courses, while
GPT-4 would have passed the courses easily.

While for some tasks such as Proof blocks, the performance of
GPT-4 is vastly better compared to earlier models, when consid-
ering code generation, GPT-4 has shown comparatively moderate
improvements over Codex in tasks such as generating code. This
might be due to earlier models such as Codex already having quite
impressive performance in code generation [15, 16], so there is less
room to improve for GPT-4.

5.4 Limitations
Our study comes with a number of limitations, which we address
here. First, although we explored a number of prompts, i.e. did
prompt engineering, we cannot state that the prompts that we used
are the best possible ones for solving Proof Blocks. This is an in-
herent problem of Large Language Models where, due to the vast
parameter space, finding an optimal prompt is practically impossi-
ble – the problem is exacerbated by semantically similar prompts
potentially leading to different outcomes [13]. Second, due to how
the performance of GPT-3.5 and GPT-4 can change in the same tasks
over time due to updates on the side of the model developers [5], it
is possible that our results could not be replicated even with the
same dataset using the same models in the future. There is a need
for open LLMs that can be versioned and studied in more detail.
Third, we used so-called ‘zero-shot’ prompting (i.e., we did not
provide any examples of solving Proof blocks to the model) and did
not engage in dialogue with the model for producing the answers,
and thus, it is possible that students who were to use ChatGPT or a
similar system that keeps track of the conversation history could
observe better performance in the tasks.

6 CONCLUSION
In this study, we explored the potential of LLMs for solving Proof
Blocks problems. Proof Blocks problems are problems where stu-
dents are given a theorem and a set of scrambled lines that need to
be ordered to form the proof for the theorem. To summarize, our
research questions and their answers are as follows.

Question: How do GPT-3.5 and GPT-4 perform in solving Proof
Blocks problems? Answer: Both GPT-3.5 and GPT-4 can solve Proof
Blocks problems, although they have vast differences in perfor-
mance. In our study, GPT-3.5 was able to solve approximately 11%
of the given Proof Blocks, while GPT-4 achieved an almost 65%
success rate in solving the problems.

Question: Are there Proof Blocks problems that are challenging
to solve for GPT-3.5 and GPT-4? Answer: In short, yes. Focusing
on GPT-4, as its performance is considerably better than the per-
formance of GPT-3.5, we observed that problems with distractors
were considerably more difficult than problems without distrac-
tors. For problems without distractors, GPT-4 was able to solve
approximately 73% of the given problems, while for problems with
distractors, the corresponding number was 44%. Furthermore, we
also observed that there are considerable differences in performance
depending on the topic of the Proof Blocks problem.

Our results highlight the possibility of using LLMs such as GPT-
4 for solving Proof Blocks problems. The practical implications

of this include the possibility of using GPT-4 and future LLMs as
an additional tutor for solving the Proof Blocks, which can help
students in improving proof comprehension [32, 35].

This work opens up multiple research directions. As GPT-4 was
quite successful in solving Proof Blocks problems, a natural next
step would be analyzing its performance in solving free-form proofs.
These could be manually graded using rubrics currently in use for
student work. If GPT-4 were able to solve free-form proofs, then
it could be used by instructors to create example solutions for
free-form proof problems. Another avenue for future research is
studying in more detail the types of mistakes that GPT-4 does, and
whether prompt engineering could help it solve problems where it
failed using our current prompts.
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