
Transformed by Transformers: Navigating the AI Coding
Revolution for Computing Education

An ITiCSE Working Group Conducted by Humans

James Prather∗
Abilene Christian University

Abilene, Texas, USA
james.prather@acu.edu

Paul Denny∗
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Juho Leinonen∗
University of Auckland
Auckland, New Zealand

juho.leinonen@auckland.ac.nz

Brett A. Becker∗
University College Dublin

Dublin, Ireland
brett.becker@ucd.ie

Ibrahim Albluwi
Princess Sumaya University for

Technology
Amman, Jordan

i.albluwi@psut.edu.jo

Michael E. Caspersen
Aarhus University
Aarhus, Denmark
mec@it-vest.dk

Michelle Craig
University of Toronto

Toronto, Canada
mcraig@cs.toronto.edu

Hieke Keuning
Utrecht University

Utrecht, The Netherlands
h.w.keuning@uu.nl

Natalie Kiesler
DIPF Leibniz Institute for Research

and Information in Education
Frankfurt am Main, Germany

kiesler@dipf.de

Tobias Kohn
TU Wien

Vienna, Austria
tobias.kohn@tuwien.ac.at

Andrew Luxton-Reilly
University of Auckland
Auckland, New Zealand

a.luxton-reilly@auckland.ac.nz

Stephen MacNeil
Temple University

Philadelphia, Pennsylvania, USA
stephen.macneil@temple.edu

Andrew Petersen
University of Toronto Mississauga

Toronto, Canada
andrew.petersen@utoronto.ca

Raymond Pettit
University of Virginia

Charlottesville, Virginia, USA
rp6zr@virginia.edu

Brent N. Reeves
Abilene Christian University

Abilene, Texas, USA
brent.reeves@acu.edu

Jaromir Savelka
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
jsavelka@andrew.cmu.edu

ABSTRACT
The recent advent of highly accurate and scalable large language
models (LLMs) has taken the world by storm. From art to essays
to computer code, LLMs are producing novel content that until
recently was thought only humans could produce. Recent work
in computing education has sought to understand the capabilities
of LLMs for solving tasks such as writing code, explaining code,

∗Randomly-ordered Co-leaders

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0139-9/23/07.
https://doi.org/10.1145/3587103.3594206

creating novel coding assignments, interpreting programming er-
ror messages, and more. However, these technologies continue to
evolve at an astonishing rate leaving educators little time to adapt.
This working group seeks to document the state-of-the-art for code
generation LLMs, detail current opportunities and challenges re-
lated to their use, and present actionable approaches to integrating
them into computing curricula.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Computing methodologies → Artificial intelligence.

KEYWORDS
AI; artificial intelligence; code generation; Codex; computer pro-
gramming; Copilot; CS1; GitHub; GPT; large language models; LLM;
novice programming; OpenAI; pedagogical practices

561

https://orcid.org/0000-0003-2807-6042
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0003-1446-647X
https://orcid.org/0000-0003-1816-3943
https://orcid.org/0000-0002-9336-9282
https://orcid.org/0000-0001-8283-0072
https://orcid.org/0000-0001-5778-7519
https://orcid.org/0000-0002-6843-2729
https://orcid.org/0000-0002-9251-8944
https://orcid.org/0000-0001-8269-2909
https://orcid.org/0000-0003-2781-6619
https://orcid.org/0000-0003-1337-7985
https://orcid.org/0000-0001-9675-025X
https://orcid.org/0000-0001-5781-1136
https://orcid.org/0000-0002-3674-5456
https://doi.org/10.1145/3587103.3594206
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587103.3594206&domain=pdf&date_stamp=2023-06-29


ACM Reference Format:
James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Al-
bluwi, Michael E. Caspersen, Michelle Craig, Hieke Keuning, Natalie Kiesler,
Tobias Kohn, Andrew Luxton-Reilly, Stephen MacNeil, Andrew Petersen,
Raymond Pettit, Brent N. Reeves, and Jaromir Savelka. 2023. Transformed
by Transformers: Navigating the AI Coding Revolution for Computing Edu-
cation: An ITiCSE Working Group Conducted by Humans. In Proceedings
of the 2023 Conference on Innovation and Technology in Computer Science
Education V. 2 (ITiCSE 2023), July 8–12, 2023, Turku, Finland. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3587103.3594206

1 INTRODUCTION
Recent advancements in artificial intelligence (AI) have ushered in
a new era of computing. One particular class of AI models, known
as large language models (LLMs), has shown remarkable capabili-
ties in the generation and interpretation of natural language data
and source code interpretation and generation. Many timely and
important questions remain unanswered about how we will adapt
to the challenges and opportunities this presents. If students are
able to generate solutions to all of their programming coursework,
how does this impact what is taught, how it is taught, and how
students will remain motivated to learn?

For instance, many introductory programming courses use a pop-
ular evidence-based approach involving students writing dozens
of small programming exercises checked by automated assessment
tools. These problems can now be solved quite easily by new tools
that provide students access to powerful LLMs [3]. The most recent
models can solve even more complex data structures and algo-
rithms -level assignments [4]. This casts doubt about the efficacy
and longevity of current pedagogical practices and raises concerns
about student learning, plagiarism, and over-reliance [1]. Current
tools, such as Github Copilot, can provide code solutions in a stu-
dent’s IDE and are free to use. However, for every right answer
these tools provide, they also can provide wrong or ambiguous code
and can include unnecessary elements [11]. Students using these
tools can also quickly become lost while reading code they didn’t
write [5] or lazily drift from code suggestion to code suggestion
without understanding what they are doing [9].

The emergence of large language models could also bring bene-
fits, however. These models can be used to scaffold instructors in
creating educational resources such as novel, personalized program-
ming exercises [2, 10], code explanations that could help support
students when they are working on exercises [6, 8], and enhanced
programming error messages that might be easier to understand
for novice programmers [7].

We believe that large language models will have profound im-
pacts on computing education. This working group will work to-
wards understanding how we can make those impacts as positive
as possible.

2 GOALS
This working group is motivated by the following goals:
(1) Identify areas/aspects of computing education where LLMs

could be used from both the student and teacher perspective.We
plan to collect data from awide range of computing educators to
identify and expand upon the most influential candidate areas.

(2) Present a guide to the opportunities and challenges of LLMs
in computing education as well as likely future opportunities
and challenges, given that these models seem likely to improve
rapidly.

(3) Replicate prior work on the performance of current LLMmodels
on programming problems, exam questions, and other curric-
ula. From this work, choose appropriate benchmarks by which
future work can determine the efficacy of these models and
provide a standard for replication.

(4) Create an evidence-based resource of pedagogical approaches
for which LLMs can be utilised so that programming educators
can utilise these new tools effectively.

(5) Cast a bold yet practical vision for the future of programming
education in this new era.
Although we plan to include an extensive review of the literature,

we recognize that any such attempt in this nascent and rapidly
expanding area of research will quickly become out of date. We
will therefore focus on the present status quaestionis and provide
recommendations based on that.

REFERENCES
[1] Brett Becker, James Prather, Paul Denny, Andrew Luxton-Reilly, James Finnie-

Ansley, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities And Challenges of AI Code Generation
(SIGCSE ’23). ACM.

[2] Paul Denny, Sami Sarsa, Arto Hellas, and Juho Leinonen. 2022. Robosourcing
Educational Resources – Leveraging Large Language Models for Learnersourcing.
https://doi.org/10.48550/ARXIV.2211.04715

[3] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of
OpenAI Codex on Introductory Programming (ACE ’22). ACM, Online, 10–19.
https://doi.org/10.1145/3511861.3511863

[4] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A. Becker. 2023. My AI Wants to Know If This Will Be
on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises (ACE ’23).
ACM, NY, NY, USA, 97–104. https://doi.org/10.1145/3576123.3576134

[5] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA,
Article 455, 23 pages. https://doi.org/10.1145/3544548.3580919

[6] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. arXiv:2304.03938 [cs.CY]

[7] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James
Prather, and Brett A. Becker. 2023. Using Large Language Models to Enhance
Programming Error Messages (SIGCSE 2023). ACM, NY, NY, USA, 563–569.
https://doi.org/10.1145/3545945.3569770

[8] StephenMacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul Denny,
Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using Code Expla-
nations Generated by Large Language Models in a Web Software Development
E-Book (SIGCSE 2023). Association for Computing Machinery, New York, NY,
USA, 931–937. https://doi.org/10.1145/3545945.3569785

[9] James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. "It’s Weird That it Knows What I Want": Usability and Interactions
with Copilot for Novice Programmers. https://doi.org/10.48550/arXiv.2304.02491
arXiv:2304.02491 [cs.HC]

[10] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models (ICER ’22). ACM, NY NY, USA, 27–43. https://doi.org/10.1145/3501385.
3543957

[11] Michel Wermelinger. 2023. Using GitHub Copilot to Solve Simple Programming
Problems. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for
Computing Machinery, New York, NY, USA, 172–178. https://doi.org/10.1145/
3545945.3569830

ITiCSE 2023, July 8–12, 2023, Turku, Finland James Prather et al.

562

https://doi.org/10.1145/3587103.3594206
https://doi.org/10.48550/ARXIV.2211.04715
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3544548.3580919
https://arxiv.org/abs/2304.03938
https://doi.org/10.1145/3545945.3569770
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.48550/arXiv.2304.02491
https://arxiv.org/abs/2304.02491
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3545945.3569830
https://doi.org/10.1145/3545945.3569830

	Abstract
	1 Introduction
	2 Goals
	References



