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ABSTRACT
Generative AI (GenAI) has seen great advancements in the past two
years and the conversation around adoption is increasing. Widely
available GenAI tools are disrupting classroom practices as they
can write and explain code with minimal student prompting. While
most acknowledge that there is no way to stop students from using
such tools, a consensus has yet to form on how students should use
them if they choose to do so. At the same time, researchers have
begun to introduce new pedagogical tools that integrate GenAI into
computing curricula. These new tools offer students personalized
help or attempt to teach prompting skills without undercutting code
comprehension. This working group aims to detail the current land-
scape of education-focused GenAI tools and teaching approaches,
present gaps where new tools or approaches could appear, iden-
tify good practice-examples, and provide a guide for instructors to
utilize GenAI as they continue to adapt to this new era.
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CCS CONCEPTS
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1 INTRODUCTION
Early work on GenAI in computing education, starting in 2022,
showed amazing accuracy in solving programming problems [5,
6, 8, 18]. GenAI can also provide opportunities and resources for
educators [3, 4, 10, 11, 14, 17]. However, many educators have raised
concerns about adapting their curricula, student learning, inherent
biases, over-reliance, and educational misconduct [2, 9, 15, 16].

In the midst of these ongoing discussions around adoption [13],
educators and researchers are beginning to take next steps. For
instance, early work showed that programming error messages
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could be automatically enhanced via a large language model (LLM)
like GPT-3 [11]. Very recent work has expanded and implemented
this at scale and shown that it directly benefits students [19]. It was
also shown that GenAI can provide customized help and feedback
to students working on programming exercises [1, 7, 10, 14]. In
very recent work, custom AI programming tutors have been im-
plemented at scale in computing classrooms to provide students
with “a pedagogically-minded subject-matter expert by their side at
all times”, thereby providing constant custom support for learners,
and freeing human educators to focus on more complex issues [12].

2 GOALS
The overall goal of this working group is to explore what computing
instructors are doing to implement and integrate generative AI and
large language models into their courses. This goal can be split into
the following subtasks that the working group will undertake:
(1) Conduct a literature review to examine the types of teaching

approaches involving GenAI employed by computing educators.
(2) Gather data from multiple institutions through a survey and

interviews with educators to understand approaches that might
not yet have been presented in the literature.

(3) Expose gaps in the current landscape of pedagogical approaches
to incorporating GenAI for future work by researchers.

3 PROPOSED METHODOLOGY
Wewill conduct a literature review of existing work to contextualize
the findings. The main focus of the literature review will be to look
for articles that report on approaches and tools that incorporate
generative AI that have been used to teach computing. However,
this will likely only include established approaches and tools that
are mature enough for having been published.

The main source of data for this report will be a multi-national
multi-institutional interview study. We will seek to interview both
educators and researchers who are purposefully integrating GenAI
tools and approaches into their classrooms. To collect this data, we
plan to send out calls on relevant mailing lists, solicit interviews at
conferences, use snowballing and personal connections. In addition,
we will gather data from educators via an online survey.

The data will be analyzed in two ways. First, we will identify
current approaches to GenAI tool integration, and other important
trends mentioned in the interviews by using thematic analysis. This
will help expose gaps in current approaches for future work. Second,
the survey data will be quantitatively analyzed.

4 EXPECTED DELIVERABLES
We expect to produce the following contributions:
(1) Create an open repository of resources on tools, guidelines, and

pedagogical approaches used to teach with GenAI.
(2) Outline possibilities for future work to benefit student learning.
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