
G is for Generalisation: Predicting Student Success from
Keystrokes

Zac Pullar-Strecker
zpul156@aucklanduni.ac.nz
University of Auckland
Auckland, New Zealand

Filipe Dwan Pereira
filipe.dwan@ufrr.br

Federal University of Roraima
Boa Vista, Brazil

Paul Denny
paul@cs.auckland.ac.nz
University of Auckland
Auckland, New Zealand

Andrew Luxton-Reilly
andrew@cs.auckland.ac.nz
University of Auckland
Auckland, New Zealand

Juho Leinonen
juho.2.leinonen@aalto.fi

Aalto University
Espoo, Finland

ABSTRACT
Student performance prediction aims to build models to help edu-
cators identify struggling students so they can be better supported.
However, prior work in the space frequently evaluates features and
models on data collected from a single semester, of a single course,
taught at a single university. Without evaluating these methods in a
broader context there is an open question of whether or not perfor-
mance prediction methods are capable of generalising to new data.
We test three methods for evaluating student performance models
on data from introductory programming courses from two univer-
sities with a total of 3, 323 students. Our results suggest that using
cross-validation on one semester is insufficient for gauging model
performance in the real world. Instead, we suggest that where pos-
sible future work in student performance prediction collects data
from multiple semesters and uses one or more as a distinct hold-out
set. Failing this, bootstrapped cross-validation should be used to
improve confidence in models’ performance. By recommending
stronger methods for evaluating performance prediction models,
we hope to bring them closer to practical use and assist teachers to
understand struggling students in novice programming courses.

CCS CONCEPTS
• Applied computing → Education; • Computing methodolo-
gies →Machine learning.

KEYWORDS
computing education, predicting performance, programming pro-
cess data, educational data mining, learning analytics
ACM Reference Format:
Zac Pullar-Strecker, Filipe Dwan Pereira, Paul Denny, Andrew Luxton-
Reilly, and Juho Leinonen. 2023. G is for Generalisation: Predicting Stu-
dent Success from Keystrokes. In Proceedings of the 54th ACM Techni-
cal Symposium on Computer Science Education V. 1 (SIGCSE 2023), March

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9431-4/23/03. . . $15.00
https://doi.org/10.1145/3545945.3569824

15–18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3545945.3569824

1 INTRODUCTION
Computer science, and programming in particular, is commonly
regarded as a difficult subject to learn [21]. While Simon et al. [22]
found little evidence that introductory programming courses had a
higher failure rate than other STEM courses, they note that there is
clearly room for improvement and that future work improving our
understanding of computing education continues to be a valuable
direction. One such approach is to build models to predict students’
chance at success; these models can then be used to target remedial
action such as assigning extra practise on a particular topic [2].

For example, Leinonen et al. [16] used the time students started
working on an assignment and the time they submitted to predict
their final grade on the course. In general, prior work has used a
wide variety of data sources as features, such as integrated devel-
opment environment (IDE) events, commit logs, Q&A interaction,
survey data, past experience, and early assignment grades [4]. In
some cases authors only report correlations between these features
and performance measures, while others train models such as linear
regression, random forests (RF), and Bayesian models [2, 17]. This
variety continues in the choice of performance metrics, prior work
has attempted to predict categorical and continuous final grades,
exam grades, and whether a student will pass or fail [10].

Despite the large body of prior work, few papers have attempted
to generalise their findings. Most studies use data collected from
a single semester, of a single course, taught at a single university
[10]. In these cases, models are commonly evaluated using cross-
validation (CV) where a single sample is divided into a series of
train and test sets [16]. While CV is a popular method for evaluat-
ing machine learning models, it cannot account for the fact that
students, and the courses themselves, change between semesters. If
a model cannot learn general relationships in the data which persist
across these changes, they will not perform as well in real courses
as they did while the model was developed. Hence, at minimum a
model must be able to generalise to a new semester. There is also
the question of whether the modelling approach is generalisable,
i.e., whether the features and architecture can be used to train a
model that works on a different course or institution.

To evaluate to what extent student performance models and
approaches are capable of generalising we train and evaluate them

https://orcid.org/0000-0002-8819-6129
https://orcid.org/0000-0003-4914-3347
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0001-8269-2909
https://orcid.org/0000-0001-6829-9449
https://doi.org/10.1145/3545945.3569824
https://doi.org/10.1145/3545945.3569824

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Zac Pullar-Strecker, Filipe Dwan Pereira, Paul Denny, Andrew Luxton-Reilly, & Juho Leinonen

in three increasingly dissimilar settings using three datasets from
two institutions. We investigate three research questions (RQs):

RQ1. Do features and models for student performance prediction
appear predictive when tested on a single semester of data?

RQ2. To what extent do models retain their performance when
evaluated on a similar course at the same institution?

RQ3. To what extent can models and approaches generalise be-
tween institutions?

In Section 2 we describe related work, including proposed features,
models, and evaluation methodologies. Next, Section 3 describes
our datasets and the context in which they were collected. Then,
Section 4 describes our methodology. Section 5 discusses our results,
and Section 6 presents our discussion. Finally, Section 7 discusses
limitations and Section 8 concludes.

2 RELATEDWORK
Prior work on student performance prediction is extremely varied,
with studies using different features, models, performancemeasures,
and evaluation methodologies. In this section we summarise the
most closely related work. For a more detailed overview of student
performance prediction we refer to the 2018 systematic literature
review by Hellas et al. [10].

2.1 Features
Time management related features have been popular in prior work
as features for predicting student performance. The exact features,
and the source of data from which they are collected, varies by
study. Edwards et al. used data from an assignment submission
platform and found that students whose first and last submissions
were early relative to other students performed better than others
on average [9]. More recently, other studies have used online IDE
events to find the time from the first code edit to the deadline
(named procrastination); Pereira et al. [19] found procrastination
had a small but significant correlation with performance. Leinonen
et al. [15] replicated earlier work suggesting that students who
start early tend to perform better (Pearson 𝑟 = 0.23, 𝑝 = 0.0003,
data from 1st week). Leinonen et al. [16] also explored different
representations for the amount of time students spent working.
Specifically, they compared coarse time on task, the time between
the first keystroke and the first submission, and fine time on task, the
sum of latencies between keystrokes until the first submission with
all breaks of longer than 10 minutes removed. They found that fine
time on task had stronger correlations with student performance
(Pearson 𝑟 = 0.51, 𝑝 = 3.7 × 10−10 against 𝑟 = 0.23, 𝑝 = 0.007, from
whole course).

One of the simplest categories of features used in prior work is
counts (or rates) of events. Specifically, the number of submissions,
text pastes, and the total number of events have been proposed
[7, 19]. Despite their simplicity, prior work has found that they are
useful for predicting student performance [19].

A few studies have explored the ability of keystroke latency, or
equivalently typing speed, to predict student performance. Leinonen
et al. found that the latency distribution of particular digraphs dif-
fered between experienced and novice programmers [18]. Leinonen
et al. also investigated correlations between typing speed and other

process features [17]. Edwards et al. [8] found a weak (Spearman
𝑟 = −0.20) but statistically significant (𝑝 = 0.001) correlation be-
tween latencies and exam score in a Python course, but no signifi-
cant correlation in a Java course.

A number of other features have been developed that utilise
the keystrokes themselves [5, 11, 24]. However, we are primarily
focused on exploring event count and time management features
in this work.

2.2 Models
Prior work in student performance prediction has utilised a variety
of machine learning models. As many papers work with tabular
features generated from events, linear regression, Bayesian models,
decision trees, and RF are among the most popular models [10].
Of these, RF models tend to perform as good as or better than
alternatives [1, 13]. However, as neural networks have becomemore
popular recent work has investigated whether recurrent neural
networks, such as long-short term memory models, can be applied
to the events themselves [3]. These early results are promising, but
have yet to demonstrate success in multiple contexts.

2.3 Evaluation
Student performance prediction models have been used to predict a
number of different targets. The most popular targets are predicting
a categorical final grade (e.g., A/B/C), predicting a continuous final
grade (e.g., 50%), and predicting if a student will pass or fail. A
distinct, but closely related task is predicting whether or not a
student will drop out of a course.

Evaluations of student performance prediction also vary by how
much data they include. Some studies use data from the entirety of
the course to predict final exam scores, while others use data from
just the first assignment [8, 19]. While there may be some benefit
to being able to predict student performance as late as half way
through the course, models which can accurately predict student
performance from only the first assessment will have the biggest
impact. This scenario, termed early student performance prediction
is substantially more difficult than predicting from all data on a
course, and prior works have reported correlations from Pearson
𝑟 = 0.23 as positive results [15].

A substantial proportion of prior work in student performance
prediction evaluated features and models on only a single semes-
ter of data from a single course taught at a single university [10].
However, some papers have investigated the behaviour of methods
across multiple contexts. Castro-Wunsch et al. [6] trained mod-
els on submission counts and test correctness to predict whether
students would pass or not. This work is of particular interest as
they compared the performance they obtained when training and
evaluating on a single semester using repeated train and test splits
with the performance from using a separate semester as a hold
out set. They found that there was only a minimal drop in accu-
racy between these evaluations, a couple of percent for most of the
models they tested. More recently, Pereira et al. [19] explored deep
learning methods on a number of semesters of a CS1 course. In
total they used data from 2, 058 students. To evaluate their models
Pereira et al. used stratified 10-fold CV for classification, while for
regression they randomly divided the dataset into a train (70%) and

G is for Generalisation: Predicting Student Success from Keystrokes SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

Table 1: The datasets used in our analysis.

MOOC LU CodeBench
Participants 449 291 2, 989
Semesters 1 1 10

Classes 1 1 71
Events 3, 733, 291 1, 986, 501 3, 086, 272

a test (30%) set. The larger number of participants in this study than
in prior work provides increased confidence in their evaluation.
However, the authors did not investigate the performance of their
models when training on a subset of semesters and using the rest
as a hold out set, or on similar courses taught at other universities.

Prior machine learning (ML) literature has evaluated trade-offs
between evaluation strategies like repeated cross-validation and
bootstrapping [12]. However these works explored synthetic exper-
iments which cannot capture effects such as concept drift between
semesters, or the extent to which feature distributions differ be-
tween contexts.

3 CONTEXT
In this study we evaluate student performance prediction methods
on three datasets from two universities. A summary of each dataset
is given in Table 1. The difference in the number of events per
student is not due to differences in the definitions of the events
themselves, and instead is likely due to pedagogical differences.

The first two datasets were collected from variants of an intro-
ductory programming course (CS1) taught at a research-oriented
university in Finland. The first dataset comes from a massive open
online course (MOOC), while the second comes from a local uni-
versity (LU) version of the course. These datasets are similar to
the one described by Leinonen [14]. Both versions were taught in
Finnish using the Java programming language and had the primary
goal of teaching students object-oriented programming. Students
attending the local university version of the course were primarily
majoring in computer science, and may have been more motivated
than those from the MOOC version of the course.

The final grade for the MOOC version of the course was between
0 and 5 (we rescale to 0 to 1), with 55% of the final grade from
coursework and 45% of the final grade from exams. Each of the
assignments were worth 8% of the final grade, except the first
which was 7%. The exams were worth 10%, 15%, and 20% of the
final grade. Additionally, students needed to get at least 50% in the
final exam to pass. In the LU version 70% of the final grade came
from assignments and 30% from two exams. The assignments were
10% each, and students got the whole 10% if they got more than
90% in that assignment. The exams were worth 10%, and 20% of the
final grade respectively.

Students taking this course worked on exercises using an IDE
with the TestMyCode plugin [23]. The plugin allows students to
download and submit exercises directly in the IDE, and additionally
records text changes (insert, remove, paste), focus events (gained,
lost), and when students execute their program, or submit an exer-
cise. As we focus on the early student performance prediction case
we only include data from the first assignment in the course.

The second dataset we explore is the open CodeBench dataset1.
CodeBench is a programming online judge developed by UFAM.
This datawas collected from the Federal University of the Amazonas
(UFAM) over 10 semesters covering the period 2016–2021 (excluding
2020 because of COVID-19). At UFAM CS1 is compulsory to 16
degrees outside of computing, and so the dataset contains a number
of classes in each semester. To illustrate, in the first semester of 2016
(2016.1), UFAM offered 10 different classes of CS1 for the non-CS
students. In each class there were students from one or two different
undergraduate courses. In the dataset, they identify the classes
using different ids (e.g, 2016.1.102 ... 2016.1.111). Slides, evaluation
systems, programming language and pedagogical methodology
used to teach the CS1 courses in the Codebench dataset were the
same for all classes. In all cases, the classes were taught using
Python and covered similar content to the MOOC and LU datasets.
Students could submit their source code for automatic correction as
many times as they want, without penalty. The code questions were
asked in two modalities: list of exercises and face-to-face exams. In
both cases, the students used the CodeBench IDE to solve the code
problems. CodeBench records the final code, execution snapshots,
key presses, and student’s interaction with the IDE.

The final grade was calculated based on seven partial exams,
seven assignments, and one final exam. The grades from the partial
exams had increasing weights (6.1% to 18.2%) towards the final
grade. The grades from all assignments had the same weight on
the final grade (1.3%). In total, the dataset contains data from 2, 989
students and after selecting data from only the first assignment in
each class, a total of 3, 086, 272 events.

4 METHODOLOGY
To enable reproducibility we detail our methodology in this sec-
tion. All analysis was performed in Python and is available on
GitHub2. The CodeBench dataset is public, however the MOOC
and LU datasets are not.

The CodeBench dataset contains students who did not continue
to the end of the course and as such did not receive a final grade,
these students we remove. However, we include students who re-
ceived explicit zeros in the course by sitting but failing required
assessments. After this filtering 2, 583 students from this dataset
were included in our analysis.

We compute summary features from the events collected by
instrumented IDEs in a similar manner to prior work. The first four
features we compute are simply counts of each type of event. These
are inspired by the counts of paste, run, and submit events which
have been used in prior work, but extended to all of the events
we have available [7, 19]. The MOOC dataset additionally contains
focus gained, focus lost, and text paste events which are not present
in the LU dataset. We include these events for computing time
management features but do not use their counts as features.

Next, we calculate five time management based features. These
are the time to the first event (when the student starts working on
the exercise), the time to the last event, the difference between these,
and coarse and fine time on task [16]. We make one alteration to the
fine time on task proposed by Leinonen et al., instead of removing

1https://codebench.icomp.ufam.edu.br/dataset/
2github.com/zacps/g-is-for-generalisation

https://codebench.icomp.ufam.edu.br/dataset/
https://github.com/zacps/g-is-for-generalisation

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Zac Pullar-Strecker, Filipe Dwan Pereira, Paul Denny, Andrew Luxton-Reilly, & Juho Leinonen

Figure 1: KDE feature distributions of our datasets. Time features are measured in seconds.

Table 2: The features used in our analysis.

Name Description
Run the program was run

Submit the exercise was submitted
Text insert text was inserted

Text remove text was removed
Time to last time from the last event to the deadline
Time to first time from the first event to the deadline

Duration duration between first and last events
Coarse time on task as introduced by [16]

Fine time on task as introduced by [16]
Mean latency the average latency between events

latencies longer than 10 minutes we remove latencies longer than
the 99.5th percentile. This change was made to be more robust
to differences between contexts. Finally, we compute the mean
latency between events as our last feature. The features we use are
summarised in Table 2.

We average the time-based features over each exercise in order
to stop the model from biasing towards particular exercises. While
including each feature for each assignment individually may pro-
duce better performing models, it also limits the ability of the model
to generalise if exercises change between semesters of a course,
or are entirely different in a course taken at a different university.
Alternative approaches, like producing predictions per exercise and
averaging them, or utilising regularisation, are potential avenues
for future work.

Figure 1 shows the kernel distribution estimate (KDE) of our
features on the datasets we use. Most of the features we use have
similar distributions between the LU and MOOC datasets, with the
exception of time to the first and last events. We suspect this is
because the MOOC course had a longer period between the release
and deadline of each assignment than the LU course.

To select the model used in our analysis we trained linear re-
gression, a RF, and a multi-layer perceptron on the MOOC dataset.
We found that the RF provided the best results (𝑟2 = 0.24), with
linear regression placing second (𝑟2 = 0.15). Because of this, we use

RF for the rest of our analysis. Hyper-parameters were left at their
default values.

In all of our evaluations we use the coefficient of determination
𝑟2, and its adjusted variant, as our performance metrics. For all
statistical tests, we use 𝛼 = 0.05. Spearman’s correlation coefficient
is used for feature correlations as some are not normally distributed.
Wherever multiple significance tests are performed, the Bonferroni
correction is used to correct for multiple comparisons.

To address RQ1, we use 5-fold CV. In this method the data is split
into five parts and in each of five rounds a classifier is trained on
all but one part and evaluated on the remainder. This is one of the
most popular methods for evaluating ML models [20].

While CV tends to provide strong performance estimates it does
not provide a variance estimate. To address this, we additionally
present results from bootstrapping 5-fold CV 1, 000 times. In boot-
strapping, the dataset is re-sampled with replacement a large num-
ber of times and (in our case) 5-fold CV is performed on each of the
re-sampled datasets. By bootstrapping CV we gain an insight into
the chance that we would obtain a similar result if we performed
the same experiment again (though this cannot account for data
drift or similar effects).

Lastly, to answer RQ2 and RQ3 we evaluate models using hold-
out sets from other semesters or datasets. In this case the model is
trained once on a fixed set of data, and evaluated on a disjoint set.
This method more closely simulates how a model would be used in
the real world as it accounts for changes in the data that could occur
between the model’s training and use. As such, we hypothesise
that this method may produce more realistic evaluations of student
performance models than CV.

5 RESULTS
Our first RQ aims to determine whether we can find correlated
features and build a predictive model when evaluating on a single
semester of data. We first present pairwise Spearman correlations
from the MOOC dataset in Figure 2. We can see that some of our
summary features produce significant correlations with student’s
final grade. Specifically, submit, time to last, time to first, and mean
latency have significant correlations with student’s grades.

G is for Generalisation: Predicting Student Success from Keystrokes SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

Figure 2: Pairwise Spearman correlation between features
and performance metrics on the MOOC dataset. Asterisks
denote significance (p < 0.05).

To answer the second part of our RQ we train a RF model on the
MOOC dataset and evaluate it using 5-fold CV. In order to estimate
how reliable this evaluation strategy is, the results from the CV
are subsequently bootstrapped using 1, 000 repetitions. A single
cross-validated evaluation gave an 𝑟2 of 0.24 and adjusted 𝑟2 of
0.15. The bootstrapped distribution had a mean adjusted 𝑟2 value
of 𝜇 = 0.08 and standard deviation 𝜎 = 0.07, with a 95% confidence
interval (CI) of 0.00 to 0.22. The unadjusted 𝑟2 distribution had
𝜇 = 0.19, 𝜎 = 0.06 with a CI of 0.08 to 0.31.

Our second RQ seeks to find the difference in a models’ estimated
performance between using a similar course as a hold-out set and
using CV on a single semester of data. We train a RF model on the
MOOC dataset, and evaluate its performance on the LU dataset.
While the CV evaluation obtained a mean 𝑟2 of 0.24 (adjusted 𝑟2 =
0.15), the separate hold out evaluation produced a mean 𝑟2 of 0.12
(adjusted 𝑟2 = 0.09), half of the CV result.

Our third RQ considers whether prior models and approaches
for student performance prediction are capable of generalising to
new contexts. First, we explore whether the features which seemed
promising on the MOOC and LU datasets retain any predictive
power on the CodeBench dataset. Fig. 3 presents Spearman correla-
tions between our features and students’ final grade over each class
in the dataset. As we’re interested in understanding the conclusions
a researcher might draw from seeing a single column of this dataset
we apply the Bonferroni correction across each column, but not
each row. We find that 29% of the classes have at least one signifi-
cant correlation, with some of them having correlation coefficients
as high as 0.62. When considering all of the data five of the features
have significant correlations, though none of these have coefficients
greater than |𝑟 | = 0.10.

Next, we trained a RF model using the same features on the
CodeBench dataset, using both 5-fold CV and a hold out set to
evaluate performance. For the hold out set we used the classes from
2021 as our test set, and the rest as training data. When using CVwe

obtained an 𝑟2 of 0.10 (adjusted 𝑟2 = 0.08), while the hold-out set
evaluation found an 𝑟2 of −4.0 (adjusted 𝑟2 = −4.2). The negative
𝑟2 indicates that the model is worse than a model which predicts
the mean grade for all students.

6 DISCUSSION
Our first RQ sought to replicate positive results from proposed
models. As we discussed in Sec. 2, prior works have reported corre-
lations as small as |𝑟 | = 0.2 and 𝑟2 as small as 0.23. We found that,
using CV, we were able to replicate similar results to prior work in
the early student performance prediction setting.

To better understand the properties of the cross-validated es-
timate we performed bootstrapped 5-fold CV and recorded the
distribution of 𝑟2. We found that the cross-validated estimate had
a very high variance. A researcher performing a single CV would
interpret the lower bound of the confidence interval (0.00) as a clear
negative result, while the high bound (0.22) could be interpreted as
a positive result. This indicates that CV on a single semester may
be insufficient to find a robust measure of the quality of student
performance models. While this could be resolved by collecting
additional data, this is not always feasible. As an alternative, boot-
strapped CV may provide a better understanding of the model’s
performance when additional data cannot be collected.

Our second RQ aims to determine howwell themodel generalises
to a similar course at the same institution. We found that when our
model was trained on the MOOC dataset and evaluated using the
LU dataset as a hold-out set the performance dropped substantially
(𝑟2 = 0.24 to 𝑟2 = 0.12). This indicates that the model had limited
ability to generalise to the other variant of the course, even though
the variants were similar.

This raises an important question about how far student perfor-
mance models should be expected to generalise. An ideal model
would be suited for any programming course at any university.
However, this is unrealistic given the current state of student per-
formance prediction. On the other hand, a model which required
all assessments to stay identical is likely not general enough to
be useful as course materials, especially in computer science, are
frequently updated to stay relevant. Future work in student per-
formance prediction should discuss the extent to which proposed
models are intended to generalise, and use appropriate evaluation
methodologies to demonstrate that this is achieved.

To answer our third RQ we investigated if the model and ap-
proach that showed promising results on a single semester could
generalise to another institution. We found that when we evaluated
Spearman’s correlation coefficient between each feature and stu-
dents’ final grade on the CodeBench dataset across each semester
that there was a high degree of variability. Some of the features we
tested had correlations as high as 0.67 in one class, and as low as
−0.31 in another. In the case of the time to first event feature 20%
of the classes had significant correlations with the final grade, yet
in the overall data there was no correlation (𝑟 = 0.02, 𝑝 = 1.00).
This indicates that small correlations from a single semester of data
are insufficient for determining whether or not a feature could be
useful for student performance prediction.

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Zac Pullar-Strecker, Filipe Dwan Pereira, Paul Denny, Andrew Luxton-Reilly, & Juho Leinonen

Figure 3: Feature correlations to final grade by class. Empty cells are missing features, asterisks denote significance (p < 0.05).

We found that the model and features which seemed promising
when evaluated using CV were unable to generalise to a new insti-
tution. When trained and evaluated using a hold-out set the model
was worse than a model which predicted the mean grade for all
students. We initially planned to train a model on the CodeBench
dataset and attempt to apply it to other datasets to measure gener-
alisation performance. However, given the poor performance of the
model trained and evaluated on the CodeBench dataset it is clear it
would not have the ability to generalise to new contexts.

To provide reliable estimates of student performance models
we recommend that researchers make use of the open CodeBench
dataset, which provides an excellent benchmark on which to com-
pare results. Additionally, we echo the recommendations from prior
reviews which suggest that wherever possible papers utilising their
own datasets release their data [10]. This way we can build a bet-
ter understanding of the generalisation performance of proposed
methods and step closer to reliable use of performance prediction
in the real world.

7 LIMITATIONS
One limitation of our analysis is the relatively small correlations
and 𝑟2 values we observed when evaluating features and models on
the MOOC dataset. It might be that more sophisticated features or
models are capable of obtaining significantly stronger effects which
may make more complex evaluation methodologies unnecessary.
However, as similar effect sizes have been reported in prior work
this is still an issue which needs to be addressed.

Similarly, coarser, non-keystroke based features, may be less
affected by differences in assignments or teaching methodologies
and hence generalise better to other contexts.

We do not specifically explore the extent to which performance
degrades when evaluating models on subsequent semesters of the
same course. Performing this comparison for a variety of institu-
tions and proposed models would provide valuable insight on how
long relationships in keystroke data remain relevant.

8 CONCLUSION
There is a considerable body of prior work in student performance
prediction and these studies have experimented with a wide variety
of features, models, and performance measures. Yet, the majority of
this work evaluates proposed features and models on data collected
from a single semester of a single course taught at a single university

[10]. This raises the question of whether or not these features and
models are capable of generalising to new contexts.

We compared evaluation strategies for performance prediction
methods in order to determine to what extent prior methods can
generalise, and whether or not simple approaches like CV are suffi-
cient to obtain accurate performance estimates. To summarise our
results, we present the answers to our three RQs:
RQ1. Do features and models for student performance prediction
appear predictive when tested on a single semester of data?
Yes, we found similar feature correlations andmodel performance to
those found in prior work when evaluating features andmodels on a
single semester of data using CV. Yet, we found that the variance of
the cross-validated performance estimate is high enough to produce
both positive and negative conclusions from the same data.
RQ2. To what extent do models retain their performance when evalu-
ated on a similar course at the same institution?
We found that when using a similar course from the same institution
as a hold-out set, compared to CV, the 𝑟2 dropped from 0.24 to 0.12,
and the adjusted 𝑟2 from 0.14 to 0.09. While the model did not loose
all predictive power, this substantial drop indicates the model may
not have captured generalisable relationships in the data.
RQ3. To what extent can models and approaches generalise between
institutions?
We found that the modelling approach we tested was not able to
generalise to a new institution, despite appearing promising when
evaluated with CV. Additionally, we found that feature correlations
on a single semester of data often appear predictive, yet do not
have strong correlations on larger samples.

Our results suggest that evaluating performance prediction mod-
els on data collected from a single semester of a single course is
insufficient to robustly estimate model performance and generalisa-
tion. While developing models in a single context remains a useful
first step, we recommend that authors evaluate models on multiple
semesters, and, if intended to generalise, on multiple contexts.

To support the effort to generalise student performance predic-
tion models future studies should publish their datasets. In cases
where evaluating on more than a single semester is infeasible, boot-
strapped CV may provide greater confidence in results.

By recommending stronger methods for evaluating performance
prediction models, we hope to bring them closer to practical use
and assist teachers to identify struggling students in novice pro-
gramming courses.

G is for Generalisation: Predicting Student Success from Keystrokes SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

REFERENCES
[1] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015. Ex-

ploring Machine Learning Methods to Automatically Identify Students in Need of
Assistance. In Proceedings of the eleventh annual International Conference on Inter-
national Computing Education Research (ICER ’15). Association for ComputingMa-
chinery, New York, NY, USA, 121–130. https://doi.org/10.1145/2787622.2787717

[2] Balqis Albreiki, Nazar Zaki, and Hany Alashwal. 2021. A Systematic Literature
Review of Student’ Performance Prediction Using Machine Learning Techniques.
Education Sciences 11, 9 (Sept. 2021), 552. https://doi.org/10.3390/educsci11090552
Number: 9 Publisher: Multidisciplinary Digital Publishing Institute.

[3] Kai Arakawa, Qiang Hao, Wesley Deneke, Indie Cowan, Steven Wolfman, and
Abigayle Peterson. 2022. Early Identification of Student Struggles at the Topic
Level Using Context-Agnostic Features. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2022). Association for
Computing Machinery, New York, NY, USA, 147–153. https://doi.org/10.1145/
3478431.3499298

[4] AdamCarter, Christopher Hundhausen, andDaniel Olivares. 2019. Leveraging the
Integrated Development Environment for Learning Analytics. In The Cambridge
Handbook of Computing Education Research, Anthony V. Robins and Sally A.
Fincher (Eds.). Cambridge University Press, Cambridge, 679–706. https://doi.
org/10.1017/9781108654555.024

[5] Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. 2015. The
Normalized Programming State Model: Predicting Student Performance in Com-
puting Courses Based on Programming Behavior. In Proceedings of the eleventh
annual International Conference on International Computing Education Research.
ACM, Omaha Nebraska USA, 141–150. https://doi.org/10.1145/2787622.2787710

[6] Karo Castro-Wunsch, Alireza Ahadi, and Andrew Petersen. 2017. Evaluating
Neural Networks as a Method for Identifying Students in Need of Assistance. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’17). Association for Computing Machinery, New York, NY,
USA, 111–116. https://doi.org/10.1145/3017680.3017792

[7] John Edwards, Joseph Ditton, Bishal Sainju, and Joshua Dawson. 2020. Different
assignments as different contexts: predictors across assignments and outcome
measures in CS1. In 2020 Intermountain Engineering, Technology and Computing
(IETC). IEEE, Williamsburg, VA, USA, 1–6. https://doi.org/10.1109/IETC47856.
2020.9249217

[8] John Edwards, Juho Leinonen, and Arto Hellas. 2020. A Study of Keystroke
Data in Two Contexts: Written Language and Programming Language Influence
Predictability of Learning Outcomes. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. Association for Computing Machin-
ery, New York, NY, USA, 413–419. http://doi.org/10.1145/3328778.3366863

[9] Stephen H. Edwards, Jason Snyder, Manuel A. Pérez-Quiñones, Anthony Allevato,
Dongkwan Kim, and Betsy Tretola. 2009. Comparing effective and ineffective be-
haviors of student programmers. In Proceedings of the fifth international workshop
on Computing education research workshop (ICER ’09). Association for Computing
Machinery, New York, NY, USA, 3–14. https://doi.org/10.1145/1584322.1584325

[10] Arto Hellas, Petri Ihantola, Andrew Petersen, Vangel V. Ajanovski, Mirela Gutica,
Timo Hynninen, Antti Knutas, Juho Leinonen, Chris Messom, and Soohyun Nam
Liao. 2018. Predicting academic performance: a systematic literature review. In
Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2018 Companion). Association
for Computing Machinery, New York, NY, USA, 175–199. https://doi.org/10.
1145/3293881.3295783

[11] Matthew C. Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the second international workshop on Computing
education research (ICER ’06). Association for Computing Machinery, New York,
NY, USA, 73–84. https://doi.org/10.1145/1151588.1151600

[12] Ji-Hyun Kim. 2009. Estimating classification error rate: Repeated cross-validation,
repeated hold-out and bootstrap. Computational Statistics & Data Analysis 53, 11
(Sept. 2009), 3735–3745. https://doi.org/10.1016/j.csda.2009.04.009

[13] Charles Koutcheme, Sami Sarsa, Arto Hellas, Lassi Haaranen, and Juho Leinonen.
2022. Methodological Considerations for Predicting At-risk Students. In Aus-
tralasian Computing Education Conference (ACE ’22). Association for Comput-
ing Machinery, New York, NY, USA, 105–113. https://doi.org/10.1145/3511861.
3511873

[14] Juho Leinonen. 2022. Open IDE Action Log Dataset from a CS1 MOOC. In
Proceedings of the 6th Educational Data Mining in Computer Science Education
(CSEDM) Workshop. Zenodo, Virtual, 4 pages. https://doi.org/10.5281/zenodo.
6983459

[15] Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2021. Does
the Early Bird Catch the Worm? Earliness of Students’ Work and its Relationship
with Course Outcomes. In Proceedings of the 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 1. Association for Computing
Machinery, NewYork, NY, USA, 373–379. http://doi.org/10.1145/3430665.3456383

[16] Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2022. Time-on-
Task Metrics for Predicting Performance. In Proceedings of the 53rd ACM Technical
Symposium V.1 on Computer Science Education (SIGCSE 2022). Association for
Computing Machinery, New York, NY, USA, 871–877. https://doi.org/10.1145/
3478431.3499359

[17] Juho Leinonen, Leo Leppänen, Petri Ihantola, and Arto Hellas. 2017. Comparison
of Time Metrics in Programming. In Proceedings of the 2017 ACM Conference on
International Computing Education Research (ICER ’17). Association for Comput-
ing Machinery, New York, NY, USA, 200–208. https://doi.org/10.1145/3105726.
3106181

[18] Juho Leinonen, Krista Longi, Arto Klami, and Arto Vihavainen. 2016. Automatic
Inference of Programming Performance and Experience from Typing Patterns. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education
(SIGCSE ’16). Association for ComputingMachinery, New York, NY, USA, 132–137.
https://doi.org/10.1145/2839509.2844612

[19] Filipe Dwan Pereira, Samuel C. Fonseca, Elaine H. T. Oliveira, David B. F. Oliveira,
Alexandra I. Cristea, and Leandro S. G. Carvalho. 2020. Deep learning for early
performance prediction of introductory programming students: a comparative
and explanatory study. Revista Brasileira de Informática na Educação 28, 0 (Oct.
2020), 723–748. https://doi.org/10.5753/rbie.2020.28.0.723 Number: 0.

[20] Sebastian Raschka. 2018. Model Evaluation, Model Selection, and Algorithm
Selection in Machine Learning. https://doi.org/10.48550/ARXIV.1811.12808

[21] Anthony V. Robins. 2019. Novice Programmers and Introductory Programming.
In The Cambridge Handbook of Computing Education Research, Sally A. Fincher
and Anthony V.Editors Robins (Eds.). Cambridge University Press, Cambridge,
327–376. https://doi.org/10.1017/9781108654555.013

[22] Simon, Andrew Luxton-Reilly, Vangel V. Ajanovski, Eric Fouh, Christabel Gon-
salvez, Juho Leinonen, Jack Parkinson, Matthew Poole, and Neena Thota. 2019.
Pass Rates in Introductory Programming and in other STEM Disciplines. In Pro-
ceedings of the Working Group Reports on Innovation and Technology in Computer
Science Education (ITiCSE-WGR ’19). Association for Computing Machinery, New
York, NY, USA, 53–71. https://doi.org/10.1145/3344429.3372502

[23] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013.
Scaffolding students’ learning using test my code. In Proceedings of the 18th ACM
conference on Innovation and technology in computer science education (ITiCSE
’13). Association for Computing Machinery, New York, NY, USA, 117–122. https:
//doi.org/10.1145/2462476.2462501

[24] Christopher Watson, Frederick W.B. Li, and Jamie L. Godwin. 2013. Predicting
Performance in an Introductory Programming Course by Logging and Analyzing
Student Programming Behavior. In 2013 IEEE 13th International Conference on
Advanced Learning Technologies. IEEE, San Diego, CA, 319–323. https://doi.org/
10.1109/ICALT.2013.99 ISSN: 2161-377X.

https://doi.org/10.1145/2787622.2787717
https://doi.org/10.3390/educsci11090552
https://doi.org/10.1145/3478431.3499298
https://doi.org/10.1145/3478431.3499298
https://doi.org/10.1017/9781108654555.024
https://doi.org/10.1017/9781108654555.024
https://doi.org/10.1145/2787622.2787710
https://doi.org/10.1145/3017680.3017792
https://doi.org/10.1109/IETC47856.2020.9249217
https://doi.org/10.1109/IETC47856.2020.9249217
http://doi.org/10.1145/3328778.3366863
https://doi.org/10.1145/1584322.1584325
https://doi.org/10.1145/3293881.3295783
https://doi.org/10.1145/3293881.3295783
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1016/j.csda.2009.04.009
https://doi.org/10.1145/3511861.3511873
https://doi.org/10.1145/3511861.3511873
https://doi.org/10.5281/zenodo.6983459
https://doi.org/10.5281/zenodo.6983459
http://doi.org/10.1145/3430665.3456383
https://doi.org/10.1145/3478431.3499359
https://doi.org/10.1145/3478431.3499359
https://doi.org/10.1145/3105726.3106181
https://doi.org/10.1145/3105726.3106181
https://doi.org/10.1145/2839509.2844612
https://doi.org/10.5753/rbie.2020.28.0.723
https://doi.org/10.48550/ARXIV.1811.12808
https://doi.org/10.1017/9781108654555.013
https://doi.org/10.1145/3344429.3372502
https://doi.org/10.1145/2462476.2462501
https://doi.org/10.1145/2462476.2462501
https://doi.org/10.1109/ICALT.2013.99
https://doi.org/10.1109/ICALT.2013.99

	Abstract
	1 Introduction
	2 Related Work
	2.1 Features
	2.2 Models
	2.3 Evaluation

	3 Context
	4 Methodology
	5 Results
	6 Discussion
	7 Limitations
	8 Conclusion
	References

