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ABSTRACT
Novice programmers often struggle through programming problem
solving due to a lack of metacognitive awareness and strategies.
Previous research has shown that novices can encounter multiple
metacognitive difficulties while programming, such as forming in-
correct conceptual models of the problem or having a false sense of
progress after testing their solution. Novices are typically unaware
of how these difficulties are hindering their progress. Meanwhile,
many novices are now programming with generative AI (GenAI),
which can provide complete solutions to most introductory pro-
gramming problems, code suggestions, hints for next steps when
stuck, and explain cryptic error messages. Its impact on novice
metacognition has only started to be explored. Here we replicate a
previous study that examined novice programming problem solving
behavior and extend it by incorporating GenAI tools. Through 21
lab sessions consisting of participant observation, interview, and
eye tracking, we explore how novices are coding with GenAI tools.
Although 20 of 21 students completed the assigned programming
problem, our findings show an unfortunate divide in the use of
GenAI tools between students who did and did not struggle. Some
students who did not struggle were able to use GenAI to acceler-
ate, creating code they already intended to make, and were able to
ignore unhelpful or incorrect inline code suggestions. But for stu-
dents who struggled, our findings indicate that previously known
metacognitive difficulties persist, and that GenAI unfortunately can
compound them and even introduce new metacognitive difficulties.
Furthermore, struggling students often expressed cognitive disso-
nance about their problem solving ability, thought they performed
better than they did, and finished with an illusion of competence.
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Based on our observations from both groups, we propose ways to
scaffold the novice GenAI experience and make suggestions for
future work.
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1 INTRODUCTION
Computing education is undergoing an upheaval due to Generative
AI (GenAI) [15] because GenAI tools like ChatGPT and GitHub
Copilot can solve an impressive array of programming-related ac-
tivities [50]. Some educators are incorporating GenAI into courses
from the very start, giving students access to such tools, and/or
using AI-first textbooks [48]. These tools could allow students to
go further and faster than traditional CS1 courses have historically
allowed [64] or have access to personalized tutoring resources at
all times [33].

Despite the impressive capabilities of GenAI, its impact on stu-
dent learning remains largely unknown. This is particularly true at
the novice level because some tools, such as Copilot, were made
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for experts, and therefore what we know about its usefulness per-
tains mostly to professional developers [73]. The recent ACM/IEEE-
CS/AAAI CS2023 curriculum1 took an optimistic outlook on GenAI,
suggesting that it may be able to scaffold novice learning [5]. In-
deed, early work showed that it could accelerate programming [4].
However, since GenAI entered the mainstream, researchers have
been concerned about the possibility of student over-reliance [6].
A recent blog post by Amy Ko went further, arguing that GenAI is
supplanting thought and short-circuiting students’ ability to reason
[28].

We take this caution seriously and note that even before the
advent of GenAI, researchers found that students struggled to move
through the programming problem solving process due to a lack of
metacognitive awareness [34, 35, 51, 52]. Metacognition is a crucial
skill in learning programming, which prior work has found most
novice programming students lack [49]. If GenAI is replacing critical
thinking in programming problem solving, rather than supporting
it, then it stands to reason that metacognitive difficulties faced by
novice programmers could get worse with GenAI tools as well. It
may also be the kind of phenomenon that is not readily apparent to
instructors due to students possibly having a perception of learning
while courses evaluate programming skills in traditional ways, such
as through the popular “many small programs” approach [2, 3].
Therefore, evaluating novice programmer metacognition is one
place to start determining whether and how GenAI is impacting
novice programming problem solving [62].

In our previous work, we evaluated novice programmers in a lab
study of students (n=31) solving an appropriately difficult program-
ming problem [52]. We identified five metacognitive difficulties
that students faced when solving the problem and submitting it to
an automated assessment tool for feedback. These metacognitive
difficulties center around understanding of the problem, moving
too quickly through the process, and an unwillingness to rethink
the solution once the code is seemingly complete. In this paper, we
replicate that study with the addition of GenAI tools to discover if
the introduction of AI has solved any of these previously identified
issues and what new issues it may have created. We found that all
previous metacognitive difficulties remain, that they can be com-
pounded by GenAI, and that new metacognitive difficulties have
emerged. Students with better grades and higher self-efficacy were
more likely to use GenAI tools to accelerate towards a solution,
while others struggled through the process, maintaining what we
observed to be an unwarranted illusion of competence. We present
here evidence that the GenAI tools could widen the gap between
well and poorly performing students.

Our experiment was guided by the following research questions:

RQ1: What benefits do novice programmers receive from using
GenAI tools to solve programming problems?

RQ2: What difficulties do novice programmers face while using
GenAI tools to solve programming problems?

1csed.acm.org

2 RELATEDWORK
2.1 Large Language Models in Computing

Education
Large language models and generative AI have seen a lot of atten-
tion in computing education over the past two years [50]. LLMs can
solve most introductory programming exercises in both CS1 [18]
and CS2 courses [19]. They can correctly answer multiple-choice
questions related to introductory programming [59] and solve Par-
sons problems based only on an image of the problem [24]. This
has raised concerns from educators about potential student over-
reliance [6, 29, 61, 72].

Another stream of work has explored how computing instructors
could utilize large language models, such as for creating program-
ming exercises [58], code explanations [30, 37, 58], and enhancing
programming error messages [31, 57, 66]. Due to good performance
on these tasks, there have been calls to integrate LLMs into the
classroom [9, 72] (albeit with guardrails [23]). Many computing
education tools that utilize generative AI and LLMs have recently
emerged such as CodeHelp [32], CodeAid [27], and Promptly [13].
The first two provide hints to students, while the last teaches stu-
dents prompt engineering while still learning coding concepts.

In addition to exploring the capabilities of LLMs, work has started
to emerge looking at how LLMs are used for code generation. Re-
cent work has found that GitHub Copilot can increase productivity
for professional programmers [45], although other work has found
it not affecting time-on-task (even though participants preferred
it over regular autocomplete) [65]. For professionals, Copilot use
can be categorized into “acceleration” where they utilize it for
completing a task faster and “exploration” where they explore po-
tential approaches to solve the task [4]. In addition to these two
modes of operation, novices sometimes engage in “shepherding” –
over-reliance where they rarely write any code of their own – and
“drifting” – where they drift between Copilot’s suggestions, making
no progress towards the task [54]. Regardless, preliminary results
frommultiple studies suggest that students enjoy having generative
AI available and that the majority of them find generative AI tools
helpful and do not think they over-rely on them [33, 46, 64]. The
aforementioned preliminary studies are based on surveys, and thus
report what students think about generative AI and their use of it,
but not necessarily how they actually use it. Our research addresses
this gap by studying how novices use generative AI tools using a
rich dataset encompassing both eye-tracking and think aloud data.

2.2 Metacognition in Programming
Programming is about more than just writing lines of code; it in-
volves complex cognitive processes to decompose the problem,
implement a solution, and debug when necessary. As initially de-
fined by Flavell, metacognition is the awareness and regulation of
cognitive processes [20]. Metacognitive awareness, along with self-
regulation, are two essential components of cognitive control [60],
which involves students recognizing and implementing strategies
to guide their problem solving and learning. This has long been
known as an important part of learning programming [36, 49]. In a
study of metacognitive awareness in novice programmers, Loksa et
al. [35] identified six stages in the program problem solving process,

csed.acm.org


The Widening Gap: The Benefits and Harms of Generative AI for Novice Programmers ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia

which include (1) reinterpret the prompt, (2) search for analogous
problems, (3) search for solutions, (4) evaluate a potential solution, (5)
implement a solution, (6) evaluate implemented solution. They found
that helping students become aware of where they were in these
six stages increased performance. Prather et al. [52] observed stu-
dents moving through these stages and reported the metacognitive
difficulties they faced (see Table 2).

We chose metacognition as the theoretical lens through which
to understand novice usage of GenAI because it allows us to mea-
sure and evaluate the usability challenges of GenAI [62]. However,
there is still very little known about how students actually use
GenAI tools when learning programming and how that impacts
their metacognitive awareness. In a recent study where students
could use GenAI while learning programming, Margulieux et al.
reported that students may use GenAI to support, not replace, their
own problem-solving [38]. However, they also reported that stu-
dent use of GenAI tools was correlated with lower grades, lower
self-efficacy, and a higher fear of failure. They suggest that this
could mean LLMs are helping those who need it the most, such as
students who are less prepared or not as confident in their program-
ming abilities. They also note that it could be having the opposite
effect and that lower performing students might need help using
GenAI tools in ways that do not circumvent their own learning. It
is possible that many lower-performing students are not aware of
how GenAI is circumventing their learning.

3 METHODS
3.1 Context
Because we were seeking to replicate our previous work (Prather
et al. [52]), we used the same automated assessment tool (AAT),
Athene, and the same programming problem used in the previous
study. Athene is integrated into our Learning Management System,
Canvas (see Figure 1). After submission, the AAT evaluates the
program by compiling it and then running it against a series of test
cases. It then provides feedback to the user (see Figure 2).

The problem used in our prior study [52] was “More Positive
or Negative” that determines if there are more positive or more
negative numbers after an indeterminate number of integers input
by the user. The course used in the present study mirrors the course
used in our prior study in programming language (C++) and order
of topics. Loops were introduced two weeks before conducting the
study (i.e. it was still somewhat new, but not so new that it was
overwhelmingly challenging). We attempted to make the study
setting as similar as possible to the original to increase the validity
of the replication.

Unlike our prior study [52], which we conducted before the ad-
vent of GenAI, the course in which this study took place utilized
GenAI from the beginning. The professor (one of the researchers)
encouraged students to install VSCode with GitHub Copilot on the
first day of class and coded live in front of students in that environ-
ment. The professor also utilized ChatGPT during class to discuss
productive ways to use that tool, such as for understanding pro-
gramming error messages. Furthermore, the professor frequently
used class time to discuss when Copilot or ChatGPT provided un-
helpful, misleading, or simply incorrect responses. The professor

did this hoping that it would model positive usage of these GenAI
tools for the students.

3.2 Participants
As in the previous study, this replication also takes place at the same
small research university in the USA where small class sizes are the
norm. This study was approved by IRB as “exempt” research and
students were provided with consent forms. There were 27 students
enrolled in this CS1 course, and although extra credit points were
offered for participation, only 21 students chose to opt-in. The ones
who did not opt-in were offered an alternative way to receive extra
credit, which was to complete an extra program of similar complex-
ity, and one student chose to complete that requirement. As noted
in Oleson et al. [43], it is important to note who is present as much
as who was not present and that studies in these contexts can of-
ten involve power dynamics that can alienate certain marginalized
groups. Along these lines, it should be noted that one student who
identified as African-American and two students who identified
as Hispanic were among those that chose not to participate. From
the students who participated, three students identified as African-
American, two students identified as Hispanic, and one student
identified as both racially and ethnically Jewish. The other fifteen
identified as white or Caucasian. Additionally, two students who
identified as White were from Europe, one from Germany and the
other from Italy. We collected racial and ethnic identities because
the university has been steadily growing towards being identified as
a Hispanic-Serving Institution (HSI) and we were concerned about
what issues traditionally marginalized groups may be facing. Seven
of the participants identified as women and the other 14 identified
as men. We collected gender identity information because previous
research has shown that women are more likely to be marginalized
in computing classrooms [16].

3.3 Lab Study
Students used a lab computer that had VSCode installed with
GitHub Copilot. During the study, they were allowed to utilize
GitHub Copilot as well as ChatGPT. The web browser on the lab
computer had only two tabs open: the programming problem in
Canvas and ChatGPT. Between sessions, the ChatGPT conversation
was cleared to prevent it from using previous prompts, and the .cpp
file in VSCode was deleted and remade in an attempt to prevent
Copilot from leaning on previous context.

We followed the protocol from our prior study [52], including pre
and post checklists and guidelines and scripts found in [56]. First,
the researcher in the room read from the script to set expectations
and goals. After this, eye tracking tools were calibrated to the
participant. We used Tobii eye tracking hardware and software.
The hardware is a thin bar that sits at the bottom of the screen
and collects gaze data from each participant. This data is then
overlaid onto the screen recording of their session. It tracks both
fixations and saccades and allows them to be replayed. Fixations
are depicted as red circles, which grow larger as the duration of the
fixation increases. Eye tracking has been utilized in programming
research for decades [7, 10, 11] and is mostly used to measure code
comprehension and debugging [42], novice gaze patterns [8] and
automatic skill level detection [1].
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Figure 1: Problem description from Athene

Figure 2: Sample Feedback from Athene

Next, the participant was given a warm-up task because fol-
lowing a think-aloud protocol can be difficult to do while also
doing cognitively demanding tasks, as suggested by [53, 63, 67].
The warm-up task was simply writing a “Hello World” program
while verbalizing their thoughts and explaining their actions, which
should be manageable by most students at that point in the semes-
ter. After completing the warm-up activity, students were provided
the “More Positive or Negative” programming problem (see Figure
1) and asked to complete it in 35 minutes. This same time limit
was used by in our prior study [52] because a majority of students
could solve it within that time frame when used as an in-class quiz.
While the participant worked on the programming problem, re-
searchers took notes on everything the participant said and did,
while minimizing interactions with the participant as suggested by
best practices [17].

Afterwards, we asked a series of questions about their percep-
tions on how helpful Copilot and ChatGPTwere during the problem
solving, their perceptions about AI in general, how much they use

AI, their prior experience using AI and prior experience program-
ming, family socio-economic status, self-described race and gender,
how much they work, age, and major. One week later, we also
collected self-efficacy data from students at the beginning of class
using the self-efficacy subscale of the MSLQ [47]. We did this so
that we could get their self-efficacy perceptions apart from the lab,
which could be stressful to some participants.

3.4 Data Analysis
Participants were given unique random identification numbers. Par-
ticipant weekly programming quiz grades were deidentified and
added to the data according to their identification number. Partici-
pant observation notes were then compiled into a spreadsheet, split
by line, for tagging. Researchers developed the following initial
codebook of 15 codes: six stages of programming problem solving by
Loksa et al. [35], five metacognitive difficulties by Prather et al. [52],
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verbalized positive self-efficacy, verbalized negative self-efficacy,
verbalized positive emotion, and verbalized negative emotion.

Two researchers then met and discussed tagging procedure and
initial ideas of what each of the tags meant. The two researchers
then separately coded the first participant observation session, tag-
ging every line with at least one of the programming problem
solving stages. As they tagged each line, they also watched the
video playback of the session with eye tracking data overlaid (see
figures below for examples). This enhanced the researchers’ abil-
ities to know what a participant was looking at when they said
or did particular things, how long they spent looking, and what
they chose to look at that may not have been verbalized. The two
researchers then met together to discuss their disagreements and
resolved them through discussion. This process was repeated four
times until, after the fourth participant data were tagged this way,
the researchers reached a Cohen’s Kappa of 0.74, which is consid-
ered high agreement [39]. After reaching this level of agreement
from tagging separately, the researchers tagged the rest of the data
independently.

As the researchers tagged all data, they discussed any occurrence
where they thought new phenomena had arisen out of the raw data.
In this way, three new metacognitive difficulties were identified
and therefore were added as tags during tagging: Interruption,
Mislead, and Progression.

3.5 Limitations
One limitation of our study is the relatively small sample size, with
only 21 participants compared to 31 participants in the original
study by Prather et al. [52]. While this smaller sample size may
limit the generalizability of our findings, it is important to note
that our study incorporated additional analyses with eye tracking
technology, which provided novel insights into the metacognitive
difficulties experienced by participants in the study. There were
also limitations associated with the generative AI tools that were
used in our study. While recent survey studies have shown that
ChatGPT and GitHub Copilot are both being used more frequently
by students [25, 50], it is important to acknowledge that these
are not an exhaustive representation of the breadth of generative
AI tools that are available. Despite our efforts to compensate for
the smaller sample size through robust statistical analysis and in-
depth contextualized qualitative analysis, it is imperative for future
research to conduct studies with larger sample sizes encompassing
diverse generative AI tools to corroborate and extend our findings.
Finally, we were limited by the single site of the experiment as
noted by Oleson et al. [43].

4 RESULTS
Twenty-one students participated in the lab session. All students
except for one completed a working program within the time limit.
Times varied from 5 to 35 minutes and averaged 17.1 minutes with
a standard deviation of 8.1. Students also accepted suggestions from
Copilot at rates ranging from 10% to 53%. See Table 3 and Table
4 for summary data on these measures. Likert interview question
results are shown in Figure 3.

Nine students were tagged with metacognitive difficulties taken
from previouswork [52], while eight students were taggedwith new

metacognitive labels (see Table 2 for definitions). Only 1 student
was tagged with new metacognitive label without having any old
labels. We provide the full data of which student encountered each
metacognitive difficulty in Table 3.

Several variables were correlated with Metacognitive difficulties,
though we do not discuss all for space constraints (see Table 1).
Student grade and new metacognitive difficulties were moderately2
negatively correlated (r= -.503, p= 0.020). It is reasonable to imagine
that students with lower grades would have more difficulties than
students with higher grades. Although with less significance, old
metacognitive difficulties were similarly correlated with grade (r=
-0.48, p= 0.268). Metacognitive difficulties counts and negative self
efficacy were moderately correlated (r= 0.552, p= 0.009). It is not
surprising to consider that a student who had low self-efficacy
would also experience more metacognitive issues than students
with high self-efficacy. Higher self-efficacy scores were associated
with higher course grades (r= 0.552, p= 0.009), as also seen in other
studies on the role that self-efficacy plays in computer science
course performance [55]. The longer a student took to solve the
problem, the more metacognitive difficulties they were likely to
exhibit (r= 0.693, p= 0.00049). This was not surprising, given that the
metacognitive difficulties interfere with successful problem solving.
Relatedly, the longer a student took to solve the problem, the lower
their course grade tended to be (r= -0.727, p= 0.0002).

Programming experience was strongly correlated with AI expe-
rience (r= 0.622, p= 0.0026), though these were both self-reported.

4.1 Participants Who Struggled
Although only one student failed to complete the task, half of the
students were observed struggling for various reasons, including
exhibiting one or more metacognitive difficulties. We found each of
the metacognitive difficulties previously identified by in our prior
work [52]: Forming, Assumption, Dislodging, Location, and
Achievement. But in addition to those, we also found three new
metacognitive difficulties centered around use of GenAI: Interrup-
tion, Mislead, and Progression. See Table 2 for a full description
of each metacognitive difficulty both from previous work and our
results.

We describe the experiences of these participants below using ob-
servation notes, student verbalizations, and the recorded replay and
gaze interactions with VSCode, Copilot, and ChatGPT, informed
by the presentation of similar data in previous eye tracking stud-
ies [8, 11].

As seen in Table 4, students who experienced metacognitive
difficulties tended to accept CoPilot suggestions at higher rates. Stu-
dents who are less prepared have a more difficult time determining
whether a CoPilot suggestion is worth accepting. They accepted
more suggestions that they subsequently reworked or rolled back
entirely.

4.1.1 P1: Forming, Dislodging, Achievement, Interruption.
Although the problem description explicitly states not to sum the
numbers, P1 first wrote code that would actually sum them. But
from their verbal statements, it appears they intended to solve the

2r 0.0-0.19 very weak, 0.2-0.39 weak, 0.4-0.59 moderate, 0.6-0.79 strong and 0.8-1.0 very
strong.[21]
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I had a lot of programming experience before this class.

I had experience using AI like ChatGPT before this class.

I regularly use AI to complete my homework for my classes.

I regularly use AI to complete my homework for this class.

Using AI in this class is helping me learn.

Q
u
e
s
ti
o
n

strongly disagree
disagree
slightly disagree
neutral
slightly agree
agree
strongly agree

Response

Figure 3: Interview Questions about programming and AI experience

Table 1: Pearson Correlations for moderately and highly correlated variables

Variable Variable r p
New metacognitive issues count Time 0.729 0.00020
Course grade Time -0.727 0.00020
Metacognitive issues count Time 0.693 0.00050
Used AI in class Finds AI helpful in class 0.661 0.00110
Programming experience before class Experience with AI 0.622 0.00260
Old metacognitive issues count Time 0.621 0.00270
Course grade Self-efficacy score 0.553 0.00940
Problem states Time 0.552 0.00940
Metacognitive issues count Negative self efficacy count 0.552 0.00940
Course grade New metacognitive issues count -0.503 0.02010
Course grade Old metacognitive issues count -0.482 0.02682

Table 2: Definitions of Old and New Metacognitive Difficulties

Name Description

Previous [52]

Forming Forming the wrong conceptual model about the right problem.
Dislodging Dislodging an incorrect conceptual model of the problem may not be

solved.
Assumption Forming the correct conceptual model for the wrong problem.
Location Moving too quickly through one or more stages incorrectly leads to a

false sense of accomplishment and poor conception of location in the
problem-solving process.

Achievement Unwillingness to abandon a wrong solution due to a false sense of being
nearly done.

New

Progression Being conceptually behind in the course material but unaware of it due
to a false sense of confidence

Interruption An inability to concentrate on problem solving due to frequent inter-
ruptions and code suggestions.

Mislead The tool leads the user down the wrong path.

correct problem and were simply incorrectly implementing it, in-
dicating a difficulty described in the previous work as Forming.
As they struggled to write this summing solution, Copilot would
regularly interrupt, causing them to pause and consider each of its
suggestions. In response to these interruptions, they said things
like “These prompts are distracting sometimes” and “I’m trying to

think of...never mind, wait” and “No, go away, please stop what
you are doing.” They often bounced between implementing a so-
lution and evaluating Copilot’s suggestions, which led to several
Interruption difficulties in the process. The disconnect between
their working conceptual model of the problem and a successful
approach was not immediately apparent to them even though they
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Table 3: Count of types of metacognitive difficulties, Completion time, and Accept-Rate

anonid Difficulties Count Time Accept Rate
1 Forming, Dislodging, Location, Achievement, Interruption 5 35.00 0.18
2 0 6.80 0.10
3 0 12.80 0.31
4 Dislodging, Assumption, Location, Achievement, Interruption 5 22.83 0.22
5 0 10.20 0.28
6 0 7.60 0.22
7 Location, Progression 2 28.17 0.17
8 Location, Progression 2 19.75 0.20
9 Location 1 11.90 0.31
10 0 19.13 0.24
11 Mislead 1 20.93 0.37
12 0 12.43 0.31
13 Forming, Interruption 2 18.35 0.53
14 Forming, Achievement, Interruption 3 16.23 0.50
15 0 11.76 0.17
16 0 26.48 0.23
17 Location, Progression 2 29.11 0.31
18 0 10.50 0.28
19 0 5.00 0.33
20 0 9.70 0.29
21 Forming, Mislead 2 24.90 0.46

Table 4: Acceptance Rates of Copilot Suggestions by Metacog-
nitive issues present

Metas No Metas
mean 34.1% 24.5%
stddev 12.5% 6.6%
min 17.0% 10.0%
max 53.0% 33.0%

went back to the problem description to re-read it several times.
This interaction of being sent back to the problem description while
being "in the weeds" we call Dislodging. P1 rewrote the solution
several times, first with conditionals and then with nested loops,
leading to observed and verbalized frustration.

After trying and failing to get their code to compile, they sought
out ChatGPT, saying, “Okay, I’m using ChatGPT now. I love Chat-
GPT. It’s so helpful.” They copied and pasted all of their code into
ChatGPT without giving it a prompt, so the tool replied with a
simplified version of their incorrect implementation, to which they
replied, “Oh, so I don’t need to put that. They made this so sim-
ple, it’s annoying. Oh wait, no, that’s not what I asked for. I need
to figure out what to prompt it. Or I can just copy and paste the
Athene.” Realizing they needed to provide more context for Chat-
GPT, they instead pasted the problem description into ChatGPT
as a subsequent prompt in the same conversation thread. Without
reading the suggestions provided by ChatGPT, they immediately
began comparing its code to their own code. Further Copilot inter-
ruptions continued and they said, “Oop please go away.” ChatGPT
suggested a do-while loop, which had not been covered in class,
further compounding comprehension issues. Looking at ChatGPT’s

suggested code, they added an additional for-loop above the nested
for-loop and then started a new ChatGPT thread asking ”why isn’t
my code outputting the negative or positive?” Although the sug-
gestions from ChatGPT were wildly different from their own code,
they continued trying to use their solution and fix it. Although
major structural changes were necessary to the code, they were
unwilling to abandon their solution, showing an Achievement
difficulty and saying, “Maybe if I put the numbers differently...nope
it’s just difficult.”

Copilot continued to interrupt and finally they decided to sub-
mit to Athene to see if that would provide some new help. After
that provided no new insight, they copied the problem description
into ChatGPT, from which they deduced that they needed two new
variables at the top to track positives and negatives. This was all
the information that Copilot needed to start providing extremely
useful suggestions, which they began to accept. They then deleted
nested loops and started patterning the code after what was pro-
vided by ChatGPT. Although close, they were unable to arrive at a
working solution before the time ended, saying, “I love how I spent
30 minutes on different code and then got it in a few minutes with
this.”

When asked in the post-interview whether they thought Copilot
was helpful, they said, “For the most part, yes. It was great when
it gave me the right answer but when it didn’t it was distracting
me and throwing me off.” Similarly, when asked if ChatGPT was
helpful, they said, “Yes. I put my code in and it didn’t give me the
right answer at first but that was my fault. Then I put the prompt in
and scanned it and put some pieces into my code.” Their responses
reinforce that there seems to be a disconnect between their ability
to solve the problem and how much help GenAI tools actually
provided.
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4.1.2 P4: Assumption, Dislodging, Location, Achievement,
Interruption. P4 began by carefully reading through the problem
description, twice. They then immediately started coding by writ-
ing a for-loop that would iterate ten times. Unhappy with this, they
deleted it and started over with a while loop that would iterate
until the input was zero. Inside the loop, they started setting up a
conditional. As Copilot gave constant suggestions, they said things
like, “Stop! That’s so distracting” and “Oh, shut up.” This occurred
throughout the session, showing an Interruption difficulty. Al-
though Copilot suggested generic and largely unhelpful conditions,
they typed a condition to use the modulus to determine whether
the number is even or odd, showing an Assumption difficulty.
They then added variables at the top for counting evens and odds.
With this information, Copilot began suggesting long blocks of
code to solve the even or odd problem, which they accepted, giving
them nearly an entire solution for that (incorrect) problem. Despite
multiple looks back at the problem description, they continued for-
matting the code for the even or odd problem instead. After testing
it and receiving incorrect responses, they read the code and the
prompt multiples times, confused, saying “Okay wait that doesn’t
work. Why?” Stuck at the end of the implementation phase of the
problem solving process, they did not realize that they had skipped
most of the early stages of the programming problem solving pro-
cess and jumped right to coding a solution, showing a Location
difficulty.

They turned to ChatGPT for help and prompted, “How to find ab-
solute value in C++?”, apparently deciding that they needed this to
fix their code. After reading the code response from ChatGPT, they
wrapped their conditional checking if a number is evenwith a call to
the built-in absolute value function. More testing revealed the same
incorrect responses and they re-read the problem prompt again for
the fifth time, showing clearly a Dislodging difficulty. Frustrated,
they returned to ChatGPT and prompted, “Why wouldn’t this code
work correctly given the following values?” and pasted in their code
and the test cases displayed in the problem description. ChatGPT
replied that they had not initialized the even or odd variables and
that this could lead to undefined behavior in C++, to which the
student replied excitedly, "Oh! This isn’t C#! I can’t believe I did
that.” They initialized one variable, recompiled, and tested again,
saying, “Okay, it works now.” With code that looked nearly done
and Athene providing feedback that helped them feel as if they
were getting closer to completion, they did not think of changing
their solution at the fundamental level that it needed, showing an
Achievement difficulty.

Submitting to Athene again, they still received incorrect output.
Believing it to be a trivial spacing issue, they made those changes,
tried again, and received the same result and asked, “Why is this
not working?” Finally, they re-read the problem description again
and exclaimed, “OH. I’ve been doing this wrong the entire time.
Positive or negative numbers! Oh my gosh!” They immediately
went back to the code and started editing it. Copilot attempted to
suggest more code related to the even or odd problem, to which
they replied, ”Stop. Okay, I can’t believe this.” As they worked on
editing to align with the correct problem, they started typing the
even or odd conditions again, but realized it and exclaimed, ”OMG!
Why did I do that again!” As they worked on the correct solution,
Copilot assisted toward the goal and they said, ”Why did I not catch

that until the end?” Within three minutes of realizing they had been
solving the wrong problem, they arrived at a correct solution.

When asked in the post-interview whether they thought Copilot
was helpful, they replied, “No, it kept getting in my way when I
was trying to think. It was interrupting my thought process.” But
when asked about ChatGPT, they replied, ‘It can provide me help
as I’m learning code. Chat does some critical thinking about what
I’m asking and can understand the problems I’m asking it.” From
their comments, they seemed to think that ChatGPT had augmented
their critical thinking rather than replaced it, but the data above
contradicts that.

4.1.3 P7: Location and Progression. P7 started by thoroughly
reading the prompt and then trying to start coding. Copilot imme-
diately provided a long suggestion and they seemed overwhelmed,
saying, “Woah, interesting. The first thing I’ll do is pull up Chat-
GPT.” They then opened ChatGPT and began writing a prompt,
saying, “I use ChatGPT more like a personal tutor than an answer
solver.” The prompt asked ChatGPT: “help give me instructions but
not the full answer on how to write code in C++ that keeps track
of numbers on whether they are positive or negative at the end.”
ChatGPT provided a series of six step-by-step instructions followed
by a suggested code solution. P7 started to read these instructions
but stopped after the first one and scrolled down to the code. They
then copied the code from ChatGPT into their own file, saying, “So
it’s giving me some code. I’m going to copy it so I can understand
what it’s saying.”

However, the solution generated simply counted and reported
the number of positive and negative numbers entered by a user,
rather than which one was input most frequently. Furthermore,
the solution contained extra constructs not introduced in class that
confused them, such as “std::” before output and input statements
as it did not use the standard namespace. They compiled and ran the
code anyway and found that it did not output exactly as shown in
the problem description, so they attempted to make the output lines
match. They did not understand the generated solution, which used
awhile(true) loop, as evidenced by asking the researcher, “How does
a loop stop?” Without building this solution, and instead just taking
what ChatGPT generated, they had skipped crucial steps in the
programming problem solving process, and were now lost, showing
a Location difficulty. They then made several changes to the code to
remove unfamiliar constructs, which caused many programming
error messages to appear upon compilation. Confused, they undid
these changes.

Unable to determine how to proceed, P7 copied the code back into
ChatGPT and prompted, “I’m needing my code to know whether
there are more positive or negative, or equal number of numbers
when having put in a list of numbers for example.” They read
the code that ChatGPT generated, looked back over their own
code, and then copied it into their source file, saying, ”I see...I like
this one more.” After formatting the output strings to be exactly
like the required output in the problem description, they compiled
and ran the code, commenting that it was only missing an extra
newline between pieces of the output. They attempted to add this,
incorrectly, and once again consulted ChatGPT for a solution. Once
it was provided, they read it and said, “Oh I was just forgetting the
cout. That’s all I forgot, I knew that was the right place.”
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Figure 4: P8 consulting ChatGPT to find the logic error with their code.

Although converging toward a solution, P7 did not understand
how to construct the solution, did not understand basic constructs
used in the solution, and struggled to fix basic errors, revealing a
Progression difficulty. Finally, after securing the last bit of neces-
sary code from ChatGPT, they were able to submit the program to
Athene and pass all test cases.

4.1.4 P8: Location and Progression. P8 began by carefully read-
ing the problem description and then created a variable for ac-
cepting input. They next typed the “while” keyword and Copilot
generated a loop that would sum responses. P8 read this carefully
and decided that it wasn’t what was needed, so they ignored it and
instead used a while(true) loop. Copilot continued to provide sug-
gestions, which the participant mostly ignored, instead constantly
referring back to the problem description and slowly typing out
their solution, saying, “I can use Chat[GPT] but I want to try and
solve it by myself first." They added console input and a conditional
statement to break the loop if that input was zero. They tried to
add a for-loop, but didn’t know what to put inside the parenthesis.
By skipping crucial problem solving stages and jumping right to
implementation, they found themselves stuck with no clue how to
proceed, indicating a Location difficulty.

So, they copied the problem description and put it into Chat-
GPT without adding specific instructions. ChatGPT generated a
complete solution and P8 read part of it and immediately began
augmenting their code, starting first with variables to track positive
and negative numbers, saying, “I feel kinda stupid for not thinking
about that” and “I gave up too soon. I am a failure.” They deleted

the for-loop and Copilot now suggested the code needed to incre-
ment the new counters, which they accepted. They added code to
output the results inside the breaking condition in the while loop,
which Copilot also helped complete. However, the brackets were
not aligned properly and Copilot suggested code without a closing
curly brace. When this produced a compiler error, they resolved
it by adding a curly brace at the line number provided by the pro-
gramming error message, which was not the correct place to insert
it. Although the code compiled, it did not pass any test cases.

Stuck again, they asked ChatGPT “what is wrong with my code”
without providing any code. ChatGPT responded with some basic
steps to help, which included ensuring variables were initialized
and input validation. Ignoring this, they copied their code into
ChatGPT and asked the question again. This time, it responded with
two issues: a simple formatting inconsistency and the logic error
created by themisplaced curly brace (See Figure 4). P8 carefully read
the text explaining both errors and immediately fixed the formatting
problem, but did not understand how to fix the logic error. At this
point, unable to proceed but having struggled through the use of
using loops effectively aided only by Copilot and ChatGPT, P8
displayed a Progression difficulty with their comprehension of
course topics several weeks behind.

Finally, they began changing code to explicitly mirror that which
was provided by ChatGPT, submitted, and passed the text cases.
When asked if they thought Copilot was helpful during the lab, they
said, “It was absolutely helpful but it would sometimes throw me
off because it would suggest other things that were not necessary.
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After clarifying with chat, I was right, but was initially confused
because I thought that Copilot was giving me the right answer.”
They had a similarly helpful picture of ChatGPT, saying, “Whenever
I got stuck, it provided me with the option for what I needed to
do. While it doesn’t always fully understand the prompt, it can
help you get going in the right direction. It helped me validate my
initial problem solving.” Their post-test comments, however, seem
to contradict what they said and did during the lab itself where
they used ChatGPT to provide a solution to the problem, not to
validate their own ideas.

4.1.5 P9: Location. P9 began by carefully reading the problem
description and test cases. They then began implementing their so-
lution by creating a variable and asking for input. Copilot suggested
a set of conditional statements that would output whether the num-
ber was positive, negative, or zero, which they accepted. They then
declared and initialized variables at the top to count positives and
negatives, replacing the output statements with incrementing the
correct variable. They then moved on to create a conditional state-
ment at the bottom of the code. Copilot correctly suggested the
set of conditions that would produce the correct answer. However,
user input would only occur once as there was no loop. P9 skipped
crucial problem solving planning stages, jumping directly to cod-
ing and was enticed by Copilot into quickly producing code, and
therefore displayed a Location difficulty.

As they cleaned up the code, they deleted the “if” in ”else if” but
left the condition, leading to a compiler error. The programming
error message said they needed a semicolon before a curly brace,
which of course was not helpful. Unsure how to proceed, they
pasted the error (only, no code) into ChatGPT, saying, “I’ll just see
if it will tell me where I’m missing one.” ChatGPT replied with some
boiler plate code and suggested a semicolon directly after a curly
brace. Unsure how to proceed, P9 pasted their code into ChatGPT
and asked it where the code was missing a semicolon. ChatGPT
responded with the correct answer this time, explaining the issue
and fixing the code. Seeing at last that they needed a while loop,
P9 edited the code to include a loop, submitted it to Athene, and
passed all test cases.

When asked about their use of Copilot during the lab session,
they replied, “Yeah, it just sped it up but I could have eventually
figured it out if I didn’t have it. It tends to be more distracting to
me so I don’t use it when I’m doing it by myself.”

4.1.6 P11: Mislead. P11 carefully read the prompt and verbalized
plans to begin structuring their code with the sample output as
a guide, declared variables, and selected “a while loop instead of
for loop because the number of times is unspecified.” When they
began typing a while loop, Copilot suggested the correct condition
and they accepted it. However, inside the loop it suggested a line
with a variable not even declared: “total+=num;” They then went
back to the top of the main function to declare the total variable.
Copilot’s suggestion here, and their subsequent acceptance of it,
reveals aMislead difficulty. Unaware that Copilot’s suggestions are
not leading them toward an algorithm that can solve the problem,
they continue down this path, getting closer to a seemingly correct
solution. Although they are not solving the problem correctly, it
is not a Forming difficulty because it wasn’t their idea; it was
Copilot’s suggestion.

They next decided to update the solution to have variables to
track both positive and negative totals and then accepted a Copilot
suggestion for series of conditionals below the loop for output. The
code compiled, but when run created an infinite loop. After trying
to make changes and getting the same result, they sought help from
ChatGPT. ChatGPT responded with code and without reading it
they added, “only a hint.” This time ChatGPT gave only text and
replied that the code was not getting more input inside their loop.
After making several ineffectual and unnecessary cosmetic changes,
such as indentations, they looked to the problem description again
and discovered they had been solving the problem incorrectly.

After changing the arithmetic in the loop to increment, rather
than adding the value to the total, they compiled and tested again.
However, it still did not correctly output expected values from
test cases, so they copied and pasted it into ChatGPT. ChatGPT
responded with congratulations on fixing the code because it no
longer had an infinite loop. They then had to specifically ask why
it is not counting correctly. This time it told them to pay attention
to how they were updating them inside the loop. Unbeknownst to
them, the hint was incorrect and theymerely needed to initialize the
variables. However, they asked ChatGPT for a more detailed hint, to
which it replied with a longer version of the previous unhelpful hint.
They then asked ChatGPT “does it increase by positiveTotal++?”
ChatGPT responded with an extremely misleading reply based on
previous versions of their code, telling them to increment by the
user input instead as they had previously done before realizing they
had been solving it incorrectly.

Still confused, they pasted their code into ChatGPT again. This
time it responded beginning with “Your updated code looks correct.”
They typed, “It is still not counting negative inputs.” Finally, Chat-
GPT responded helpfully letting them know that C++ can output
garbage values when variables are not initialized. After initializing
their variables, they compiled and tested again, and then submitted
a correct solution.

When asked about their use of Copilot during the lab session,
they replied, “I think it was helpful but I think it can be frustrating
because it can take away from my own thinking. But it saves me
time by giving me suggestions that I can use or not.”

4.1.7 P13: Forming and Interruption. P13 began by reading the
first few lines of the problem prompt and then verbalized plans
to build their program, saying, “Okay so now I understand it. I’m
going to make a while loop, and while the num is not equal to zero.”
However, they quickly revealed a Forming error, saying, “I’m just
trying to figure out how I’m going to do this. Okay ummm so I need
to figure out how to create more loops inside the while loop, I think.”
As they worked, Copilot began suggesting many different types of
solutions, including one to the even or odd problem, which they
accepted and then deleted. The successive interruptions, showing an
Interruption difficulty, led them to pick several different solution
strategies before they finally quit and sought the help of ChatGPT.
“I’m just going to use ChatGPT to give me a hint.”

They pasted the full problem description as well as their code
into ChatGPT, prompting it for a hint. ChatGPT replied with three
suggestions: variables, counting the positives and negatives inside
the loop, and comparing the values at the end for output. This
was a good blueprint for the program and they used it to structure
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Figure 5: P11 reviews a misleading reply from ChatGPT.

their code into a nearly correct solution. However, they took input
from the user before entering the loop and also again at the top
of the loop, so that the first number would always be overwritten.
They asked ChatGPT again for help, this time comparing the code
it provided to their own, and discovered the issue. They fixed it,
submitted to Athene, and completed the problem.

When asked about their use of Copilot during the lab session,
they said, “I don’t think so. I think it just kinda overloaded my
brain. I would be thinking about something and it would give me
something else to think about and then I would forget what I was
actually thinking about.”

4.1.8 P14: Forming, Achievement, Interruption. P14 began
by reading the problem description. They then began coding, ver-
balizing a plan, “Start by declaring an integer, we’ll call it num.
The first thing is cout enter number...thank you Copilot. Then cin
num.” Copilot provided some assistance, which they accepted. They
said, “I guess that needs to be in a loop because we’re doing it over
and over again? I guess so. I guess there has to be an if-statement
somewhere.” They then typed a conditional statement and put an-
other conditional inside it, treating the outer conditional like a loop.
Their stated conceptual model is that it will ask the user for more
than one input, displaying a Forming difficulty. After re-reading
the problem description, they said, “Need another if-statement if
number is equal to zero. Yes, copilot is helping me, but not much.”
Copilot interrupted over and over again, causing them to stop and
read these prompts each time, showing an Interruption difficulty.

After adding some comments and formatting, they said, “So, it
runs it until it gets a zero.” They then added the conditionals for out-
put below. In doing so, they decided to delete the outer conditional
statement and then test it. When it failed, they verbalized confusion,
saying “I know it could be a while or an if, I’m not sure which one.
Let’s try a while loop. Ok, I understand now.” However, testing
this revealed an infinite loop, so they replaced the while keyword
with if, returning to their previous “if-loop” design. They added an
extra input statement at the bottom of the outer conditional, ran it,
and were confused, saying, “I only input twice. Why did it...even
though what I said was...even though I said three.” They spent a
couple minutes tracing teh code, saying, “The number was not zero.
So why did it take me out of the if-statement?” At this point, the
solution looked nearly done, could be run and receive input, and
P14 seemed blind to the fundamental error in their code, displaying
an Achievement difficulty.

They returned to the problem description and tried several other
changes fix the issue, none of which helped. Finally, they said, “I
still don’t know what this means. Let’s ask ChatGPT.” This helped
them realize that the outer conditional needed to be a loop. They
changed it and finished the problem.

4.1.9 P17: Location and Progression. P17 began by carefully
reading the problem description. They then made a variable to
accept user input and prompted the user for that input. After this,
however, they stalled for a couple of minutes, saying, “Trying to
get familiar with what it’s asking.” They decided to ask ChatGPT,
saying, “Finding away toword it to Chat[GPT] so it can help to have
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a side by side on what it gives me and my work to check myself.”
They pasted the first paragraph of the problem description into
ChatGPT and it replied with a program in Python. They replied to it
that they needed it in C++, which it then provided, although it used
a do-while loop that had not been covered in class. After spending
two minutes reading the code from ChatGPT, they said, “Trying
to figure out how many variables I need to use. I need a positive,
negative, and num. Trying to figure out why we need 3 variables.”
P17 skipped several early stages and was stuck in implementation
without a viable plan, revealing a Location difficulty.

They tabbed back to the problem description, added new vari-
ables and then attempted to continue writing the solution. After
creating another conditional, they stalled and tabbed back to Chat-
GPT. They repeated this process of trying to write on their own,
stalling, and going back to ChatGPT several times. The condition,
once finished, checked if the number was greater than zero with an
else-if checking if it was less than zero. They then placed a while
loop below this conditional block. Throughout this time, their gaze
moved between code provided by ChatGPT and their own code,
but they seemed to be placing the discrete elements from the for-
mer into incorrect places in the latter. For instance, when writing
the code inside of a while loop, their eyes went to the portion of
ChatGPT’s code for deciding output. Running this code produced
an infinite loop. P17 did not understand how to take the code from
ChatGPT and use it to fix their own and did not seem to understand
how to put these components together, showing a Progression
difficulty.

After a quick look over their code, P17 went back to ChatGPT,
their gaze moving between its code and their code. Unsure how
to proceed, they then read the text that ChatGPT included with
the code that explained the program. They ran the program again,
trying a positive number, then a negative number, and then zero.
The first two led to infinite loops while the last ended the program.
They then adopted the do-while from ChatGPT, but implemented it
incorrectly, which still led to an infinite loop (see Figure 6). Finally,
they deleted all of the code, copied the code from ChatGPT, and
pasted it into the source file. After forgetting to recompile before
testing, it still had an infinite loop, which sent them back to Chat-
GPT and the problem description, trying to find the bug. Unable
to find it, they pasted the problem description into ChatGPT again
and it provided the same code. They carefully compared the code in
the source file to ChatGPT’s, but found no discrepancies. So, they
re-copied the code from ChatGPT into the source file. This time
they recompiled, tested, and succeeded.

When asked about the use of Copilot during the lab session, they
said, “Yes, it makes solving stuff quicker. It doesn’t help you, its
just autocomplete stuff you would already type.” Their response
about ChatGPT was similarly helpful, saying, “Yes, I really don’t
understand code at all, it acts like a teacher to help solve problems.”
Their actions and verbalizations during the lab session did not
indicate that Copilot suggested things they would already have in
mind to type, nor did they utilize ChatGPT like a teacher.

4.1.10 P21: Forming and Mislead. P21 started by reading the
entire problem description and the sample test cases, saying, “Okay,
cool.” After deleting the warm-up “Hello World” code, Copilot gen-
erated a long suggestion to solve a different problem. Without even

looking at it, they started to declare a variable and then chose in-
stead to write a comment: “this program shows more negative or
positive numbers”. Copilot then generated a line of five variables:
num1, num2, etc. They accepted this and deleted the fifth, since
the sample test case input was only four numbers before termi-
nating, saying, “Did they say how many entries? I’m guessing it’s
just four entries.” Copilot then suggested two more variables to
track positive and negative numbers, which they also accepted.
This suggestion by Copilot to have so many variables placed P21
on a path to thinking it was a limited amount of input, rather than
an indefinite amount as specified in the problem description. This
is evidenced by them next saying, “I could do it with a while or
a for loop, but I guess it’s neither.” They therefore experienced a
Mislead difficulty.

They then wrote code to accept a number, followed by a condi-
tional to determine which counter to increment. P21 wrote similar
code below for each of four input variables until the basic structure
was repeated four times. Each time, Copilot accelerated this by sug-
gesting the conditional, which they accepted. They then wrote the
conditional logic for outputting which counter was greater. After
fixing some minor syntax issues, cleaning up the code, and ensuring
spacing was correct for all outputs, they said, “That looks like that’s
it! Hope we’re good.” After testing the code locally with the sample
test cases, they submitted to Athene, which reported passing 1 of 25
test cases. The test case it passed only had two numbers for input
and after reading it they remarked, “Oh it can accept less than four.
We’re gonna have to delete all that probably. Gonna need a while
loop."

P21 created awhile loopwith the condition that the input number
be greater than zero. Copilot immediately suggested the correct
contents of the loop, which they accepted and then commented-out
the four input segments. They then tested the code, got a correct
answer, and updated the condition inside the while loop to be “num
= !0”. This did not produce expected behavior, so they changed it to
“num == !0”. This also did not work, so they changed it to “num < 0
&& num > 0”. As they typed this, they said, “while num is bigger
than 0 and less than 0.” This, of course, would also not work. Since
Copilot sent them on the wrong path initially, even though they
were now on the correct one, they were too far into the problem
solving process to understand what was needed to complete the
program. In other words, they hadn’t reasoned themselves into this
position; Copilot had.

They next added input above the loop and Copilot suggested a
condition to count whether the number was positive or negative,
which they accepted (see Figure 7). Running the code again, it only
accepted one number thanks to the condition in the while loop. Af-
ter looking at the code, they verbalized their current understanding
of how to proceed, saying, “How will I put a while loop inside a
while loop as long as it’s true? I think I’m spending too much time
on that, so I’m just gonna go to ChatGPT.” They asked it “what is
wrong with my code?” and pasted the contents of the entire source
file into the prompt.

ChatGPT responded with four helpful points to consider to cor-
rect the code. However, P21 did not gaze at the explanatory text
and instead looked right at the code. They immediately began pat-
terning the code after ChatGPT’s, tested it, and then submitted to
Athene, correctly passing all test cases.
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Figure 6: P17 attempting to pattern their code after ChatGPT.

When asked if they thought Copilot had been helpful during the
lab session, they said, “Yes, it was helpful. It’s like you’re having a
thought in your mind, and it guides you through it, but sometimes
it makes it confusing. Like, you’ll have a vague thought in your
mind, then it offers a suggestion, and it just blows it away. So, it
just really depends on if you can hold onto the thought in your
mind or not.”

4.2 Participants Who Accelerated
Eleven students did not display any metacognitive difficulties. In-
stead, some used AI in positive ways to help them solve the problem
quickly. P3, P19, and P20 each had about a 30% acceptance rate (see
Table 3), which was much closer to the average acceptance rate for
the participants who faced metacognitive difficulties. However, the
Copilot suggestions that these three participants utilized were all
exactly what they needed. P2, with the lowest acceptance rate of
10% (2/20), ignored most Copilot suggestions, and is also included
below for comparison.

4.2.1 P20. P20 ignored multiple Copilot suggestions, reading some
and not others, as they focused onwriting their solution. It was clear
from the eye tracking data that P20 at least glanced at suggestions
to determine their utility, saying to one Copilot suggestion, “No
I don’t want that.” All along the way, they verbalized their ideas
and plan for writing the code, maintaining a clear plan throughout.
They also accepted multiple Copilot suggestions that completed
blocks of code, such as an else after an if. This allowed them to
move quickly to a correct solution in just 12 minutes.

4.2.2 P3. After reading the problem prompt and verbalizing a cor-
rect understanding of the problem, P3 started writing comments
in the code for scaffolding as they wrote. Although this helped
Copilot make informed suggestions, they ignored many of them,
only accepting about five one-line suggestions. These accepts were
all “slow accepts” [54] where the user types out a suggestion char-
acter for character. The initial program was completed in 5 minutes,
but contained a few scattered syntax errors. For instance, P3 used
the keyword “elif” instead of “else if”. However, they eventually
realized this error and corrected it without GenAI help, completing
the program and passing all test cases in 13 minutes. Interestingly,
when asked about Copilot, they replied, “I didn’t use it, I try not to.”
Regarding ChatGPT, they said, “I like to think through the problems
on my own.”

4.2.3 P19. P19 read the problem description and immediately started
naming their variables, creating: “num”, “pos”, and “neg”. With this
information, Copilot immediately suggested awhile loop that would
do exactly what they wanted, they carefully read it and referenced
the problem description, and then accepted it. Below that, by just
typing the keyword “if”, Copilot suggested the entire output control
flow, which they also read and then accepted. The output did not
quite match what Athene required, so they modified it. They then
tested and submitted the code, finishing in just 5 minutes. When
asked after the session about whether they thought Copilot had
been helpful, they said, “Definitely sped it up. It gives you a lot of
the scaffolding you need to solve the problem so you don’t have to
worry about some of that.”
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Figure 7: P21 trying to determine why the control flow will not enter the loop.

4.2.4 P2. P2 read the problem description and then said, “I need
a while loop because it needs a sentinel.” Similar to P19, they im-
mediately created appropriately named variables “num”, “pos”, and
“neg”. P2 then started writing code to accept user input and loop
through it. Along the way, Copilot suggestions were ignored. Many
of these suggestions were misleading (e.g. solving “even or odd”) or
incorrect (e.g. output that would not be scored correctly). After com-
pleting construction of the loop, P2 started writing the conditionals
below. Copilot gave another suggestion for the ”if” statement and
P2 typed through it in a “slow accept.” Copilot then correctly sug-
gested the rest of the conditional block (”else if” and ”else”), which
P2 accepted. P2 then compiled and ran the program, fixed an error
in their loop, submitted to Athene, and passed all test cases in six
minutes.

5 DISCUSSION
5.1 Benefits of GenAI for Novice Programmer

Learning
In answer to RQ1 – What benefits do novice programmers receive
from using GenAI tools to solve programming problems? – we found
that several of the participants in this study were able to accelerate
to a solution thanks to use of GenAI tools, a finding consistent with
prior work [4]. Margulieux et al. examined novice behavior with
GenAI tools and found that higher performing students utilized
GenAI tools less frequently and later in the problem solving process

than those with lower grades and lower self-efficacy [38]. Recent
studies examining novice programming behavior with GenAI tools
report that some students can use them well, while other students
flounder [54]. Other recent studies suggest that while more ad-
vanced students may derive disproportionate benefits, those with
weaker backgrounds may find the tools less usable and in some
cases may be less inclined to trust them or to use them [25, 72].
Similar results are beginning to be discussed in other disciplines
[12].

One interesting anomaly in the acceleration group is worth ex-
ploring. Although P3 claimed they did not use Copilot, we observed
them performing two slow accepts. It is possible they felt that they
had wanted to do what Copilot was suggesting anyway and so did
not feel that this qualified as using Copilot. Given the observed
cognitive dissonance reported above in the struggling students,
it is also possible that P3 simply was not aware that they were
using Copilot in that moment. With its constant stream of little
suggestions, GenAI tools like Copilot can fade into the background,
making it easy to forget when they are and are not using it. There-
fore, it is possible many students may not be fully aware of their
GenAI usage and that self-reported data on their usage habits and
patterns may not be as reliable as most currently think.

The students in our study who successfully used GenAI seemed
better poised to ignore unhelpful and misleading suggestions. It
appears that the participants who accelerated were able to quickly
recognize “bad” GenAI suggestionsmore effectively than their peers
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who struggled. In 1994, Marvin Minsky suggested that we often
discuss expertise in terms of what people know, but it is just as
important to discuss it in terms of their “negative expertise” [40].
That is, an expert has seen just as many or more examples of what
does not work as they have of what does work. Minsky writes,
“In order to think effectively, we must ‘know’ a good deal about
what not to think! Otherwise we get bad ideas – and also, take too
long.” [40] From our observations above, it appears that students
who were able to successfully utilize GenAI had begun developing
this negative expertise in relation to code reading. The ability to
ignore incorrect or unhelpful GenAI suggestions appears to be an
important skill that should be developed in novices going forward.
Mozannar et al. recently showed a possible way to achieve this via
reflective retrospective labeling of coding sessions [41]. Although
not in the context of GenAI, Xie et al. proposed using code replays to
scaffold novice metacognition [68] and future work could replicate
their study with GenAI. Finally, future work could explore whether
it is good for student learning to expose students to numerous
GenAI suggestions through automated assessment to help them
determine which ones are helpful and which ones are not.

5.2 Harms of GenAI to Novice Programmer
Learning

In answer to RQ2 – What difficulties do novice programmers face
while using GenAI tools to solve programming problems? – we noted
the same metacognitive difficulties among students consistent with
previous findings [52]. However, some of the previously identified
metacognitive difficulties have been compounded by GenAI. The
most common metacognitive difficulty found in our results was
Location, which GenAI unfortunately facilitated for many of our
participants, giving them the illusion of progress. We also identi-
fied novel metacognitive difficulties arising from GenAI use: Pro-
gression, Interruption, and Mislead (see Table 2). Perhaps most
concerning are the ways in which these novel GenAI metacogni-
tive difficulties made it more difficult for participants to become
aware of their own lack of understanding. Post-problem interviews
confirmed that many of the participants rationalized their usage
of GenAI tools in ways that contradicted their words and actions
during the sessions.

In our prior study [52], 11 participants out of 31 did not complete
the programming problem within the 35 minute time window. Each
one of those 11 participants in the prior study realized that they
could not solve the problem after spending 35 minutes struggling.
However, out of the 10 participants in the present study who strug-
gled to complete the problem (out of 21 total participants), 9 utilized
GenAI to get to the solution, with only a single struggling student
not solving the problem. Although they might indeed have solved
it on their own within the time limit, our observations of their
words and actions lead us to believe they would not have. From the
evidence presented above, it appears that most of these ten who
struggled thought they understood more than they actually did. The
patterns of behavior above describe how participants were often
led along by GenAI such that each step was able to be rationalized
as understanding, making it even more difficult for participants to
assess their own learning.

Various solutions for issues around metacognition in novice pro-
grammers have been proposed and could be insightful here. First,
Xie et al. proposed using code replays to scaffold novice metacog-
nition [68]. They noticed that pauses in code editing during the
replay were fruitful times of reflection for novices and linked this
with positive building of self-regulation behaviors. Pauses in code
editing with GenAI tools like Copilot are when code suggestions
appear, potentially also making this a useful exercise for novices
engaged in GenAI-supported coding. These pauses could enable
novices to see when they spent too much time reading unhelpful
suggestions or when they accepted unhelpful code and reflect on
the outcome. Second, Loksa et al. explicitly taught the programming
problem solving process to novice programmers, which scaffolded
metacognitive skills [35]. They noticed a large and significant in-
crease in self-efficacy in their experimental group relative to their
control group. Given that our results linked lower self-efficacy to
more metacognitive issues, it seems crucial to explicitly teach the
problem solving process and help novice learners reflect on where
they are in that process to prevent metacognitive difficulties. Other
interventions suggested by Prather et al. [51] and Pechorina et al.
[44] provide additional fruitful ground for interventions designed
to scaffold novice metacognition. Future work should investigate
whether these methods are effective interventions to prevent the
newly identified metacognitive difficulties presented in this work.

While there is very little work yet on how novice programmers
utilize GenAI tools, three recent works illuminate our findings. First,
Liu et al. [33] described implementing a GenAI tool to help students
in an introductory programming course. They presented quotes
from excited students who described Generative AI as “like having
a personal tutor.” From the data in our study, P7 self-reported the
same feeling and yet we observed that they did not, in fact, use
GenAI tools like a personal tutor. In fact, it was quite the opposite.

Second, recent work by Vadaparty et al. [64] describes the usage
of GenAI tools from the very beginning in a large introductory pro-
gramming course. They also reported on survey data from students
who took the course and found that students generally liked using
GenAI tools and over 50% of students reported that it positively
impacted their learning. However, as the results in our study indi-
cate, there may be more happening here than is at first apparent.
Students may feel as though they are learning even as GenAI tools
replace critical thinking and problem solving for them. Some of
the quotes from Vadaparty et al. seem to get at the rough edges
around this problem. One student in the study reported that Copi-
lot helped them understand concepts, but not master them, going
faster without fully understanding. Another student said they did
not feel confident coding a solution without the help of Copilot.
Vadaparty et al. also reported that they anecdotally found students
performed worse on code writing exam questions while performing
about the same at code tracing and code reading questions. This
fits the data from our study that participants were often able to
recognize a correct solution, but unable to get there themselves.
The theory of programming instruction by Xie et al. [69] states that
student learning should start at the code reading and tracing level
and then move down into code writing. It appears that for some
students, GenAI tools could interfere with this movement into a
deeper level of learning programming.



ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia Prather et al.

Third, a study in Communications of the ACM in March, 2024
by Ziegler et al. investigated how GitHub Copilot is impacting
programmer productivity [73]. They found that acceptance rate of
Copilot’s suggestions was highly correlated with perceived produc-
tivity. They also report that users with the least experience tend
to accept the most suggestions, mirroring similar findings above
(see Table 4). These data that novices may feel productive by ac-
cepting GenAI code suggestions align with our results. However,
our data also indicates that this is not a useful way to measure
novice programmer interaction with GenAI tools because students
could be accepting incorrect code suggestions or suggestions they
do not understand. Early work on this by Vaithilingam et al. [65]
showed that when asked about what benefits they received from
GenAI, many said that it saved them time, despite the fact that
the researchers measured no time savings from those using GenAI
tools.

Recent work measuring learning outcomes among introductory
programming students using GenAI are in conflict. A study by
Xue et al. [70] reports that ChatGPT has no impact on student
learning outcomes in introductory programming. However, Jost
et al. found that increased LLM usage negatively correlated with
student grades and critical thinking skills [26]. Although we did
not measure learning outcomes, our results as well as those by Jost
et al. show that these matters are far from solved.

6 CONCLUSIONS
Our findings suggest that students who are already poised to
succeed can leverage GenAI to accelerate, while struggling
students may be hindered by using GenAI, leaving themwith
an illusion of competence, which can have negative effects well
beyond a single session, lab, or course. It is likely that some of
these students are gaining misconceptions, not correcting them.
We found that participants with higher grades were less likely to
have GenAI metacognitive difficulties and participants with lower
self-efficacy were more likely to have metacognitive difficulties.
More insidiously, the nuances of how students struggle with GenAI
may not be immediately apparent from an overall view of grades in a
course or through self-reported data. Although our sample size was
too small to tell if prior programming experience, socioeconomic
background, race, or gender are factors in GenAI harming novice
programmer experience, the data we do havewarrants urgent future
exploration into these open questions.

Ultimately, our findings confirm that the most commonly used
GenAI tools are not informed by pedagogy. ChatGPT is a general
purpose tool that students are increasingly using for their work [25,
33, 50, 64]. GitHub Copilot is becoming more commonly used by
students as well [6, 25, 50, 61], but it is targeted at professional
developers. These two tools are situated on the edges of the broad
to domain-specific spectrum. Perhaps it is because of this that many
students lack the ability to helpfully engage with either of these
tools. We also cannot reasonably expect students to abstain from
using these tools since many are freely available and banning them
does not seem like a viable strategy [22, 29].

Therefore, it is imperative that we scaffold the novice program-
mer experience of GenAI tools from the very beginning by lower-
ing the metacognitive demand on the user [62]. There are already

multiple novice-friendly tools that attempt to do this by exposing
students to GenAI in scaffolded ways, such as Prompt Problems
[13], CodeHelp [32], CodeAid [27], and Ivie [71]. Some “digital TAs”
are also emerging that scaffold students through the problem solv-
ing process without providing answers [14]. All of these tools can
show students how to use GenAI responsibly without replacing the
critical thinking component of the programming problem solving
process. Another key component for moving forward in the era
of GenAI is to finally invest in explicitly teaching novice program-
mers metacognitive behaviors and skills [38, 62, 68]. Our findings
above illustrate well that a failure in metacognition can lead to poor
results with using GenAI. Without addressing these issues, the gap
between the well-prepared and the under-prepared in computing
education may grow even wider.
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