Check for
Updates

Evaluating the Performance of Code Generation Models for
Solving Parsons Problems With Small Prompt Variations

Brent Reeves
Abilene Christian University
Abilene, Texas, USA
brent.reeves@acu.edu

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Bailey Kimmel
Abilene Christian University
Abilene, Texas, United States

blk20c@acu.edu

Sami Sarsa
Aalto University
Espoo, Finland
sami.sarsa@aalto.fi

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

Garrett Powell
Abilene Christian University
Abilene, Texas, United States

gbp18a@acu.edu

James Prather
Abilene Christian University
Abilene, Texas, USA
james.prather@acu.edu

Arto Hellas
Aalto University
Espoo, Finland
arto.hellas@aalto.fi

Juho Leinonen
University of Auckland
Auckland, New Zealand

juho.leinonen@auckland.ac.nz

ABSTRACT

The recent emergence of code generation tools powered by large
language models has attracted wide attention. Models such as Ope-
nAI Codex can take natural language problem descriptions as input
and generate highly accurate source code solutions, with poten-
tially significant implications for computing education. Given the
many complexities that students face when learning to write code,
they may quickly become reliant on such tools without properly
understanding the underlying concepts. One popular approach for
scaffolding the code writing process is to use Parsons problems,
which present solution lines of code in a scrambled order. These
remove the complexities of low-level syntax, and allow students to
focus on algorithmic and design-level problem solving. It is unclear
how well code generation models can be applied to solve Parsons
problems, given the mechanics of these models and prior evidence
that they underperform when problems include specific restrictions.
In this paper, we explore the performance of the Codex model for
solving Parsons problems over various prompt variations. Using
a corpus of Parsons problems we sourced from the computing ed-
ucation literature, we find that Codex successfully reorders the
problem blocks about half of the time, a much lower rate of success
when compared to prior work on more free-form programming
tasks. Regarding prompts, we find that small variations in prompt-
ing have a noticeable effect on model performance, although the
effect is not as pronounced as between different problems.

CCS CONCEPTS

« Social and professional topics — Computing education; «
Computing methodologies — Artificial intelligence.

@ This work is licensed under a Creative Commons Attribution
o International 4.0 License.

ITiCSE 2023, July 8-12, 2023, Turku, Finland

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0138-2/23/07.
https://doi.org/10.1145/3587102.3588805

299

KEYWORDS

academic integrity; Al; artificial intelligence; ChatGPT; code gener-
ation; code writing; Codex; computer programming; Copilot; CS1;
deep learning; generative Al introductory programming; GitHub;
GPT-3; large language models; machine learning; ML; neural net-
works; natural language processing; novice programming; OpenAl

ACM Reference Format:

Brent Reeves, Sami Sarsa, James Prather, Paul Denny, Brett A. Becker, Arto
Hellas, Bailey Kimmel, Garrett Powell, and Juho Leinonen. 2023. Evaluating
the Performance of Code Generation Models for Solving Parsons Problems
With Small Prompt Variations. In Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2023),
July 8-12, 2023, Turku, Finland. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3587102.3588805

1 INTRODUCTION

Code generation tools such as Github Copilot! which is powered by
OpenAl’s Codex? model have gained significant attention in the last
year due to their ability to produce highly accurate code for a variety
of programming tasks [3, 38]. Their rapid and widespread availabil-
ity has led to speculation about the future of computing education
and programming in general [1, 41]. Recent work has shown that
models such as Codex can solve typical introductory programming
problems with greater accuracy than most students [14]. This raises
concerns around plagiarism and over-reliance, as students may be
tempted to use code generation tools to complete programming
assignments without understanding the underlying concepts, and
without developing critical thinking and problem-solving skills.
Prior research evaluating Codex and Copilot in the context of
computing education has focused on programming problems, where
the tools generate source code in response to natural language prob-
lem descriptions [4, 14]. How well these tools perform on other
problem types is currently unexplored. Parsons problems are often
used to help students develop skills needed for writing code [9].

!https://github.com/features/copilot
Zhttps://openai.com/blog/openai-codex/

https://orcid.org/0000-0001-5781-1136
https://orcid.org/0000-0002-7277-9282
https://orcid.org/0000-0003-2807-6042
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0003-1446-647X
https://orcid.org/0000-0001-6502-209X
https://orcid.org/0009-0000-6655-0564
https://orcid.org/0000-0002-3221-7015
https://orcid.org/0000-0001-6829-9449
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3587102.3588805
https://doi.org/10.1145/3587102.3588805
https://doi.org/10.1145/3587102.3588805
https://github.com/features/copilot
https://openai.com/blog/openai-codex/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587102.3588805&domain=pdf&date_stamp=2023-06-30

ITiCSE 2023, July 8-12, 2023, Turku, Finland

A typical Parsons problem consists of a set of randomly ordered
blocks representing lines of code that a student must order correctly
to form a working solution. These have many benefits, including
teaching programming concepts without the complexities of low-
level syntax. In addition, it is reasonable to believe that they could
be more resistant to solution by code generation tools. For exam-
ple, models like Codex generate output in a left-to-right fashion by
learning the probability distribution of the next token given the cur-
rent context. Generating solutions that must include specified code
fragments, such as the blocks in a Parsons problem could impact
performance. Indeed, prior work has shown that Codex performs
poorly when problems include restrictions, such as prohibiting the
use of specific elements in the solution [14]. Parsons problems may
be a promising alternative to traditional programming problems
where the use of code generation tools is a concern.

We investigate the performance of Codex in solving Parsons
problems. We extract candidate Parsons problems from the liter-
ature, present the randomly scrambled blocks as input to Codex,
and then execute the rearranged solutions using test suites. We
also explore how different prompting variations impact model per-
formance. This contributes to the growing body of knowledge on
code generation tools in computing education and may help edu-
cators make informed decisions about the use of these tools in the
classroom. We are guided by the following research questions:

RQ1 How effectively does Codex generate solutions to Parsons
problems?

RQ2 To what extent is the performance of Codex affected by
different prompting variations?

2 RELATED WORK

In this section we summarize recent work on Parsons problems and
large language models models in introductory programming.

2.1 Parsons Problems

It is well known that writing code from scratch can be overwhelm-
ing for novices. Parsons problems [33, 43] avoid some of the factors
leading to this. These “mixed-up code problems” introduced by
Parsons & Haden in 2006, require users to rearrange randomly
ordered lines of a program into the correct order [34]. Since then,
Parsons problems have received significant attention as an evidence-
based pedagogical learning tool [7, 9]. Parsons problems have been
studied in motivating students to practice [34]; as summative as-
sessments [5]; as a bridge between code tracing and code writing
activities [12]; to catalog common student errors when problem-
solving [21]; in helping students learn programming in block-based
environments [43]; and even to scaffold the problem-solving pro-
cess and encourage metacognition [17, 35].

Although many variations of Parsons problems have been ex-
plored, a common feature is that the rearrangeable blocks represent
syntactically correct source code. As would be expected, variations
which increase the possible solution space are more difficult for
students to solve. Such variations include problems with distractors
(code fragments not required for the solution) [5, 18, 32], problems
that consist of a larger number of fragments [11, 21], and problems
where students are required to indent code fragments as well as
order them correctly (so-called two-dimensional problems) [23].

300

Brent Reeves et al.

Ericson et al. used these observations to study adaptive Parsons
problems [10] where intra-problem adaptation enabled problems
to be simplified on student request by limiting the solution space
through fragment combination or distractor removal. Inter-problem
adaptation allowed for the automatic selection of subsequent prob-
lems based on current problem performance, an idea also studied
by Kumar [25]. Cheng & Harrington studied the benefits of using
Parsons problems on summative assessments with respect to grad-
ing consistency, finding that constraints imposed by the problems
yielded faster grading times and higher grader confidence [2]. After
observing students using clues in the syntax of the code lines to
solve the problem without understanding why it is correct, Wein-
man et al. introduced faded Parsons problems where some syntax is
missing or incomplete [39, 40]. Wu et al. have even applied Parsons
for a hortizontal problem space with regex [42].

2.2 LLMs and Introductory Programming

The recent emergence of large language models (LLMs) promise
both opportunities and challenges for introductory programming [1]
resulting in significant research activity in this area. This work has
mainly focused on LLM performance in solving code writing ex-
ercises [4, 14, 15] and on using LLMs for creating or improving
educational resources [6, 27, 29-31, 36].

Early work by Finnie-Ansley et al. [14] explored the performance
of the OpenAI Codex model on typical introductory (CS1) program-
ming exercises, including the well-studied Rainfall problem [16, 37].
They found that Codex performed better than the average student —
it ultimately scored around 80% across two tests and ranked 17 out
of 71 when its performance was compared with real students on the
same exams. On the Rainfall problem, Codex was able to generate
various correct solutions that differed in both algorithmic approach
and source code length. One question that was left unanswered
was whether Codex could solve more complex programming prob-
lems, e.g., those used in typical data structures and algorithms (CS2)
courses. In a continuation study, it was found that Codex does out-
perform most students on these more complex problems [15]. In a
recent study, Denny et al. [4] found that GitHub Copilot was able
to solve about half of the introductory programming problems they
explored. This increased when the user utilised “prompt engineer-
ing” — modifying the prompt given to the model with the aim of
achieving better performance [28].

In addition to solving code writing questions, LLMs can be used
for creating educational resources. Sarsa et al. found that given
an example exercise, Codex could create novel exercises and that
the contents of the exercises could be influenced by providing
keywords related to both programming concepts (e.g., loops, lists,
etc.) and thematic concepts (e.g., basketball, cooking, etc.) [36]. In a
similar vein, Denny et al. proposed “robosourcing”, where LLMs are
used to scaffold learnersourcing [6]. In traditional learnersourcing,
students create resources that can be used by other students, while
in robosourcing, LLMs are used in the process, e.g., to provide initial
artefacts that are then improved by other students.

LLMs have also been found to be capable of explaining source
code in natural language. This can be helpful for novices, who might
struggle to understand code. Prior work has used both Codex (which
is optimized for source code) [36] and GPT-3 (which is optimized

Evaluating the Performance of Code Generation Models on Parsons Problems

for natural language) [29, 31] for producing code explanations.
Similarly, recent work has explored using Codex to enhance and
explain programming error messages [27].

As large language models continue to improve in tasks tradi-
tionally used for practice in introductory programming courses,
a question that arises is whether there are any traditionally used
problem types that can not be solved (easily) by these tools. The
research gap we explore in the present work is to what extent large
language models (specifically, Codex) can solve Parsons problems.
As Parsons problems are common in introductory programming
courses [9], it is important to understand whether they suffer from
the same risk of students potentially over-relying on LLMs for
solving them which already is the case for code writing problems.

3 METHODOLOGY
3.1 Data: A Body of Parsons Problems

To construct a dataset of problems for evaluating large language
models, we searched the ACM Digital Library for papers on Parsons
problems from the past decade. We iterated over the search results
chronologically, identifying papers that provided concrete Parsons
problem examples. We continued the search until we had a total of
10 papers with concrete examples [8, 10, 12, 13, 20, 22, 24, 26, 40, 43],
which we used as a starting set.

We constrain our problem set to those having a unique solu-
tion regarding block ordering, i.e., we excluded problems for which
there were multiple correct ways to order the blocks. This resulted
in a total of 6 distinct problems — not all papers provided a usable
problem with this restriction in place. In addition to the problem
itself, we extracted the (textual) problem statement, or created a
simple problem statement if one was not provided in the source
article. For each Parsons problem, we created twenty distinct unin-
dented variants with scrambled ordering. This involved dividing
the solution code into lines, stripping any indentation, and then
randomly scrambling the line order so that each new shuffled set of
lines was distinct (and did not match the original solution). This led
to a total of 6 X 20 = 120 scrambled (unsolved) Parsons problems.

3.2 Input: Constructing Prompts

Large language models are known to be sensitive to small alter-
ations in prompts, so we constructed seven prompt variants, includ-
ing also a no-prompt option. These prompts are (1) “Reorder and
indent the lines”; (2) “Reorder and indent the lines if needed”; (3)
“Reorder the lines”; (4) “Sequence the lines correctly”; (5) “Put the
lines in order to solve the problem”; (6) “Produce the right answer”;
and (7) no explicit prompt (herein denoted -).

Each prompt variant was evaluated with each scrambled Parsons
problem, leading to a total of 7 x 120 = 840 different variant inputs.
The structure of the inputs followed the structure in Listing 1, where
the input contained four parts: (1) the problem statement; (2) the
scrambled lines of code without indentation; (3) the prompt; and
(4) an indicator highlighting the end of input, which we defined as
the following comment: “# Solution with indentation” to indicate
to the model that the code blocks should be indented correctly.

3There are different variations of Parsons problems — our focus here is on ones where
the blocks are not indented.

301

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Listing 1: Input structure

Problem description

<problem description goes here>
Scrambled lines

<scrambled code lines go here>
<prompt>

Solution with indentation

Listing 2 illustrates a concrete example of a complete input pro-
vided to Codex.

Listing 2: Complete example input

#Problem description

Finish the function below to return 'too low' if the
guess is %less than the passed target, ‘'correct' if they
are equal, and %'too high' if the guess is greater than
the passed target. For %example, check_guess(5, 7)
returns 'too low', check_guess(7, 7) %returns 'correct',
and check_guess(9, 7) returns 'too high'.

#Scrambled lines

if guess < target:
def check_guess(guess,
return 'correct

def check_guess(guess,
return "too low'

elif guess == target:
return 'correct '
return 'too low'

else:

return ‘'too high’

Reorder and indent the lines
Solution with indentation

target):

target:

if needed

In this case the problem is taken from Figure 2 of the paper “Adap-
tive Parsons Problems as Active Learning Activities During Lecture”
by Ericson & Haynes-Magyar (denoted as ‘Ericson2022figure2’ in
our results tables). The prompt in this example is (2): “Reorder and
indent the lines if needed”. The problem description was taken
verbatim from the source article [8] and is quite detailed, including
example inputs and outputs. This is also an example of a problem
that includes paired distractor blocks — the original problem in-
cluded three paired distractors, where the distractor was explicitly
associated with a correct line of code. In each case the distractors
are syntactically incorrect (i.e. missing brace or matching quote
mark) and our scrambling process removed the explicit pairing.

3.3 Evaluation: Static Analysis

The 840 inputs were sent to Codex via the OpenAlI API, with a
setting for randomness of the outputs via a “temperature” parameter.
Setting the temperature to 0 yields maximally deterministic outputs
while larger values produce more random outputs. Prior research
has found that a temperature of 0 works well when using Codex
for non-code writing purposes [27]. Given this, we expected little
variance in outputs for a given input, and therefore sent each input
to Codex once (only), and used this output for analysis.

A correct solution to a Parsons problem is a valid reordering
of the blocks, with each block correctly indented. As we selected
Parsons problems from the literature where the correct ordering of
the solution is unique, it was not necessary to execute the generated
code. To evaluate the output we simply compared it to the original
solution to the Parsons problem via standard string matching.

From Codex output for each input sent to the API, we (1) ex-
tracted the Codex solution (2) ran the static analysis (string match-
ing) on the solution to assess its correctness, and (3) we evaluated

ITiCSE 2023, July 8-12, 2023, Turku, Finland

whether Codex deviated from the assignment, e.g., by modifying
the scrambled line set beyond indentation and reordering.

4 RESULTS

4.1 RQ1: Correctness of Generated Solutions

The results of the static analysis can be found in Tables 1, 2, and 3.

Table 1 shows, for each priming and problem pair, the number
of cases where the output generated by Codex did not match the
correct solution. It can be seen that the performance of Codex
in solving Parsons problems is very problem-dependent, and also
somewhat dependent on the priming that was used. As an example,
Codex was capable of correctly solving the Weinmann2021figurel
problem very often (77% of cases) regardless of the prompt (108 of
140 attempts were correct). On the other hand, Codex had difficulty
solving the Ericson2022figure4 problem regardless of the priming,
with only 29% success (41 of 140 attempts were correct).

Table 2 shows, again for each priming and problem pair, the
number of cases where Codex had either modified or added lines
to its solution that were not present in the Parsons problem. These
cases cannot be considered valid solutions of a Parsons problem
even if they are functionally correct as one requirement of Par-
sons problems is to reorder the existing code blocks, and typically
students are not allowed to modify the blocks. It can be seen taht
Codex often does not modify the blocks, with two thirds of the prob-
lems not having any such cases. Even for the problem where Codex
performed the worst in this regard (Ericson2022figure2) Codex only
modified or added code in 8% (11 of 140) cases.

Finally, Table 3 shows the performance of Codex when indenta-
tion is ignored, i.e., a solution is considered correctly solved even
if the indentation is wrong or missing. Unsurprisingly, comparing
this to Table 1, it can be seen that the performance of Codex is better
when indentation is ignored: over all priming-problem pairs, only
20% (167 of 840) of cases were incorrect when indentation is taken
into account versus 49% of cases (415 of 840) when indentation is
not taken into account.

Codex had the least difficulty solving Weinmann2021figurel
(Listing 3), with 77% of solutions correct. The prompt for this prob-
lem seems complicated, however it is worth noting that the function
only has four lines that do seem rather ‘obvious’ in their ordering.

Listing 3: Weinmann2021figure1

Write a function to return a function which takes an
argument x and adds it to the last even element in the
given list.

def last_even_adder(li):
for index in range(len(li) -1,
if li[index] % 2 == 0:
return lambda x: x + li[index]
"All odd'

-1,

-1):

return

The problem that caused Codex the most difficulty was Eric-
son2022figure4 (Listing 4). It contains extra lines that students must
delete. Across the various prompts, Codex was only able to solve
this problem with 29% success.

4.2 ROQ2: Effects of Prompting Variations

The differences between primings are less pronounced than be-
tween problems. Table 1 shows the best results are achieved with

302

Brent Reeves et al.

the priming “Reorder and indent the lines” where 44 of 120 attempts
were incorrect (69% correct), while the priming “Produce the right
answer” led to the worst performance with 74 of 120 attempts being
incorrect (38% correct). The best performing prompt, “Reorder and
indent the lines”, is explicit about the requirements for solving the
problem. The worst performing prompt, “Produce the right answer”,
is vague and may have led to more varied solutions which were
not restricted to use of the Parsons problem blocks.

Table 2 shows that while it is relatively rare for Codex to modify
or add lines, there are subtle differences between the prompts. When
no prompt is used (‘=’) and also for the prompt “Produce the right
answer”, there were 5 of 120 cases (4%) where this happened, while
with the other prompts this happens rarely (<2%).

When indentation is not taken into account (see Table 3), the dif-
ferences between the prompts are lower, even though the ordering
of the prompts from best to worst remains the same.

Listing 4: Ericson2022figure4

Put the code blocks below in order to solve the
following problem. There are two extra blocks that are
not needed in a correct solution. Given a day of the
week encoded as 0=Sum, 1=Mon, 2=Tue, ...6=Sat, and a
boolean indicating if we are on vacation, return a
string of the form "7:00" indicating when the alarm
clock should ring. Weekdays, the alarm should be "7:00"
and on the weekends it should be "10:00". Unless we are
on vacation -- then on weekdays it should be "10:00" and
weekends it should be "off".

def alarm_clock (day,
def alarm_clock (day,
if vacation:

vacation):
vacation)

if day == 0 or day == 6:

if day == 0 || day == 6:
return 'off’

else:
return '10:00"

else:

if day == 0 or day == 6:
return '10:00'

else:

return '7:00'

5 DISCUSSION

5.1 RQ1: Can Codex Solve Parsons Problems?

Codex was able to correctly solve approximately half (51%) of the
Parsons problems. This is lower than the performance of Codex on
code writing problems where it can solve up to 80% of problems
correctly [4, 14]. However, we did observe greater performance
(80%) — similar to the performance on code writing tasks — when
problems related to indentation are excluded. However, student
performance on Parsons problems is often better than their per-
formance on equivalent code writing problems [12], which should
be considered when interpreting these results. Essentially, while
Codex is better at solving code writing problems than the average
student [14], it might still be worse at solving Parsons problems
compared to students even though the performance in both tasks
is around 80% when indentation is ignored for Parsons problems.
The performance of Codex was lower for Parsons problems than
code writing problems, possibly limiting students’ over-reliance on
large language models. Prior research also suggests that Parsons
problems might reduce cognitive load compared to code writing

Evaluating the Performance of Code Generation Models on Parsons Problems

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Table 1: Number of incorrect solutions generated by Codex for all Parsons problems and across all primings. A correct solution
is one that is an exact string match (including indentation) of the original solution code for the Parsons problem. The number
in each cell represents the number of incorrect Codex solutions out of the 20 total generated solution for each priming-problem

pair.
priming

problem Reorder and - Reorder Reorder and indent Sequence the Put the lines in Produce total

indent the the lines the lines if needed lines correctly order to solve the the right

lines problem answer
Weinmann2021figurel 3 9 3 3 3 7 32
Haynes-Magyar2022figure2 1 1 6 4 10 10 11 43
Ericson2022figure2 9 3 10 10 11 13 12 68
H0u2022ﬁgur62 5 9 9 15 12 15 15 80
Haynes-Magyar2022figure4 12 10 14 14 14 14 15 93
Ericson2022ﬁgure4 14 13 16 15 13 14 14 99
total | 44 45 59 61 63 69 74 | 415

Table 2: Number of incorrect solutions generated by Codex in which the failure was due to a modified line of code or an
additional line of code that was not present in the original solution. The number in each cell represents the number of incorrect
Codex solutions out of the 20 total generated solution for each priming-problem pair.

priming

problem Reorder and - Reorder Reorder andindent Sequence the Put the lines in Produce total

indent the the lines the lines if needed lines correctly ~ order to solve the the right

lines problem answer
Weinmann2021figurel 0 4 0 0 0 0 3 7
Haynes-Magyar2022figure2 0 0 0 0 0 0 0 0
Ericson2022figure2 1 1 1 2 2 2 2 11
Hou2022figure2 0 0 0 0 0 0 0 0
Haynes-Magyar2022figure4 0 0 0 0 0 0 0 0
Ericson2022figure4 0 0 0 0 0 0 0 0
total | 1 501 2 2 2 5 | 18

Table 3: Number of incorrect solutions generated by Codex in which the failure was only due to one or more incorrectly indented
lines of code. In other words, the generated solution did produce the correct reordering of the code blocks, but the indentation
did not match the expected solution. The number in each cell represents the number of incorrect Codex solutions out of the 20

total generated solution for each priming-problem pair.

priming

problem Reorder and - Reorder Reorder and indent Sequence the Put the lines in Produce total

indent the the lines the lines if needed lines correctly ~ order to solve the the right

lines problem answer
Weinmann2021figurel 3 9 3 3 3 3 7 31
Haynes-Magyar2022figure2 0 0 0 0 0 0 0 0
Ericson2022figure2 1 1 1 2 2 3 2 12
Hou2022figure2 1 0 1 1 1 1 1 6
Haynes-Magyar2022figure4 0 4 0 0 7 3 10 24
Ericson2022figure4 14 12 16 15 12 14 11 94
total | 19 21 21 24 25 26 31 | 167

problems [19]. Thus it is possible that over-relying on LLM support
might be less of a problem with Parsons problems. On the other
hand, out of the 50% of the cases where Codex was not able to
correctly solve the problem, 60% of the remaining cases only had

303

problems with indentation. Essentially, in these cases, using Codex
could still help students solve the problem as they would only
need to correct the indentation errors. Codex having problems
with indentation has also been observed in prior work where it

ITiCSE 2023, July 8-12, 2023, Turku, Finland

was found that Codex would often claim that there is a problem
with indentation in incorrect code even when the problem was not
related to indentation [27].

We found that Codex very rarely modified the lines of code
provided in the input or added new lines. This suggests that it can
follow the orders given as input quite well.

There were substantial differences in Codex’s performance de-
pending on the problem it was solving, ranging from 29% correct
for the Ericson2022figure4 problem to 77% correct for the Wein-
mann2021figurel problem. For the problems Codex struggled with
and for those where it performed better, we found that similarly to
students [18], Codex struggled more with Parsons problems with
distractors (an example of such a problem is presented in Listing 4).

5.2 RQ2: Does Prompting Make a Difference?

Prior work exploring the accuracy of large language models such as
GPT-3 and Codex has indicated that model outputs are often very
sensitive to their inputs, and this has led to detailed discussions
around effective prompt engineering strategies [28]. In our results,
we do not observe very large differences in performance between
the prompts that were used — in fact, the second most effective
strategy was to not include an additional prompt (providing more
explicit guidance) at all. A possible explanation for this is that the
prompts we investigated formed a relatively small portion of the
overall input to the model. The inputs already included the problem
description and the blocks of code to be used in the solutions, as
well as the end of input prompt “# Solution with indentation” - thus
the individual prompts we manipulated represented a relatively
small fraction of the input (in terms of character count).

5.3 Future Work

There are multiple interesting questions that arise from these re-
sults that can form the basis for future work. We found that Codex
performed better when indentation was ignored. It would be inter-
esting to study how Codex performs in solving Parsons problems
in a language other than Python, as in many other languages in-
dentation does not affect the functionality of programs.

In this study, we evaluated a set of Parsons problems which
had unique solutions in terms of block ordering. Although we
believe this to be a useful first step in evaluating the performance
of LLMs in solving Parsons problems, such problems tend to be
relatively simple to solve for students. For instance, the code shown
in Listing 2 provides a number of syntactic clues that a student could
use to solve the problem even without a complete understanding
of the programming constructs (for example, the output should
begin with ‘def’, and the ‘return’ statements should be nested inside
conditionals such as ‘if” and ‘else’). This is a potential weakness of
Parsons problems that has been discussed in the literature. In their
work exploring Faded Parsons problems, Weinman, Fox & Hearst
raise this issue, noting that a sufficiently prepared student could
solve such problems purely through syntactic clues [40]. Future
work should explore how the performance of Codex changes as
the difficulty of the Parsons problems increase, for example where
problems contain more blocks and thus allow for a greater number
of combinations, and multiple correct solutions.

304

Brent Reeves et al.

6 THREATS TO VALIDITY

This study has multiple threats to validity. First, we used a “zero
shot” setup where Codex was not given any examples of how to
solve Parsons problems. While we could have reasonably achieved
better results by doing so, we believe our approach more accurately
represents how students would utilize the tool. Second, we used
the minimum “temperature” of 0 for all attempts. While a higher
temperature setting could have resulted in more creative solutions,
we chose the minimum due to the very nature of Parsons problems.
A solution to a Parsons problem is ultimately one that is exactly
like the prompt, only in the correct order. Third, we obviously
biased the system in both problem selection and priming choices.
To mitigate problem selection, we chose Parsons problems from
the literature. To mitigate priming bias, we attempted to phrase
primers in multiple ways as a student might.

7 CONCLUSION

In this work, we presented a study on how well large language
models, specifically Codex, can solve Parsons problems using small
variations in prompts. We found that Codex was able to solve Par-
sons problems in about 50% of the cases, and that performance was
somewhat dependent on the problem. If problems with indentation
in Codex-produced solutions were ignored, performance was bet-
ter (80% of the solutions were correct). The latter performance is
similar to previously reported performance on traditional introduc-
tory programming ‘write code’ problems, where Codex has been
demonstrated to be capable of solving up to 80% of problems cor-
rectly. Regarding prompt variations, we noticed a clear difference
in performance for different variations. Notably, having “Reorder
the lines” in the prompt produced roughly 1/3 fewer incorrect solu-
tions compared to having “Produce the right answer” and 1/6 fewer
incorrect solutions compared to having “Put the lines in order to
solve the problem”.

The overarching motivation for our study was to explore the
extent to which Codex could be used to support students and also
examine how slight modifications in prompts can affect its perfor-
mance. Indeed, Parsons problems could be seen as an instance of a
situation, where a student is stuck and needs help. Further studies
could explore Parsons problem-like inputs, but where some of the
necessary lines are missing or contain invalid content. In addition to
reordering content and potentially avoiding distractors, this would
also require fixing bugs, which Codex has been previously found
to perform well at for specific types of bugs [27].

Contrasting our results with prior work that has shown that
Codex can solve introductory programming code writing prob-
lems [14], our results suggest that Parsons problems are not as
easy for large language models to solve as code writing problems.
Thus, they could be considered to be more reliable for assessing
students’ performance, in a setting where students could use Codex
(or similar). We acknowledge that our work focused on only Par-
sons problems with a unique solution, and thus future work is
required to examine what aspects of Parsons problems might affect
the performance of large language models in solving them.

Evaluating the Performance of Code Generation Models on Parsons Problems

REFERENCES

[1] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James

[10

(11

=

]

[12]

[13]

[14

[15

[16

]

]

[17]

(18

[19

[20

[21

Prather, et al. 2023. Programming Is Hard - Or at Least It Used to Be: Educational
Opportunities and Challenges of AI Code Generation. In Proc. of the 54th ACM
Technical Symposium on Computer Science Education (SIGCSE 2023). ACM, NY,
NY, USA, 500-506. https://doi.org/10.1145/3545945.3569759

Nick Cheng and Brian Harrington. 2017. The Code Mangler: Evaluating Coding
Ability Without Writing Any Code. In Proc. of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education. ACM, NY, NY, USA, 123-128.
Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, et al. 2022. GitHub Copilot AI Pair Programmer: Asset or
Liability? https://doi.org/10.48550/arXiv.2206.15331 arXiv:cs/2206.15331

Paul Denny, Viraj Kumar, and Nasser Giacaman. 2022. Conversing with Copilot:
Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language.
https://doi.org/10.48550/ARXIV.2210.15157

Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a New
Exam Question: Parsons Problems. In Proc. of the 4th Int. Workshop on Computing
Education Research (ICER '08). ACM, NY, NY, USA, 113-124.

Paul Denny, Sami Sarsa, Arto Hellas, and Juho Leinonen. 2022. Robosourcing
Educational Resources-Leveraging Large Language Models for Learnersourcing.
arXiv preprint arXiv:2211.04715 (2022).

Yuemeng Du, Andrew Luxton-Reilly, and Paul Denny. 2020. A Review of Research
on Parsons Problems. In Proc. of the 22nd Australasian Computing Education Conf.
(ACE’20). ACM, NY, NY, USA, 195-202. https://doi.org/10.1145/3373165.3373187
Barbara Ericson and Carl Haynes-Magyar. 2022. Adaptive Parsons Problems
as Active Learning Activities During Lecture. In Proc. of the 27th ACM Conf. on
on Innovation and Technology in Computer Science Education Vol. 1 (ITiCSE °22).
ACM, New York, NY, USA, 290-296. https://doi.org/10.1145/3502718.3524808
Barbara J. Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas, et al.
2022. Parsons Problems and Beyond: Systematic Literature Review and Empirical
Study Designs. In Proc. of the 2022 Working Group Reports on Innovation and
Technology in Computer Science Education. ACM, NY, NY, USA, 191-234.
Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018. Evaluating the Efficiency
and Effectiveness of Adaptive Parsons Problems. In Proc. of the 2018 ACM Conf.
on Int. Computing Education Research (ICER °18). ACM, NY, NY, USA, 60-68.
Barbara J. Ericson, Mark J. Guzdial, and Briana B. Morrison. 2015. Analysis of
Interactive Features Designed to Enhance Learning in an Ebook. In Proc. of the
11th Annual Int. Conf. on Int. Computing Education Research. ACM, 169-178.
Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving Parsons
Problems versus Fixing and Writing Code. In Proc. of the 17th Koli Calling Int.
Conf. on Computing Education Research (Koli Calling ’17). ACM, New York, NY,
USA, 20-29. https://doi.org/10.1145/3141880.3141895

Geela Venise Firmalo Fabic, Antonija Mitrovic, and Kourosh Neshatian. 2018.
Adaptive Problem Selection in a Mobile Python Tutor. In Adjunct Publication
of the 26th Conf. on User Modeling, Adaptation and Personalization (UMAP ’18).
ACM, New York, NY, USA, 269-274. https://doi.org/10.1145/3213586.3225235
James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAl Codex on Introductory Programming. In Australasian Computing Education
Conf. (ACE °22). ACM, Online, 10-19. https://doi.org/10.1145/3511861.3511863
James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, et al. 2023. My AI Wants to Know If This Will Be on the Exam:
Testing OpenAI's Codex on CS2 Programming Exercises. In Proc. of the 25th
Australasian Computing Education Conf. (ACE °23). ACM, NY, NY, USA, 97-104.
Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proc. of the Tenth Annual
Conf. on Int. Computing Education Research (ICER '14). ACM, NY, NY, USA, 35-42.
Rita Garcia, Katrina Falkner, and Rebecca Vivian. 2018. Scaffolding the Design
Process Using Parsons Problems. In Proc. of the 18th Koli Calling Int. Conf. on
Computing Education Research (Koli Calling '18). ACM, NY, NY, USA, Article 26,
2 pages. https://doi.org/10.1145/3279720.3279746

Kyle James Harms, Jason Chen, and Caitlin L. Kelleher. 2016. Distractors in
Parsons Problems Decrease Learning Efficiency for Young Novice Programmers.
In Proc. of the 2016 ACM Conf. on Int. Computing Education Research (ICER ’16).
ACM, New York, NY, USA, 241-250. https://doi.org/10.1145/2960310.2960314
Carl C. Haynes and Barbara J. Ericson. 2021. Problem-Solving Efficiency and
Cognitive Load for Adaptive Parsons Problems vs. Writing the Equivalent Code. In
Proc. of the 2021 CHI Conf. on Human Factors in Computing Systems (CHI °21). ACM,
New York, NY, USA, Article 60, 15 pages. https://doi.org/10.1145/3411764.3445292
Carl Haynes-Magyar and Barbara Ericson. 2022. The Impact of Solving Adaptive
Parsons Problems with Common and Uncommon Solutions. In Proc. of the 22nd
Koli Calling Int. Conf. on Computing Education Research (Koli Calling "22). ACM,
New York, NY, USA, Article 23, 14 pages. https://doi.org/10.1145/3564721.3564736
Juha Helminen, Petri Thantola, Ville Karavirta, and Lauri Malmi. 2012. How
Do Students Solve Parsons Programming Problems? An Analysis of Interaction
Traces. In Proc. of the 9th Annual Int. Conf. on Int. Computing Education Research
(ICER ’12). ACM, NY, NY, USA, 119-126. https://doi.org/10.1145/2361276.2361300

305

[22

[23

[24

[25

™
2

[27]

[28

[29

'@
=

[31

[32

[33

[35

(36]

[37

[38

[39

[40

(41

[42

[43]

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2022. Using Adaptive Parsons
Problems to Scaffold Write-Code Problems. In Proc. of the 2022 ACM Conf. on Int.
Computing Education Research - Volume 1 (ICER "22). ACM, NY, NY, USA, 15-26.
Petri Ihantola and Ville Karavirta. 2011. Two-Dimensional Parson’s Puzzles: The
Concept, Tools, and First Observations. J. of Information Technology Education:
Innovations in Practice 10 (2011), 119-132. https://doi.org/10.28945/1394

Ville Karavirta, Juha Helminen, and Petri Thantola. 2012. A Mobile Learning
Application for Parsons Problems with Automatic Feedback. In Proc. of the 12th
Koli Calling Int. Conf. on Computing Education Research. ACM, 11-18.

Amruth N. Kumar. 2018. Epplets: A Tool for Solving Parsons Puzzles. In Proc. of
the 49th ACM Technical Symposium on Computer Science Education (SIGCSE ’18).
ACM, NY, NY, USA, 527-532. https://doi.org/10.1145/3159450.3159576
Amruth N. Kumar. 2019. Helping Students Solve Parsons Puzzles Better. In
Proc. of the 2019 ACM Conf. on Innovation and Technology in Computer Science
Education (ITiCSE ’19). ACM, New York, NY, USA, 65-70.

Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, et al. 2023.
Using Large Language Models to Enhance Programming Error Messages. In Proc.
of the 2023 ACM SIGCSE Technical Symposium on Computer Science Education.
Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, et al. 2023.
Pre-train, prompt, and predict: A systematic survey of prompting methods in
natural language processing. Comput. Surveys 55, 9 (2023), 1-35.

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, et al. 2023.
Experiences from Using Code Explanations Generated by Large Language Models
in a Web Software Development E-Book. In Proc. of the 54th ACM Technical
Symposium on Computer Science Education.

Stephen MacNeil, Andrew Tran, Juho Leinonen, Paul Denny, Joanne Kim, et al.
2022. Automatically Generating CS Learning Materials with Large Language
Models. arXiv preprint arXiv:2212.05113 (2022).

Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, et al. 2022.
Generating Diverse Code Explanations Using the GPT-3 Large Language Model.
In Proc. of the 2022 ACM Conf. on Int. Computing Education Research - Volume 2
(ICER °22). ACM, NY NY, USA, 37-39. https://doi.org/10.1145/3501709.3544280
Lauren Margulieux, Paul Denny, Kathryn Cunningham, Michael Deutsch, and
Benjamin R. Shapiro. 2021. When Wrong is Right: The Instructional Power of
Multiple Conceptions. In Proc. of the 17th ACM Conf. on Int. Computing Education
Research (ICER 2021). ACM, NY, NY, USA, 184-197.

Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial.
2016. Subgoals Help Students Solve Parsons Problems. In Proc. of the 47th ACM
Technical Symposium on Computing Science Education (SIGCSE ’16). ACM, New
York, NY, USA, 42-47. https://doi.org/10.1145/2839509.2844617

Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun
and Effective Learning Tool for First Programming Courses. In Proc. of the 8th
Australasian Conf. on Computing Education - Volume 52 (ACE °06). Australian
Computer Society, Inc., AUS, 157-163.

James Prather, John Homer, Paul Denny, Brett Becker, John Marsden, et al. 2022.
Scaffolding Task Planning Using Abstract Parsons Problems. In Proc. of the 2022
World Conf. on Computers in Education (WCCE °22). 1-10.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models. In Proc. of the 2022 ACM Conf. on Int. Computing Education Research -
Volume 1 (ICER *22). ACM, NY, NY, USA, 27-43.

Otto Seppild, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do We Know How Difficult the Rainfall Problem Is?. In Proc. of the 15th
Koli Calling Conf. on Computing Education Research (Koli Calling ’15). ACM, NY,
NY, USA, 87-96. https://doi.org/10.1145/2828959.2828963

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In CHI Conf. on Human Factors in Computing Systems
Extended Abstracts. ACM, NY NY, USA, 1-7.

Nathaniel Weinman, Armando Fox, and Marti Hearst. 2020. Exploring Challeng-
ing Variations of Parsons Problems. In Proc. of the 51st ACM Technical Symposium
on Computer Science Education (SIGCSE °20). ACM, NY, NY, USA, 1349.
Nathaniel Weinman, Armando Fox, and Marti A. Hearst. 2021. Improving In-
struction of Programming Patterns with Faded Parsons Problems. In Proc. of the
2021 CHI Conf. on Human Factors in Computing Systems (CHI °21). ACM, New
York, NY, USA, Article 53, 4 pages. https://doi.org/10.1145/3411764.3445228
Matt Welsh. 2022. The End of Programming. Commun. ACM 66, 1 (dec 2022),
34-35. https://doi.org/10.1145/3570220

Zihan Wu, Barbara Ericson, and Christopher Brooks. 2021. Regex Parsons: Using
Horizontal Parsons Problems to Scaffold Learning Regex. In Proc. of the 21st Koli
Calling Int. Conf. on Computing Education Research (Koli Calling °21). ACM, New
York, NY, USA, Article 31, 3 pages. https://doi.org/10.1145/3488042.3489968
Rui Zhi, Min Chi, Tiffany Barnes, and Thomas W. Price. 2019. Evaluating the
Effectiveness of Parsons Problems for Block-Based Programming. In Proc. of
the 2019 ACM Conf. on Int. Computing Education Research. ACM, NY, NY, USA,
51-59.

https://doi.org/10.1145/3545945.3569759
https://doi.org/10.48550/arXiv.2206.15331
https://arxiv.org/abs/cs/2206.15331
https://doi.org/10.48550/ARXIV.2210.15157
https://doi.org/10.1145/3373165.3373187
https://doi.org/10.1145/3502718.3524808
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/3213586.3225235
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3279720.3279746
https://doi.org/10.1145/2960310.2960314
https://doi.org/10.1145/3411764.3445292
https://doi.org/10.1145/3564721.3564736
https://doi.org/10.1145/2361276.2361300
https://doi.org/10.28945/1394
https://doi.org/10.1145/3159450.3159576
https://doi.org/10.1145/3501709.3544280
https://doi.org/10.1145/2839509.2844617
https://doi.org/10.1145/2828959.2828963
https://doi.org/10.1145/3411764.3445228
https://doi.org/10.1145/3570220
https://doi.org/10.1145/3488042.3489968

	Abstract
	1 Introduction
	2 Related Work
	2.1 Parsons Problems
	2.2 LLMs and Introductory Programming

	3 Methodology
	3.1 Data: A Body of Parsons Problems
	3.2 Input: Constructing Prompts
	3.3 Evaluation: Static Analysis

	4 Results
	4.1 RQ1: Correctness of Generated Solutions
	4.2 RQ2: Effects of Prompting Variations

	5 Discussion
	5.1 RQ1: Can Codex Solve Parsons Problems?
	5.2 RQ2: Does Prompting Make a Difference?
	5.3 Future Work

	6 Threats to Validity
	7 Conclusion
	References

