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ABSTRACT
The recent advent of highly accurate and scalable large language
models (LLMs) has taken the world by storm. From art to essays
to computer code, LLMs are producing novel content that until
recently was thought only humans could produce. Recent work
in computing education has sought to understand the capabilities
of LLMs for solving tasks such as writing code, explaining code,
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creating novel coding assignments, interpreting programming er-
ror messages, and more. However, these technologies continue to
evolve at an astonishing rate leaving educators little time to adapt.
This working group seeks to document the state-of-the-art for code
generation LLMs, detail current opportunities and challenges re-
lated to their use, and present actionable approaches to integrating
them into computing curricula.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Computing methodologies → Artificial intelligence.

KEYWORDS
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1 INTRODUCTION
Recent advancements in artificial intelligence (AI) have ushered in
a new era of computing. One particular class of AI models, known
as large language models (LLMs), has shown remarkable capabili-
ties in the generation and interpretation of natural language data
and source code interpretation and generation. Many timely and
important questions remain unanswered about how we will adapt
to the challenges and opportunities this presents. If students are
able to generate solutions to all of their programming coursework,
how does this impact what is taught, how it is taught, and how
students will remain motivated to learn?

For instance, many introductory programming courses use a pop-
ular evidence-based approach involving students writing dozens
of small programming exercises checked by automated assessment
tools. These problems can now be solved quite easily by new tools
that provide students access to powerful LLMs [3]. The most recent
models can solve even more complex data structures and algo-
rithms -level assignments [4]. This casts doubt about the efficacy
and longevity of current pedagogical practices and raises concerns
about student learning, plagiarism, and over-reliance [1]. Current
tools, such as Github Copilot, can provide code solutions in a stu-
dent’s IDE and are free to use. However, for every right answer
these tools provide, they also can provide wrong or ambiguous code
and can include unnecessary elements [11]. Students using these
tools can also quickly become lost while reading code they didn’t
write [5] or lazily drift from code suggestion to code suggestion
without understanding what they are doing [9].

The emergence of large language models could also bring bene-
fits, however. These models can be used to scaffold instructors in
creating educational resources such as novel, personalized program-
ming exercises [2, 10], code explanations that could help support
students when they are working on exercises [6, 8], and enhanced
programming error messages that might be easier to understand
for novice programmers [7].

We believe that large language models will have profound im-
pacts on computing education. This working group will work to-
wards understanding how we can make those impacts as positive
as possible.

2 GOALS
This working group is motivated by the following goals:
(1) Identify areas/aspects of computing education where LLMs

could be used from both the student and teacher perspective.We
plan to collect data from awide range of computing educators to
identify and expand upon the most influential candidate areas.

(2) Present a guide to the opportunities and challenges of LLMs
in computing education as well as likely future opportunities
and challenges, given that these models seem likely to improve
rapidly.

(3) Replicate prior work on the performance of current LLMmodels
on programming problems, exam questions, and other curric-
ula. From this work, choose appropriate benchmarks by which
future work can determine the efficacy of these models and
provide a standard for replication.

(4) Create an evidence-based resource of pedagogical approaches
for which LLMs can be utilised so that programming educators
can utilise these new tools effectively.

(5) Cast a bold yet practical vision for the future of programming
education in this new era.
Although we plan to include an extensive review of the literature,

we recognize that any such attempt in this nascent and rapidly
expanding area of research will quickly become out of date. We
will therefore focus on the present status quaestionis and provide
recommendations based on that.
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