
Automatic Generation of Programming Exercises and Code
Explanations Using Large Language Models

Sami Sarsa
Aalto University
Espoo, Finland

sami.sarsa@aalto.fi

Paul Denny
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Arto Hellas
Aalto University
Espoo, Finland

arto.hellas@aalto.fi

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

ABSTRACT
This article explores the natural language generation capabilities
of large language models with application to the production of
two types of learning resources common in programming courses.
Using OpenAI Codex as the large language model, we create pro-
gramming exercises (including sample solutions and test cases) and
code explanations, assessing these qualitatively and quantitatively.
Our results suggest that the majority of the automatically generated
content is both novel and sensible, and in some cases ready to use
as is. When creating exercises we find that it is remarkably easy
to influence both the programming concepts and the contextual
themes they contain, simply by supplying keywords as input to the
model. Our analysis suggests that there is significant value in mas-
sive generative machine learning models as a tool for instructors,
although there remains a need for some oversight to ensure the
quality of the generated content before it is delivered to students.
We further discuss the implications of OpenAI Codex and similar
tools for introductory programming education and highlight future
research streams that have the potential to improve the quality of
the educational experience for both teachers and students alike.

CCS CONCEPTS
• Social and professional topics→ Computing education; •Com-
puting methodologies→ Natural language generation.

KEYWORDS
Natural language generation, OpenAI Codex, GPT-3, CS1, Program-
ming exercises, Code explanations, Robosourcing, Exercise gener-
ation, Resource generation, Automated feedback, Large language
models

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9194-8/22/08. . . $15.00
https://doi.org/10.1145/3501385.3543957

ACM Reference Format:
Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
Generation of Programming Exercises and Code Explanations Using Large
LanguageModels. In Proceedings of the 2022 ACMConference on International
Computing Education Research V.1 (ICER 2022), August 7–11, 2022, Lugano
and Virtual Event, Switzerland. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3501385.3543957

1 INTRODUCTION
Creating an introductory programming course involves designing
course materials, developing assignments, creating feedback oppor-
tunities, and planning out the flow of the course [25]. Providing
opportunities for active learning – that involves both doing and
reflecting – is especially important for learning programming [72].
One particular approach which has gained popularity due to the
wide availability of auto-grading tools that can generate immediate
feedback is the use of many short programming exercises which
students use to develop mastery through regular practice [4, 21, 85].
Such approaches have become so popular that Finnie-Ansley et al.
suggest they may form a signature pedagogy within computing
education [27, 76].

Developing suitable programming exercises involves multiple
facets, including creating problem statements, sample code solu-
tions and automated tests. Creating a sufficient quantity of novel
exercises to form a useful resource is a significant challenge for
educators, and particularly difficult in an age where solutions to
existing exercises are quickly published and shared online. Indeed,
writing good questions and good tests to verify them is a fundamen-
tal challenge [53, 91]. It is thus not surprising that researchers have
explored collaborative approaches to resource generation, such as
crowdsourcing, but these are not free from problems as they suffer
from limitations around student motivation and content quality
[15, 65, 71].

Let us consider a possible problem statement for a programming
exercise that could appear early in a typical CS2 course focused on
object-oriented programming [67]. In this example, the language
is Python and the goal is to familiarize students with the basic
concepts of attributes, methods and method calling, as well as to
practice manipulating built-in dictionaries.

27

https://orcid.org/0000-0002-7277-9282
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0001-6502-209X
https://orcid.org/0000-0001-6829-9449
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957

ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland Sarsa et al.

Write a c l a s s c a l l e d F isherman t h a t i s i n i t i a l i z e d
↪→ with a d i c t i o n a r y o f f i s h , e . g . { " Salmon
↪→ " : 1 0 , " Trout " : 2 0 , " Tuna " : 5 } . The c l a s s
↪→ shou ld have a method c a l l e d ca tch , which
↪→ t a k e s in one parameter , a f i s h name , and
↪→ r e t u r n s the number o f t h a t f i s h caught .
↪→ The c l a s s shou ld a l s o have a method c a l l e d
↪→ throw_away , which t a k e s in a f i s h name ,
↪→ and d e c r e a s e s the number o f t h a t f i s h in
↪→ the d i c t i o n a r y by 1 .

As an example , the code :
f i she rman = Fisherman ({ " Salmon " : 1 0 , " Trout " : 2 0 ,

↪→ " Tuna " : 5 })
f i she rman . c a t ch (" Salmon ")
f i she rman . throw_away (" Trout ")
f i she rman . c a t ch (" Tuna ")
p r i n t (f i she rman . f i s h)

shou ld p r i n t out :
{ " Salmon " : 1 1 , " Trout " : 1 9 , " Tuna " : 6 }

A student that chooses to work on this programming exercise
might produce a solution similar to the following.

c l a s s F isherman () :
d e f _ _ i n i t _ _ (s e l f , f i s h) :

s e l f . f i s h = f i s h

de f c a t ch (s e l f , f i s h) :
i f f i s h in s e l f . f i s h :

s e l f . f i s h [f i s h] += 1
e l s e :

s e l f . f i s h [f i s h] = 1

de f throw_away (s e l f , f i s h) :
i f f i s h in s e l f . f i s h :

s e l f . f i s h [f i s h] −= 1
i f s e l f . f i s h [f i s h] == 0 :

d e l s e l f . f i s h [f i s h]

Once the student submits their solution, they would typically
receive some kind of feedback from the auto-grader. If there is an
error in their code, the student may attempt a line-by-line walk-
through of their solution to help them locate a bug. If they are stuck,
they may reach out to a teaching assistant for help, in which case
the assistant may ask the student to explain their code and jointly
walk through it with them step by step. This type of communica-
tion, similar to rubber-duck debugging, can be an effective way
of exploring one’s own understanding [64]. If the student needs a
great deal of help, the teaching assistant may even help generate an
explanation for them. A stepwise explanation of the above program
might be as follows.

(1) We create a dictionary called fish where we’ll store our fishes
and their quantity.

(2) We create a class called Fisherman.
(3) We create a constructor for the class Fisherman where we

initialize the fish dictionary.
(4) We create a method called catch which takes a fish as a

parameter.

(5) If the fish is already in the fish dictionary, we increment its
value by 1.

(6) If the fish is not in the fish dictionary, we add it and set its
value to 1.

(7) We create a method called throw_away which takes a fish
as a parameter.

(8) If the fish is in the fish dictionary, we decrement its value by
1.

(9) If the fish’s value reaches 0, we delete the fish from the
dictionary.

Generating these types of explanations and jointly helping stu-
dents trace through their own code can take a considerable amount
of time and effort for teachers. This effort grows proportionally with
the cohort size, as does the challenge of developing repositories of
practice exercises that suit the varied learning needs of larger and
more diverse cohorts. This makes the idea of automatically gener-
ating these kinds of materials an exciting prospect. As a matter of
fact, the above programming exercise, its solution, and the code ex-
planation were all generated automatically by OpenAI Codex, which
is a generative NLP model for creating code and code related texts.
In addition to the exercise, solution and code explanation, OpenAI
Codex also generated a suite of test cases for the exercise that could
be used to automatically verify attempted solutions. We discuss the
generation of test suites later in the paper. Given the known difficul-
ties around maintaining the integrity of existing question banks [3],
it is notable that the problem description itself is, as far as we can
tell, entirely novel. At the time of writing, the problem description
returns no relevant matches (using any combination of sentence
fragments from the description) on search engines like Google or
on websites like Chegg or StackOverflow that are frequently used
by students to find solutions from problems statements.

Very recent work by Finnie-Ansley et al. has explored the impli-
cations of OpenAI Codex on programming education, but from the
perspective of assessing the accuracy of source code generated by
the model to solve typical CS1 test and exam questions [27]. This
prior study focused primarily on the challenges that the technol-
ogy poses to educators, including serious academic integrity issues,
over-reliance by novices, and confusion caused by the generation
of incorrect code or code with poor style. In this work we explore
the opportunities that are provided by this new technology. Instead
of focusing on the generation of source code, which is the most
publicized functionality of OpenAI Codex, we primarily investigate
the generation of natural language artefacts – both programming
exercises and explanations of code – that may offer value to both
instructors and students.

RQ1 To what extent are programming exercises created using
OpenAI Codex sensible, novel, and readily applicable?

RQ2 How comprehensive and accurate are OpenAI Codex natu-
ral language explanations of code solutions to introductory
programming exercises?

Our work provides insight into the utility of OpenAI Codex as
one part of the toolbox of a teacher of an introductory program-
ming course and discusses the further potential of such tools. In
this work, we focus on the applicability of OpenAI Codex for the
generation of programming exercises and for creating feedback

28

Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland

Figure 1: Lifecycle of a programming exercise. Teacher cre-
ates programming exercises and learning materials. Stu-
dents study the materials and the exercises, and create ex-
ercise attempts. Students receive feedback on their attempts.
In this work, denoted by the solid arrowswith a robot, we ex-
plore the use of OpenAI Codex for the creation of program-
ming exercises and for providing feedback on students’ pro-
gramming exercise attempts. The dashed arrow with a ro-
bot represents prior work by Finnie-Ansley et al. [27] who
explored how well Codex can solve introductory program-
ming exercises.

from student attempts to programming exercises. Figure 1, which il-
lustrates a simplistic lifecycle for a programming exercise, provides
some context for our contributions.

2 BACKGROUND
2.1 Practice and Feedback in Introductory

Programming Courses
Introductory programming courses around the world interleave
theory and practice, providing students opportunities for learning
how to write programs guided by exercise statements, automated
assessment systems, and course staff. Courses and course assign-
ments are typically written so that they are increasingly complex,
gradually introduce new concepts and seek to avoid overwhelming
students, i.e. seek to avoid cognitive overload [20]. Such a design
can be seen as scaffolding that supports students in their zone of
proximal development [87], that is, their area of skills and knowl-
edge where they cannot yet succeed on their own, but where they
can succeed with guidance. As a student learns, the student’s zone
of proximal development also changes.

The design of programming courses and course assignments
often reflects the idea of deliberate practice [23], which is a system-
atic and purposeful type of practice that focuses on improvement
of performance in a specific task. Continuing deliberate practice is
sustained with grit [19], i.e. passion and perseverance for long-term
goals, even when pursuing those goals feels difficult. Motivation
towards assignments is influenced by the design of assignments;
while very easy assignments have a high expectancy for success,
their utility value is low, and as per expectancy-value theory [69],
students may have little motivation to work with them. Conversely,
assignments that are too difficult also have little utility and can lead
to low motivation [69], and likely contribute negatively towards

feelings of self-efficacy [6]. One practice in teaching introductory
programming courses that has sought to avoid students prematurely
encountering assignments that are too complex is the use of many
small programming exercises which help develop mastery through
regular practice [4, 21, 85]. As students have different backgrounds,
different skills, and differently evolving zones of proximal devel-
opment, each student would likely benefit from a tailored set of
assignments, maybe even with contextual cues tuned to their own
interests. This latter point is supported by prior work in computing
education suggesting that students’ familiarity with the context
of a problem can potentially be helpful [44]. However, such large
exercise pools would be very tedious to develop [53, 91].

In addition to creating programming assignments, teachers often
design feedback opportunities to course assignments. One common
approach for providing feedback in introductory programming
courses is the use of automated assessment systems [2, 35, 60],
which at the minimum provide feedback on the correctness of pro-
gramming assignments submitted for evaluation. As feedback plays
a considerable role in learning [32], in addition to influencing ap-
proaches to learning by simply being offered [86], it should be given
with care; feedback can both improve self-efficacy and decrease
self-efficacy [32]. In general, formative feedback – feedback given
as a part of the learning process – is preferred over summative
feedback, i.e. feedback given after the learning process [40, 77].
In particular, formative feedback can be used to aid self-regulated
learning and metacognition, helping students in becoming better
learners [77].

Classroom practices and the way that programming instruction
is organized also matters [84]. In particular, feedback opportunities
can be included into classroom and lab sessions. For example, both
peer instruction [13] and pair programming [90] create opportu-
nities for reflection. In peer instruction, the reflection is partially
guided by the teacher responsible for the peer instruction ques-
tions, while in pair programming, students interact and reflect on
the program that is being worked on. Students tend to enjoy pair
programming [1] and also learn to reason and explain code.

2.2 Code Explanations and Their Assessment
The ability to reason about code and explain its purpose is a key skill
that novices develop as they gain expertise [56]. The relationship
between a student’s ability to explain code, and related skills such
as code tracing and code writing, have been the focus of much prior
research in computing education [51, 52, 75, 83]. The evidence from
this body of work generally suggests that competence at explaining
code develops after lower-level code tracing skills and before higher-
level code writing skills. This hierarchy forms the basis of a recently
proposed theory of programming instruction by Xie et al. in which
learners first develop the ability to explain the purpose of reusable
code templates before writing code to solve new problems [92].

Assessing both code tracing and code writing skills is generally
straightforward as answers are objective and thus can be readily
automated. Code tracing questions typically ask students to deter-
mine the output or the value stored in a variable after a provided
code block is executed and are often presented in multiple-choice
format [50]. Hassan and Zilles propose a novel ‘reverse-tracing’

29

ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland Sarsa et al.

question format which is non-trivial even when students have ac-
cess to a computer [31], and Lehtinen et al. explored automatically
creating multiple choice questions from students’ own code [43].
A variety of approaches and tools for helping students develop
code tracing skills have also been reported [68, 93]. Code writing
questions require students to produce code from a problem descrip-
tion. Many tools for automatically grading code writing questions
have emerged as institutions shift away from paper-based exams
[57, 81], and look to provide immediate feedback on programming
assignments and tasks [7, 45, 82].

Code explanation skills are less straightforward to assess be-
cause explanations are usually given in natural language and can
be provided at varying levels of abstraction. A popular method for
evaluating code explanation ability is the ‘explain in plain English’
question format, where students are asked to explain the purpose
of a provided code block. This type of question was first studied as
part of the BRACElet project [88], where student responses were
classified by researchers according to the first four levels of the
SOLO taxonomy [8]. The highest of these levels, relational, char-
acterized responses that described at a high-level of abstraction
how the code would behave over all possible inputs. A classic ex-
ample from the BRACElet work is the response “it checks to see
if the array is sorted” for describing code that compares adjacent
elements in an array within a loop [49]. The next highest level, mul-
tistructural, was used to classify responses that gave a line-by-line
description of the code but failed to succinctly state its purpose.
Subsequent research has established a strong correlation between
code writing skills and the ability to construct responses to explain
in plain English questions at the relational level [56]. More recently,
approaches for grading explain in plain English questions on exams
have been explored, including a validated rubric to inform manual
grading [10] and an automated tool which exhibited similar accu-
racy to that of trained teaching assistants [29]. Both approaches,
like the SOLO classification commonly used in research, differen-
tiate between responses at an abstract level and those which are
line-by-line descriptions of the code.

Clearly, the ability to explain the purpose of correct code at an
abstract level is an important skill for novices to develop. However,
when code is incorrect the situation is more complex. For code that
contains bugs, attempts to describe its purpose at the relational
level are premature and will likely not identify the errors. Indeed,
Perkins et al. argue that the ability to read what a piece of code
actually does, rather than what we think it might do on a quick
first inspection, is an important debugging skill [63]. They describe
line-by-line walkthroughs of code as ‘close tracking’, which mir-
rors to some extent the ‘mental simulations’ that Soloway argues
should be taught explicitly to students [79]. Therefore it is pos-
sible that multistructural explanations of code, at a line-by-line
level, may provide some benefit for the purposes of debugging.
Given that code walkthroughs can be mentally demanding, being
presented with an explanation of one’s own code may reduce the
cognitive demands associated with debugging [55] and evidence
from other educational domains suggests that being presented with
explanations produced by others can improve learning [89]. Within
computing education, techniques like pair programming [30] and
misconception-based peer feedback [39] provide some opportu-
nities for walking through code with others, but are not always

feasible and may not be suitable for individual student assessments.
Therefore, the automatic generation of code explanations, particu-
larly for supporting student debugging, is an attractive idea and one
which is made feasible with the introduction of tools like OpenAI
Codex.

2.3 Machine Learning Models for Code
Generation

Recently, there has been great progress on generative natural lan-
guage models, such as OpenAI’s GPT-3 [9], that are capable of
generating text that can be hard to distinguish from text written by
humans [9]. These are deep learning models and their performance
relies on both a vast number of parameters for the models (175
billion in the case of GPT-3) as well as an extensive corpus of text
for training (570GB of text for GPT-3). Codex [11], also by OpenAI,
is a GPT-model similar to GPT-3 but has been fine-tuned using
publicly available code from GitHub with the goal of translating
natural language to source code and vice versa, and to generate or
auto-complete source code given source code as input.

In addition to OpenAI’s Codex, other generative machine learn-
ing models capable of generating natural language from source
code and/or vice versa have been developed. One of the earliest
such models is Microsoft’s CodeBERT [26]. CodeBERT has been
trained with natural language - programming language pairs and
is capable of generating source code documentation automatically
similar to Codex. Another recently presented model is DeepMind’s
AlphaCode [48], which is capable of performing on par with a
median competitor when presented with problem prompts at the
programming competition level.

These recent models have multiple applications. One that has
been proposed is to help programmers fix insecure code. Pearce
et al. [61] analyzed the performance of Codex and similar models
for repairing source code containing security flaws and found that
through providing a carefully constructed prompt for the model,
they were able to patch security issues in programs in some cases.
Another study by Pearce et al. [62] analyzed the possibility of uti-
lizing Codex for reverse engineering. In their study, they provided
Codex decompiled code and prompted Codex to explain the purpose
of the code. Their results indicated that there is some potential in
utilizing models such as Codex for reverse engineering as slightly
over half of the questions authors asked were answered correctly.
However, they suggest there is a need for ongoing work, and pro-
pose fine-tuning the model by providing it context-specific training
data (in their case, decompiled source code).

Finally, relevant to the current paper, very recent work in the
domain of mathematics has shown that large language models can
successfully solve and generate new problems [17]. Interestingly,
in order to solve the mathematics problems, the authors use Codex
to generate code-based solutions from natural language prompts
which are then executed in order to perform the calculations.

2.4 Potential of Codex in Computing Education
The most common use case for Codex is generating new code
from either a provided code fragment or from a natural language
description of a problem. GitHub Copilot, which is an editor plug-
in that is powered by OpenAI Codex, promises to generate code

30

Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland

suggestions “for whole lines or entire functions right inside your
editor”. Indeed, the tagline for Copilot is: “your AI pair programmer”.
A developer using this plug-in would typically receive real-time
code suggestions as they are typing, or would explicitly provide
a natural language description (for example, as a code comment)
and then receive more comprehensive suggestions, such as entire
functions, almost immediately. In many cases, multiple suggestions
are provided which the developer can simply cycle through and
accept or reject.

This code-generation use case could be applied productively
in several ways in computing education contexts. For example,
as model solutions have been proposed as a support mechanism
in introductory programming [58, 59], students could generate
model solutions with Codex for historical assignment, test and exam
problems, where solutions may not otherwise exist. They could
also generate alternative correct solutions for a problem they have
solved, to reflect on their own solution and to compare different
algorithms and language constructs. As the accuracy of Codex
improves over time, introductory computing pedagogy may shift
away from low-level coding and towards problem decomposition
and problem solving.

However, Codex is not limited to code-generation tasks, and can
generate natural language output from code-based or prose-based
input. In the current paper, we explore how this capability can be
used to support two novel use cases that relate to the programming
exercise lifecycle (see Figure 1). The first of these relates to the
generation of programming exercises by the instructor. Given an
existing exercise as input, we explore whether Codex can generate
novel variations of the exercise that could then be deployed to
students. The second of these relates to the generation of feedback to
students. Given source code as input, we explore whether Codex can
produce useful natural language feedback on that code, particularly
in terms of helping students detect bugs prior to submission for
grading. In general, the use of a tool like Codex to generate practice
problems for computing students in various formats, and to provide
useful feedback to students on their progress on those problems,
appears to offer great potential.

In the context of programming education, Finnie-Ansley et al. [27]
studied the potential of Codex for solving introductory program-
ming assignments. They found that Codex was able to correctly
answer most introductory programming problems and that when
given typical exam questions, Codex performed better than the av-
erage student. The authors note that considering the performance
of Codex, and especially that the progress in this area has been
rapid, there are clear consequences for introductory programming
courses. For example, when models such as Codex that are capable
of performing well on programming assignments become more and
more common, it becomes increasingly easy for students to use
these models to write code for them, essentially engaging in a new
type of plagiarism, which might require the utilization of process-
based plagiarism detection [33, 46, 54]. While Finnie-Ansley et al.
focused mostly on potential challenges Codex-like models will in-
troduce to introductory programming classrooms, our focus in this
article is exploring potential opportunities these models can provide
in programming education.

3 METHODOLOGY
3.1 Using Codex
Similar to OpenAI’s GPT-3 models, Codex can be used both pro-
grammatically through an API or through a web-UI. The user pro-
vides a priming, i.e. a prompt, to Codex as input and Codex gener-
ates new content as output based on the given priming. For example,
given a natural language description of desired behavior, Codex
will often generate source code for a program that provides that
functionality.

For generating content, a custom “stop sequence” can be speci-
fied, which causes the generation of text to stop upon creating such
a sequence. Other relevant options that we leveraged in this study
include maximum token count that controls the length of the gen-
erated content and “temperature” that controls the “creativity” or
“randomness” of the model. A lower temperature value will further
reduce the chances of the model generating less probable tokens,
reducing randomness in the creation process. With any tempera-
ture value, however, the model is not deterministic and there can
be differences in the created content between runs, although this is
more common with higher temperature values.

Since the priming given to Codex primes the model on what
content should be generated, in addition to generating code, we can
for instance prime Codex with an existing programming exercise
and some context related words. This guides Codex to try and create
content similar to the priming, which in this case would be a similar
exercise but with a specified context. For reference, considering e.g.
the natural language model GPT-3 (which Codex is based on), using
a priming about dogs will likely lead to output related to dogs.

3.2 Creating Programming Exercises and Code
Explanations

3.2.1 Choosing inputs for Codex. For the purposes of the analyses
in this article, we selected a small set of exercises that have been
featured in computing education research and that are often used
in the teaching contexts of the researchers, who use the many small
exercises approach [4]. We focused on four programming exercises:
1) a variant of the speeding problem [83] where students work
with conditionals and returning values, 2) a variant of FizzBuzz [5]
where students work with conditionals and lists, and study the
importance of ordering of conditional statements, 3) a variant of
the Rainfall Problem [80] that has been a recurring problem in
computing education research [28, 74], and 4) a currency converter
application used in our contexts where students work with objects,
methods, and dictionaries. A sample solution for each of the four
programming exercises is shown in Appendix A.

Since OpenAI Codex has primarily been evaluated with the
Python programming language in prior work [11] and reportedly
works best in Python1, all of our exercises that we use to prime
OpenAI Codex are in Python. In our explorations, we used the
code-davinci-001 Codex model, which was the most capable (al-
beit slowest) version when these experiments were conducted.

3.2.2 Creating programming exercises. We explored a range of
priming approaches for creating programming exercises. In the

1As noted in the OpenAI Codex Beta documentation, last accessed 2022-03-25:
https://beta.openai.com/docs/engines/codex-series-private-beta

31

https://beta.openai.com/docs/engines/codex-series-private-beta

ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland Sarsa et al.

end, the priming that we found most reliable for creating new
programming exercises contained a problem description, a sam-
ple solution, and automated tests. In addition, we explored adding
programming-related concepts (e.g. conditional, loop) and contex-
tual concepts (e.g. hiking, fishing) to the priming. In general, we
observed that introducing concepts led to OpenAI Codex taking
these into account when creating programming exercises, although
the programming exercises created without the concepts were also
meaningful. To see how these primings are formatted, refer to
Appendix B. In addition to the examples in Appendix B, when pro-
viding the samples as an input to Codex, the samples were suffixed
with a stop sequence ("""). After the stop sequence, the priming
included the text “Exercise 2”, the concepts desired in the created
exercise and the identifier for the problem statement (--Problem
statement--). An example of a complete priming (i.e. the input to
Codex) and one example of the corresponding output generated by
Codex can be found in Appendix C.

We generated exercises using the two priming exercises in Ap-
pendix B, varying both the programming-related concepts and the
contextual concepts (see Table 1). Using a total of nine contextual
concepts (and an extra for leaving out the contextual concept) and
two programming-related concept sets (and an extra for leaving
out the programming-related concepts), we generated a total of
10×3×2 = 60 different combinations of inputs (contextual concepts
× programming-related concept sets × exercise primings). In addi-
tion, we explored two values for Codex’s temperature parameter (0
and 0.75) and created two exercises for each parameter combina-
tion. In total, this led to a sample of 60 × 2 × 2 = 240 programming
exercises.

3.2.3 Creating code explanations. Similar to creating programming
exercises, we explored different types of priming approaches for
creating code explanations. We identified three types of primings
that led to different types of code descriptions: 1) a high-level de-
scription of the code, 2) a problem statement-like description of the
code, and 3) a step-by-step explanation of the code. In this work,
we focus on the last code explanation type, i.e. the step-by-step
explanation of code, as it aligns with the multistructural level of the
SOLO taxonomy and is often produced by students when prompted
to explain code [52].

In our experiments, using a priming that consisted of the source
code, followed by a stop sequence and the text “Step-by-step expla-
nation of the above program:”, and a number one followed by a dot,
tended to produce step-by-step explanations. As an example, the
priming for a simple “Hello world!” program would look as follows:

p r i n t (" He l l o world ! ")

" " " Step −by− s t e p e x p l a n a t i o n o f the above program :
1 .

With the above priming, Codex would create a step-by-step
explanation of the code print("Hello world!"). For the step-
by-step code explanation analysis, we created five explanations
for each of the four programming exercise sample solutions in
Appendix A, leading to a total of 20 code explanations. Since we
were interested in precise explanations instead of creative ones, we
used the temperature value 0 to generate each of the explanations.

3.3 Evaluation
3.3.1 Programming exercises. The evaluation of the programming
exercises was conducted as mixed-methods research, where the
exercises were evaluated both qualitatively and quantitatively.

In the qualitative analysis, we focused on a random sample of 120
programming exercises. Our focus was on the sensibleness, novelty
and readiness for use of the created programming exercises, as
outlined in RQ1. When assessing sensibleness, we study whether the
programming exercise represents a sensible problem for students –
does the problem statement describe a practical problem that could
be given to students to solve? When assessing novelty, we study
whether the verbatim copy of the programming exercise or a similar
programming exercise already exists and can be found online (we
used both Google and GitHub for searching). Related to novelty, we
also examine the topicality of the exercises – how are the different
priming concepts accounted for in the created exercises? When
assessing readiness for use, we consider the amount of manual work
a teacher would have to make to the exercises and the associated
sample solution and tests.

The qualitative analysis was conducted by four researchers, who
first practiced the assessment of sensibleness, novelty, and readi-
ness for use jointly, discussing identified issues and corner cases.
The analysis was conducted individually using the rubric outlined
in Table 2, where each researcher worked on a subsample of the
programming exercises, and assessed the focused items with Yes /
No / Maybe statements and added notes whenever needed. All the
answers with Maybe were then jointly analyzed by at least two
researchers working in tandem to form a consensus on whether
they should be considered as Yes or No.

We then quantitatively analysed the Yes / No / Maybe answers
and report and discuss the results. For the quantitative analysis,
we explore three further questions related to the readiness of use
of the exercises, which were calculated from the total body of 240
programming exercises. These questions are outlined in Table 3
and the answers to the questions were obtained programmatically;
1) we tested whether the sample solutions could be run, 2) tested
whether the sample solution passed the automated tests, and 3)
checked for the statement coverage of the automated tests2.

3.3.2 Code explanations. Similar to the generated exercises, we
analyzed the capability of Codex for generating natural language
explanations of code samples typically seen in introductory pro-
gramming classes.

We analyzed the 20 generated code explanations by inspecting
what kinds of mistakes were present and how common they were
in the explanations for the different priming programs. When an-
alyzing the code explanations, we answered the question “Are all
parts of the code explained?” (Yes / No) and counted the proportion
of correctly explained lines out of all the generated explanation
lines.

It was feasible for all four researchers to collaboratively assess all
of the explanations under evaluation. We discussed each generated
explanation in turn, and developed a shared understanding of what
it meant for a single line within an explanation to be correct. We
decided to be rather strict in our assessment so as to not artificially
2Analysis of statement coverage of automated tests was conducted using Coverage.py
version 6.3.2 (https://coverage.readthedocs.io/).

32

https://coverage.readthedocs.io/

Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland

Table 1: Keywords used for priming exercise generation. The programming-related concepts are placed in two sets to reduce
the number of possible combinations.

contextual concepts programming-related concept set 1: “function” programming-related concept set 2: “class”

hiking, fishing,
relationships,
football, music,
health, ice hockey,
books, cooking

function class
parameters list
dictionary list comprehension
dict comprehension conditional
arithmetics

Table 2: Manual assessment rubric

Aspect Question Options

Sensibleness Does the problem statement describe a sensible problem? Yes / No / Maybe
Novelty Are we unable to find the programming exercise via online search

(Google and GitHub) of the problem statement?
Yes / No / Maybe

Readiness: problem and solution Does the problem statement match the model solution? Yes / No / Maybe
Topicality: function / class Is the problem statement about a function or class when that concept

is provided as a priming concept?
Yes / No / Maybe

Topicality: list / dictionary Does the problem statement incorporate a list or a dictionary when
that concept is provided as a priming concept?

Yes / No / Maybe

Topicality: context Does the problem statement topic match the given context priming
concept?

Yes / No / Maybe

Free-form notes Notes Free-form text

Table 3: Automated assessment rubric

Aspect Question Answer

Readiness: solution runnability Can we run the sample solution without errors? Yes / No / NA
Readiness: solution and tests Does the sample solution pass the unit tests? Yes / No / NA
Readiness: test coverage To what extent do the unit tests cover the model solution (statement

coverage)?
0 to 100% / NA

report stronger results, and required the language in each line to
be precise. For example, we judged an explanation to be incorrect
if it stated “less than or equal to x” where the corresponding code
was checking “less than x”. Similarly, if there was ambiguity as to
whether the “else” part in the explanation of an “elif” was accounted
for, we deemed that to be incorrect. For example, in a FizzBuzz
program, a line such as “elif number % 3 == 0:” would be classified
as incorrect if the explanation of the line began directly with “if
the number is divisible by 3” and did not attempt to qualify the
description with “otherwise” or a similar phrase to denote its logical
relationship to the matching “if”. We chose to be lenient only in the
case where explanations did not explicitly mention the initialization
of variables, even though it could be argued that thismay be relevant
in a comprehensive explanation.

4 RESULTS
4.1 Programming Exercises
In total, we randomly selected and evaluated 120 of the 240 pro-
gramming exercises created by OpenAI Codex. Evaluating the pro-
gramming exercises included assessing their sensibleness, novelty,
readiness, and also marking down any additional notes during the
process. In addition, for all of the 240 programming exercises, we
programmatically assessed whether the sample solutions could
be run, whether the automated tests passed, and calculated the
statement coverage of the automated tests.

The statistics for sensibleness, novelty, and readiness of the eval-
uated programming exercises are presented in Table 4. Of these,
75.0% were sensible, 81.8% were novel3, and 76.7% had a matching
sample solution. The free-form notes mostly discussed issues which
included existence of redundant information, missing information,
missing or incorrect values in sample inputs and/or outputs (some

3Note that by our definition of novelty, non-sensical problem statements are rather
certainly classified as novel.

33

ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland Sarsa et al.

Table 4: Summary of the manually evaluated programming exercises. An exercise is sensible if the requirements are described
clearly within a context that makes logical sense, novel if the exercise description returns no valid matches when used as the
input for a search using Google or GitHub, and has a matching sample solution if the generated code solution matches the
description.

Exercises Sensible Novel Matches sample solution Matches priming topic Matches priming concept Matches priming concept
function/class list/dictionary

120 75.0% 81.8% 76.7% 79.2% 78.3% 75.8%

Table 5: Summary of programmatic analysis of generated programming exercises

Has sample solution? Can run the sample solution? Has tests? All tests pass? Test coverage

Percentages 84.6% 89.7% 70.8% 30.9% 98.0%
n out of N 203 / 240 182 / 203 1701 / 240 51 / 1651 482 / 51
1Five of the generated exercises contained --Tests-- but not --Sample solution-- (needed for automated extraction of the content parts)
2The n out of N for test coverage is counted as the number of full coverage (100%) cases out of the number of all test suites that did not
fail (i.e. when coverage can be computed)

of the problem statements featured sample inputs and outputs), dis-
cussed mismatches between the problem statement and a sample
solution, and outlined reasons for why the automated tests would
not pass.

The statistics for the programmatic analysis that was conducted
on all of the 240 created programming exercises are presented in
Table 5. Out of the 240 programming exercises, 2034 had a sample
solution (84.6%). From the 203 sample solutions, 182 (89.7%) could
be executed (i.e. running the code did not produce any errors). A
total of 1704 programming exercises had automated tests, while 165
programming exercises had both a sample solution and automated
tests. From these 165 programming exercises, 51 had a sample
solution that passed the automated tests. Out of the 51 programming
exercises with a working sample solution and automated tests,
48 had a 100% statement coverage, and the statement coverage
averaged over all the 51 programming exercises was 98.0%. When
inspecting the notes for the exercises with automated tests that
did not pass the tests, we observed that the most common issue
was not related to the code logic, but in how the outputs were
handled. In those cases, the sample solution printed a value, while
the automated tests expected that the sample solution would return
a value (e.g. the tests called a function and expected that the function
would return a value, but the function printed a value). We note,
of course, that a confusion between printing and returning values
is a commonly cited error made by novices [24, 36]. In addition, a
common issue was that the tests expected specific numbers that
were not possible with the inputs (e.g. checking whether a program
correctly extracted and returned a list of even values from a list
received as a parameter, a test provided the list [1, 2, 3] as an
input to the function and expected that the function would return
the list [2, 4]).

In the programmatic analysis results on readiness, presented in
Table 5, we see that around 90% of the time the generated sample
solutions are valid runnable code, tests are generated and auto-
extractable roughly 70% of the time, while only around 30% percent

4The actual count is slightly higher, since this value is computed from programmatically
extractable content (requires the relevant keyword wrapped with double dashes “--”
from priming in the generated content).

of the generated solutions pass the tests (this requires both a sound
solution and sound tests). Surprisingly enough, when there are
passing generated tests, on average we got 98% test coverage and
48 out of the 51 passing test sets covered 100% of the sample solution
statements. Further, we noted that in multiple cases only minor
tweaks would have been necessary to transform failing tests into
passing ones. In the cases where tests were missing, we could
simply add the generated exercise to the initial priming and the
tests would likely be generated on a “second” run (we tested this
behavior directly when exploring the output).

4.2 Code Explanations
A total of 20 code explanations created by OpenAI Codex from the
source code available in Appendix A were jointly analyzed by the
researchers. When evaluating the code explanations, we studied
whether all parts of the code were explained, and whether each line
was correctly explained. Table 6 provides statistics for the analysis.
From the 20 code explanations, 90% explained all parts of the code.
In total, the code explanations had 174 line-by-line explanations,
out of which 117 were correct (67.2%).

The incorrect explanations were mostly related to incorrect ex-
planation of comparison and branching conditionals, e.g. Codex
often explained speed > 100 as “if speed is less than 100” or elif
number % 3: as “if number is divisible by three”. We consistently
found these problems in each of the explanations generated for
two of our four code samples used for priming explanations. An-
other recurring, although less persistent, incorrect line was one
that included the phrase “program ends if user inputs” when in
actuality, a while loop was ended and the program still executed
remaining lines after the while loop. Notably, for the fourth of our
priming codes, the one which contained a currency converter class
and usage of the class, none of the five generated explanations
contained incorrect lines and the explanations covered every part
of the program.

34

Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland

Table 6: Code explanation results

Code explanations All parts of code explained Total lines Lines correctly explained

20 90% 174 117 (67.2%)

5 DISCUSSION
5.1 Programming Exercises
Most of the generated exercises appeared to be both sensible and
novel, and included a sample solution that could be executed. Much
less impressive was the quality of the test suites and the perfor-
mance of the code against those tests. Only around 70% of exercises
included tests at all and of those, the set of tests passed successfully
in less than a third of cases. However, in practice, it may be possible
to address this shortcoming in two ways. Firstly, we tasked Codex
with generating all parts of the programming exercise in a single
output step. OpenAI’s demonstration of Codex illustrated particu-
larly good performance when working interactively with Codex,
and prompting it step by step5. Therefore, we may have had better
success in generating good test cases by explicitly prompting for
them. This could be achieved by providing a problem description
and a sample solution as input to Codex, and priming it to gen-
erate only the tests. We tested this in practice by using Codex to
successfully create tests for a handful of programming exercises
that were created with Codex. Secondly, given that it is possible to
automate the verification of tests by running the sample solution,
simply regenerating an output repeatedly until a set of successful
tests is produced could be a valid strategy in practice.

While our main focus in this paper has been on the generation of
exercises and their readiness for use, we believe there is value even
in those exercises that have room for improvement. In particular,
they may provide inspiration to instructors who can easily mod-
ify the problems by hand, and they could even form the basis for
new kinds of student activities. For example, many educators will
appreciate removing some of the frustration of needing to write
‘yet another’ practice problem or exam question, and this has led
to some community work around sharing programming exercises
[22, 34]. The ease with which novel exercises can be generated with
a tool like Codex, even if the resulting exercises are not used verba-
tim, can help instructors brainstorm ideas quickly and overcome
the computing educators’ version of writer’s block. After all, modi-
fying an existing programming exercise is easier than writing one
from scratch. Another issue that we observed, even in generated
exercises that were novel, sensible and had tests, was that they were
sometimes under-specified. That is, the problem description did not
explicitly specify how boundary cases should be handled. A good
example of this is the ‘Fisherman’ class that is shown at the very
start of this paper. The problem description does not state what
should happen if the count for a particular type of fish reaches
zero when the throw_away() method is called. In this case, the
sample solution to the problem provides the answer, which is that
the fish type should be removed from the dictionary (rather than
remaining and being displayed with a value of zero). Such problems
may provide a good starting point for student discussions around

5https://openai.com/blog/openai-codex/

program testing, and could form the basis for new tasks where
students must improve problem specifications.

One aspect of the exercise generation that we found particu-
larly surprising was how well the contextual concepts and the
programming related concepts were incorporated into novel prob-
lem descriptions. Table 7 shows the problem descriptions for two
of the exercises that were generated with Codex. Each exercise was
generated from a different programming prime (see Appendix B)
but bear little resemblance to those primes. The generated problem
statements were not just trivial variations (such as grammatical
changes) of the priming exercises but were materially different
and incorporated the contextual themes quite naturally, such as
computing a list of friends or calculating the elevation change of
a hiker for the ‘relationship’ and ‘hiking’ themes respectively, as
shown in Table 7. Exercises generated using the contextual theme of
‘books’ included test cases involving popular titles and authors such
as ‘Ender’s Game’, ‘Rainbow Six’ and ‘J.R.R. Tolkien’, the theme
‘football’ resulted in tests involving ‘Lionel Messi’ and ‘Cristiano
Ronaldo’, and the theme ‘health’ resulted in exercises where smok-
ing cigarettes and eating apples were contrasted as unhealthy and
healthy activities, respectively.

This ability to automatically contextualize problem statements
may have useful applications in practice. For teachers, it offers the
potential to generate programming exercises that target specific
constructs and require certain kinds of solutions. For students,
prior work exploring the problem description effect in computing
education has shown that a familiar context within the narrative of a
problem statement might have a positive effect on performance [44].
It is not possible for a teacher to select appropriate contexts that
are both familiar and of interest to all students, especially given
the diversity of backgrounds in large first-year cohorts. Our results
suggest that it may be possible for individual students to provide
their own keywords and have tailored exercises generated for their
personal use, possibly using teacher created exercises as primes.
Exploring this in more detail, and in particular collecting students’
thoughts on the suitability of tailored questions compared to more
generic sets of problems, is a fascinating avenue for future work.

5.2 Code Explanations
In this paper, our investigation of code explanations generated with
Codex focused on line-by-line descriptions of code. As discussed in
Section 2.2, these kinds of descriptions align with the multistruc-
tural level of the SOLO taxonomy and are commonly produced by
students when asked to explain code, especially lower performing
students who stand to benefit the most from some help with code
explanation and reflection [52]. The Codex generated explanations
were quite thorough in that all essential parts of the code were
usually addressed in the explanation, but they often contained mi-
nor inaccuracies. This does raise questions about the utility of the
explanations for helping students understand or debug their own

35

ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland Sarsa et al.

Table 7: Examples of problem statements where contextual concepts (relationships and hiking) and programming concepts
(class and function) have been successfully incorporated. The source code for the primes (‘speeding_check’ and ‘Converter’)
can be found in Appendix B. Whitespace and other structural formatting has been removed for space reasons.

Prime: ‘speeding_check’ Prime: ‘Converter’
Contextual concept: ‘relationships’ Contextual concept: ‘hiking’
Programming concept: ‘class’ Programming concept: ‘function’

Write a class called Person that has a list
of friends. It has methods to add a friend
and remove a friend. Write a function called
find_pals that takes a single parameter called
person and that will list the friends of this
person. Use the Person class to create two
persons and add friends to them. Print out
all friends of the first person.

Write a function called hiking called with these parameters: ‘elevation_chart’ is a dictionary containing the
elevation in meters of various locations in the world; ‘path’ is a list of tuples, where each tuple contains
two names (strings) of locations in the chart. The first name is the location where the path starts and the
second name is the location where the path ends; ‘uphill_hiking’ is a number that represents how much
the hiker is willing to walk up hill. In other words, it is the maximum percentage of an elevation that the
hiker is willing to climb; ‘downhill_hiking’ is a number that represents how much the hiker is willing to
walk down hill. In other words, it is the maximum percentage of an elevation that the hiker is willing to
climb. The function should compute the total vertical distance traveled by the hiker on the path and return
the distance in meters.

code. However, as a prompt for a discussion between a teaching as-
sistant and a student, the generated explanations may still provide
a useful starting point. Other kinds of technological scaffolds for
supporting sit-down conversations between students and teachers,
such as the Pensieve tool [94], have proven valuable.

We explicitly primed Codex to produce multistructural level
explanations using a prompt that asked for a ‘step-by-step explana-
tion’ of the code and ended with the initial enumerated list item (i.e.
‘1.’). An interesting related question is the extent to which Codex
can generate higher-level explanations, at the relational level of
the SOLO taxonomy, that successfully abstract the purpose of the
code. When experimenting with many other kinds of priming state-
ments for generating the explanations, we found that Codex very
rarely provided high-level descriptions. This supports the findings
of Kojima et al. who found that large language models seem to
perform better in reasoning tasks when priming them to “think
step by step” [42]. Even a very explicit prompt, such as “A high-
level description of the above program:”, would still usually result
in a line-by-line explanation being produced. An example of this
is the following explanation generated in response to the ‘speed-
ing_check program’, which also illustrates a subtle error in that
the cases where the input is equal to 120 or 100 are not correctly
accounted for:

• The speed_check function checks the speed of the car and
returns the required result. The function first compares the
speed value with 120, and if the value is more than 120, it
returns “You are fined for $200”. If the speed value is more
than 100 but less than 120, it returns “You are fined for $100”,
and if the value is less than 100, it will return “All good, race
ahead”.

We occasionally observed responses that were at a more ab-
stract level. Several examples are illustrated in Table 8. Examples
A and B show relational level responses to the ‘speeding_check’
and ‘fizz_buzz’ prompts. Example C includes some interesting back-
ground information on the FizzBuzz problem. Example D is non-
sensical output that was generated once in response to the Rainfall
problem prompt.

5.3 Future Work
We see great potential for future work utilizing Codex and other
similar models in the context of programming education. Given the
positive results we have observed in terms of programming exercise
generation, we are interested in developing an automated exercise
generator powered by Codex that could be used by instructors.
The tool could provide a validation layer on top of Codex enabling
teachers to filter out any questions that do not include valid sample
solutions or a comprehensive set of accurate tests. In the current
work, our focus was on introductory programming exercises, but
it would be interesting to explore the generation of exercises of
greater complexity. For example, investigating whether Codex is
capable of generating accurate specifications for larger assignments
or projects, or for those that relate to more advanced computing
concepts.

With respect to the code explanations, future work should ex-
plore whether these could be used as the basis for generating
multiple-choice questions related to the student’s own code, simi-
lar to prior work [43], which could serve as a reflection task. For
example, one could create an explanation of the student’s program
as well as several other explanations for slight modifications to this
program, similar in methodology to mutation testing [38] (e.g. with
relational operators flipped). This set of explanations could then be
shown to the student, with their task being to select the explanation
that best matches their code. In a similar vein, the explanations
created with Codex could be turned into Parsons problems [18],
for example where each line of a line-by-line explanation is pre-
sented to the student in a randomized order for them to unscramble.
Although we did observe inaccuracies in the code explanations gen-
erated in this study that may constrain such ideas for now, models
like Codex are likely to continue to improve over time.

In this work, we qualitatively analyzed the code explanations
created with Codex. Future work should explore how such explana-
tions could be used by students in practice, for example, by having
students assess the quality and usefulness of the created explana-
tions. One instructional approach that has become increasingly
common in computing education is learnersourcing [41] where
students participate in the creation and evaluation of course ma-
terials such as questions and exercises (see e.g. [14, 16, 47, 65]).

36

Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland

Table 8: Examples of uncommon code explanations produced in response to the speeding_check (A) and FizzBuzz (B, C) prob-
lems. (D) is an example of a nonsensical explanation of the Rainfall problem.

A Takes the input of the speed of the car. Checks the speed and prints a fine according to the speed of the driver

B is a simple program that checks if a number is divisible by 3, 5, or both.

C This program is a variation of the FizzBuzz which is a popular coding challenge. It can be found here: https:
//blog.codinghorror.com/why-cant-programmers-program/. The above program reads an array of integers, performs
an if-else conditional check on the numbers and prints the result

D Has many global and local variable lookup. Has an initial and final node. Has a number of variables, like variable
names, that are used to access the values and are used to group the list of methods.

For example, the Quizius tool described by Saarinen et al. has stu-
dents contribute questions to a repository, and their answers are
used to produce statistical estimates of the prevalence of topic
misconceptions [70]. A novel approach to learnersourcing could
have students focus on evaluating Codex-created artefacts. We en-
vision a new type of learnersourcing we coin “robosourcing”, where
Codex-like machine learning models are used to automatically cre-
ate artefacts similar to traditional crowdsourcing, but where these
“robosourced” learning materials are then evaluated by students.
This would address one of the major challenges related to the use
of learnersourcing which is that students tend to be much more
inclined to use and evaluate resources created by others than they
are to create resources themselves [66, 78].

There are also obvious applications of Codex that we did not
evaluate in this work, that have important implications for com-
puting education. In particular, the real-time auto-completion and
auto-generation of existing source code. One potential use of Codex
in programming education could be a tool similar to GitHub Copi-
lot6 which presents students with hints or suggestions on code
improvements. The tool could enable an instructor to tune this
feedback in a way that is suitable pedagogically, rather than un-
leashing the full power of these tools on students. This avenue of
research maps to the Student → Attempt pathway on the model
we present in Figure 1.

Lastly, the combination of GPT-3 and Codex could facilitate the
whole course material creation process. To be clear, we believe it is
unlikely that large language models such as GPT-3 and Codex could
fully replace teachers as the creators of learning material. However,
as the development in natural language processing is rapid and the
capabilities of themodels are still improving, it is possible that in the
near future an instructor could expedite the creation of both textual
materials and programming exercises through carefully constructed
prompts to these models, where the output of the models would
need only minor changes before being published to students.

5.4 Threats to Validity
There are some threats to the validity of this work which we discuss
here. Firstly, regarding our qualitative analysis of the Codex-created
programming exercises and code explanations, we had a relatively
small set of created examples, and we explored only a relatively
few different types of prompts: four different exercises for code
explanations, and two different exercises as prompts when creating

6https://copilot.github.com/

new exercises. It is possible that different prompts could have led
to outputs of different quality, and an evaluation of a wider variety
of inputs is warranted.

Additionally, in our qualitative analysis of the created program-
ming exercises, we did not calculate an inter-rater reliability. How-
ever, the researchers worked closely together on a subset of the
evaluations and discussed all unclear cases, partly addressing this
concern.

When considering the novelty of the created programming exer-
cises, we searched both Google and GitHub for possible matches. It
is possible that this analysis misses some sources such as password-
protected sites that are not indexed by Google. It is also possible
that some repositories that were used by Codex during training
(and fromwhich Codex could technically produce verbatim content)
may have been deleted or made private between the time Codex
was fine-tuned and our analysis. However, we consider this possi-
bility very remote [12]. In addition, our definition of novelty mostly
relied on the exercises being novel in the sense that they are not
direct copies of existing exercises. Future work should study nov-
elty with a more broad definition, for example, studying whether
Codex combines programming concepts in novel ways.

One potential issue related to the generalizability of our results
is that we focused on creating programming exercises and code
explanations in English. It may be that the creation of these in lan-
guages other than English is harder (e.g. that the created exercises
are more likely to be nonsensical). To address this concern, we
conducted a brief exploration of how well Codex can create exer-
cises in Finnish, a language with approximately 5.8 million native
speakers and which is the first language of three of the authors.
Based on this brief exploration, the created exercises were sensible
and the language in the accompanied text (e.g. problem statement)
was generally good.

When considering the performance of Codex at solving pro-
gramming problems [27], a question that might arise is whether
any value added by this tool for the instructor will immediately be
negated by its use by students for plagiarism. However, students will
be able to use these types of models regardless of work exploring
potential benefits. Additionally, other fields such as mathematics
and physics have suffered from the problem of automatically solv-
able exercises for decades [37] – it is also a common practice in such
disciplines to provide solutions to problems at the end of textbooks.
Being able to solve exercises automatically or having solutions
available does not prevent those who want to learn from doing so.

37

https://blog.codinghorror.com/why-cant-programmers-program/
https://blog.codinghorror.com/why-cant-programmers-program/

ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland Sarsa et al.

We acknowledge that large language models have been shown
to suffer from similar biases to humans [73]; this is to be expected
as they have been trained with human-generated data. Thus, it is
possible that, for example, using these models for creating exer-
cises could lead to exercises that perpetuate biases. We believe the
human-in-the-loop approach is essential in order to moderate such
biases when utilizing large language models to generate learning
materials.

Lastly, we mostly analyzed the created exercises through the lens
of the “many small exercises” pedagogical approach, and did not,
for example, explore the creation of larger programming exercises.
Thus, whether Codex is applicable in contexts with larger exercises
remains unknown. Similarly, we only studied Python exercises – it
is possible that Codex is not as proficient in creating new exercises
in some other programming languages as it has been reported that
Codex is most proficient in Python7.

6 CONCLUSION
In this work, we explored to what extent OpenAI Codex could 1)
support instructors in creating programming exercises and 2) gen-
erate useful explanations of source code. We studied this through
two research questions which we answer as follows:
RQ1: To what extent are programming exercises created using

OpenAI Codex sensible, novel, and readily applicable?
A: We found that the majority of the programming exercises

created by Codex were sensible, novel, and included an ap-
propriate sample solution. Additionally, we observed that
both the programmatic topic as well as the contextual topic
of the created exercises could be easily influenced. This re-
sult suggests that Codex could indeed be a useful tool for
instructors to facilitate the exercise creation process. We
did, however, observe that the programming exercises were
rarely in a state where one could directly – without any
adjustments – add them to a course. In particular, problem
statements did not always discuss corner cases and many
exercises lacked tests or had faulty tests. We see that the
corner cases could be easily added by a teacher, or adding
them could be turned into a learning activity. Similarly, in
the case of missing tests, we note that tests can be easily
generated with Codex, and many of the faulty tests were
related to issues that would be easy to fix (e.g. by adding a
number, or by returning a value instead of printing it).

RQ2: How comprehensive and accurate are OpenAI Codex natu-
ral language explanations of code solutions to introductory
programming exercises?

A: Our results suggest that the explanations created by Codex
cover a majority (90%) of the code, although contain some
inaccuracies (67.2% of explanation lines were correct). We ob-
served that in most cases, the erroneous lines contained only
minor mistakes that could easily be fixed by an instructor
or by teaching assistants. Assessing the value of such ex-
planations in practice would be interesting future work, for
example, whether they could be used by teaching assistants
to expedite the process of helping novice programmers.

7As noted in the OpenAI Codex Beta documentation, last accessed 2022-03-25:
https://beta.openai.com/docs/engines/codex-series-private-beta

In summary, our results support earlier findings that large lan-
guage models are zero-shot [42] and few-shot learners [9], meaning
that they perform well in tasks even when not given any, or given
just a few, task-related examples as input. Our work suggests that
modern machine learning models such as OpenAI Codex provide
many opportunities for programming course designers, although
potential challenges outlined in prior work [27] should not be ig-
nored. Our present analysis showed remarkable results in creating
novel and sensible programming exercises with ready-made sam-
ple solutions and automated tests, despite the presence of some
accuracy and quality issues (that could be easily fixed by human
hands). We also saw promise in the created code explanations. We
foresee that the affordances of generative models for computing
education practice and research will only improve over time with
the continuing evolution of these models.

ACKNOWLEDGMENTS
We are grateful to OpenAI for allowing us access to Codex through
the private beta.

REFERENCES
[1] Onni Aarne, Petrus Peltola, Juho Leinonen, and Arto Hellas. 2018. A study of pair

programming enjoyment and attendance using study motivation and strategy
metrics. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education. 759–764.

[2] Kirsti M Ala-Mutka. 2005. A survey of automated assessment approaches for
programming assignments. Computer science education 15, 2 (2005), 83–102.

[3] Ibrahim Albluwi. 2019. Plagiarism in Programming Assessments: A Systematic
Review. ACM Trans. Comput. Educ. 20, 1, Article 6 (dec 2019), 28 pages. https:
//doi.org/10.1145/3371156

[4] Joe Michael Allen, Frank Vahid, Kelly Downey, and Alex Daniel Edgcomb. 2018.
Weekly programs in a CS1 class: Experiences with auto-graded many-small
programs (MSP). In 2018 ASEE Annual Conference & Exposition.

[5] Cory Althoff. 2022. The Self-Taught Programmer: The Definitive Guide to Program-
ming Professionally. Hachette UK.

[6] Albert Bandura. 1977. Self-efficacy: toward a unifying theory of behavioral
change. Psychological review 84, 2 (1977).

[7] Elisa Baniassad, Lucas Zamprogno, Braxton Hall, and Reid Holmes. 2021. STOP
THE (AUTOGRADER) INSANITY: Regression Penalties to Deter Autograder
Overreliance. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education (Virtual Event, USA) (SIGCSE ’21). Association for Computing
Machinery, New York, NY, USA, 1062–1068. https://doi.org/10.1145/3408877.
3432430

[8] John B. Biggs and K. F. Collis. 1982. Evaluating the quality of learning : the SOLO
taxonomy (structure of the observed learning outcome) / John B. Biggs, Kevin F.
Collis. Academic Press New York. xiii, 245 p. : pages.

[9] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
Advances in neural information processing systems. 1877–1901.

[10] Binglin Chen, Sushmita Azad, Rajarshi Haldar, Matthew West, and Craig Zilles.
2020. A Validated Scoring Rubric for Explain-in-Plain-English Questions. As-
sociation for Computing Machinery, New York, NY, USA, 563–569. https:
//doi.org/10.1145/3328778.3366879

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[12] Matteo Ciniselli, Luca Pascarella, and Gabriele Bavota. 2022. To What Extent
do Deep Learning-based Code Recommenders Generate Predictions by Cloning
Code from the Training Set? arXiv preprint arXiv:2204.06894 (2022).

[13] Catherine H Crouch and Eric Mazur. 2001. Peer instruction: Ten years of experi-
ence and results. American journal of physics 69, 9 (2001), 970–977.

[14] Paul Denny, Diana Cukierman, and Jonathan Bhaskar. 2015. Measuring the Effect
of Inventing Practice Exercises on Learning in an Introductory Programming
Course. In Proceedings of the 15th Koli Calling Conference on Computing Education

38

https://beta.openai.com/docs/engines/codex-series-private-beta
https://doi.org/10.1145/3371156
https://doi.org/10.1145/3371156
https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/3328778.3366879
https://doi.org/10.1145/3328778.3366879

Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland

Research (Koli, Finland) (Koli Calling ’15). Association for Computing Machinery,
New York, NY, USA, 13–22. https://doi.org/10.1145/2828959.2828967

[15] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Codewrite: supporting student-driven practice of java. In Proceedings of the 42nd
ACM technical symposium on Computer science education. 471–476.

[16] Paul Denny, Ewan Tempero, Dawn Garbett, and Andrew Petersen. 2017. Examin-
ing a Student-Generated Question Activity Using Random Topic Assignment. In
Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education (Bologna, Italy) (ITiCSE ’17). Association for Computing Ma-
chinery, New York, NY, USA, 146–151. https://doi.org/10.1145/3059009.3059033

[17] Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard Tang, Albert Lu, Elizabeth
Ke, Kevin Liu, Linda Chen, Sunny Tran, Newman Cheng, Roman Wang, Nikhil
Singh, Taylor L. Patti, Jayson Lynch, Avi Shporer, Nakul Verma, Eugene Wu,
and Gilbert Strang. 2021. A Neural Network Solves, Explains, and Generates
University Math Problems by Program Synthesis and Few-Shot Learning at
Human Level. https://doi.org/10.48550/ARXIV.2112.15594

[18] Yuemeng Du, Andrew Luxton-Reilly, and Paul Denny. 2020. A review of research
on Parsons problems. In Proceedings of the Twenty-Second Australasian Computing
Education Conference. 195–202.

[19] Angela Lee Duckworth and Lauren Eskreis-Winkler. 2013. True grit. Aps Observer
26 (2013).

[20] Rodrigo Duran, Albina Zavgorodniaia, and Juha Sorva. 2021. Cognitive Load
Theory in Computing Education Research: A Review. (2021). http://rodrigoduran.
net/papers/CLT_in_CER.pdf Preprint.

[21] John Edwards, Joseph Ditton, Dragan Trninic, Hillary Swanson, Shelsey Sullivan,
and Chad Mano. 2020. Syntax exercises in CS1. In Proceedings of the 2020 ACM
Conference on International Computing Education Research. 216–226.

[22] Stephen H. Edwards, Jürgen Börstler, Lillian N. Cassel, Mark S. Hall, and Joseph
Hollingsworth. 2008. Developing a Common Format for Sharing Programming
Assignments. SIGCSE Bull. 40, 4 (nov 2008), 167–182. https://doi.org/10.1145/
1473195.1473240

[23] K Anders Ericsson, Ralf T Krampe, and Clemens Tesch-Römer. 1993. The role of
deliberate practice in the acquisition of expert performance. Psychological review
100, 3 (1993), 363.

[24] Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. 2018. Common Logic
Errors Made by Novice Programmers. In Proceedings of the 20th Australasian
Computing Education Conference (Brisbane, Queensland, Australia) (ACE ’18).
Association for Computing Machinery, New York, NY, USA, 83–89. https://doi.
org/10.1145/3160489.3160493

[25] Katrina Falkner and Judy Sheard. 2019. Pedagogical approaches (1st ed.). Cam-
bridge University Press, United Kingdom, 445–480. https://doi.org/10.1017/
9781108654555.016

[26] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, BingQin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[27] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Australasian Computing Education
Conference. 10–19.

[28] Kathi Fisler. 2014. The recurring rainfall problem. In Proceedings of the tenth
annual conference on International computing education research. 35–42.

[29] Max Fowler, Binglin Chen, Sushmita Azad, Matthew West, and Craig Zilles. 2021.
Autograding "Explain in Plain English" Questions Using NLP. In Proceedings of
the 52nd ACM Technical Symposium on Computer Science Education (Virtual Event,
USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY, USA,
1163–1169. https://doi.org/10.1145/3408877.3432539

[30] Brian Hanks, Sue Fitzgerald, Renée McCauley, Laurie Murphy, and Carol Zander.
2011. Pair programming in education: a literature review. Computer Science
Education 21, 2 (2011), 135–173. https://doi.org/10.1080/08993408.2011.579808
arXiv:https://doi.org/10.1080/08993408.2011.579808

[31] MohammedHassan and Craig Zilles. 2021. Exploring ‘Reverse-Tracing’ Questions
as a Means of Assessing the Tracing Skill on Computer-Based CS 1 Exams. In
Proceedings of the 17th ACM Conference on International Computing Education
Research (Virtual Event, USA) (ICER 2021). Association for Computing Machinery,
New York, NY, USA, 115–126. https://doi.org/10.1145/3446871.3469765

[32] John Hattie and Helen Timperley. 2007. The power of feedback. Review of
educational research 77, 1 (2007), 81–112.

[33] Arto Hellas, Juho Leinonen, and Petri Ihantola. 2017. Plagiarism in take-home
exams: help-seeking, collaboration, and systematic cheating. In Proceedings of the
2017 ACM conference on innovation and technology in computer science education.
238–243.

[34] David Hovemeyer, Matthew Hertz, Paul Denny, Jaime Spacco, Andrei Papancea,
John Stamper, and Kelly Rivers. 2013. CloudCoder: Building a Community for
Creating, Assigning, Evaluating and Sharing Programming Exercises (Abstract
Only). In Proceeding of the 44th ACM Technical Symposium on Computer Science
Education (Denver, Colorado, USA) (SIGCSE ’13). Association for Computing
Machinery, New York, NY, USA, 742. https://doi.org/10.1145/2445196.2445451

[35] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of recent systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli calling international conference on computing education
research. 86–93.

[36] Cruz Izu and Peter Dinh. 2018. Can Novice Programmers Write C Functions?.
In 2018 IEEE International Conference on Teaching, Assessment, and Learning for
Engineering (TALE). 965–970. https://doi.org/10.1109/TALE.2018.8615375

[37] MA Jenkins and Joseph Frederick Traub. 1967. An algorithm for an automatic
general polynomial solver. Citeseer.

[38] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.

[39] Cazembe Kennedy, Aubrey Lawson, Yvon Feaster, and Eileen Kraemer. 2020.
Misconception-Based Peer Feedback: A Pedagogical Technique for Reducing
Misconceptions. In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education (Trondheim, Norway) (ITiCSE ’20).
Association for Computing Machinery, New York, NY, USA, 166–172. https:
//doi.org/10.1145/3341525.3387392

[40] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature
review of automated feedback generation for programming exercises. ACM
Transactions on Computing Education (TOCE) 19, 1 (2018), 1–43.

[41] Juho Kim. 2015. Learnersourcing: improving learning with collective learner activity.
Ph. D. Dissertation. Massachusetts Institute of Technology.

[42] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large Language Models are Zero-Shot Reasoners. arXiv preprint
arXiv:2205.11916 (2022).

[43] Teemu Lehtinen, André L Santos, and Juha Sorva. 2021. Let’s Ask Students About
Their Programs, Automatically. In 2021 IEEE/ACM 29th International Conference
on Program Comprehension (ICPC). IEEE, 467–475.

[44] Juho Leinonen, Paul Denny, and Jacqueline Whalley. 2021. Exploring the Effects
of Contextualized Problem Descriptions on Problem Solving. In Australasian
Computing Education Conference (Virtual, SA, Australia) (ACE ’21). Association
for Computing Machinery, New York, NY, USA, 30–39. https://doi.org/10.1145/
3441636.3442302

[45] Juho Leinonen, Paul Denny, and Jacqueline Whalley. 2022. A Comparison of
Immediate and Scheduled Feedback in Introductory Programming Projects. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
V. 1 (Providence, RI, USA) (SIGCSE 2022). Association for Computing Machinery,
New York, NY, USA, 885–891. https://doi.org/10.1145/3478431.3499372

[46] Juho Leinonen, Krista Longi, Arto Klami, Alireza Ahadi, and Arto Vihavainen.
2016. Typing patterns and authentication in practical programming exams. In
Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education. 160–165.

[47] Juho Leinonen, Nea Pirttinen, and Arto Hellas. 2020. Crowdsourcing Content
Creation for SQL Practice. In Proceedings of the 2020 ACMConference on Innovation
and Technology in Computer Science Education. 349–355.

[48] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al.
2022. Competition-Level Code Generation with AlphaCode. arXiv preprint
arXiv:2203.07814 (2022).

[49] Raymond Lister. 2020. On the Cognitive Development of the Novice Programmer:
And the Development of a Computing Education Researcher. In Proceedings of the
9th Computer Science Education Research Conference (Virtual Event, Netherlands)
(CSERC ’20). Association for Computing Machinery, New York, NY, USA, Article
2, 15 pages. https://doi.org/10.1145/3442481.3442498

[50] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, Beth Simon, and Lynda Thomas. 2004. A Multi-National Study of
Reading and Tracing Skills in Novice Programmers. InWorking Group Reports
from ITiCSE on Innovation and Technology in Computer Science Education (Leeds,
United Kingdom) (ITiCSE-WGR ’04). Association for Computing Machinery, New
York, NY, USA, 119–150. https://doi.org/10.1145/1044550.1041673

[51] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship between Explaining, Tracing and Writing Skills in Introductory
Programming. SIGCSE Bull. 41, 3 (jul 2009), 161–165. https://doi.org/10.1145/
1595496.1562930

[52] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, and
Christine Prasad. 2006. Not Seeing the Forest for the Trees: Novice Pro-
grammers and the SOLO Taxonomy. SIGCSE Bull. 38, 3 (jun 2006), 118–122.
https://doi.org/10.1145/1140123.1140157

[53] Richard Lobb and Jenny Harlow. 2016. Coderunner: A Tool for Assessing
Computer Programming Skills. ACM Inroads 7, 1 (feb 2016), 47–51. https:
//doi.org/10.1145/2810041

[54] Krista Longi, Juho Leinonen, Henrik Nygren, Joni Salmi, Arto Klami, and Arto
Vihavainen. 2015. Identification of programmers from typing patterns. In Proceed-
ings of the 15th Koli Calling conference on computing education research. 60–67.

[55] Renée McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth
Simon, Lynda Thomas, and Carol Zander. 2008. Debugging: a review

39

https://doi.org/10.1145/2828959.2828967
https://doi.org/10.1145/3059009.3059033
https://doi.org/10.48550/ARXIV.2112.15594
http://rodrigoduran.net/papers/CLT_in_CER.pdf
http://rodrigoduran.net/papers/CLT_in_CER.pdf
https://doi.org/10.1145/1473195.1473240
https://doi.org/10.1145/1473195.1473240
https://doi.org/10.1145/3160489.3160493
https://doi.org/10.1145/3160489.3160493
https://doi.org/10.1017/9781108654555.016
https://doi.org/10.1017/9781108654555.016
https://doi.org/10.1145/3408877.3432539
https://doi.org/10.1080/08993408.2011.579808
https://arxiv.org/abs/https://doi.org/10.1080/08993408.2011.579808
https://doi.org/10.1145/3446871.3469765
https://doi.org/10.1145/2445196.2445451
https://doi.org/10.1109/TALE.2018.8615375
https://doi.org/10.1145/3341525.3387392
https://doi.org/10.1145/3341525.3387392
https://doi.org/10.1145/3441636.3442302
https://doi.org/10.1145/3441636.3442302
https://doi.org/10.1145/3478431.3499372
https://doi.org/10.1145/3442481.3442498
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/1595496.1562930
https://doi.org/10.1145/1595496.1562930
https://doi.org/10.1145/1140123.1140157
https://doi.org/10.1145/2810041
https://doi.org/10.1145/2810041

ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland Sarsa et al.

of the literature from an educational perspective. Computer Science Ed-
ucation 18, 2 (2008), 67–92. https://doi.org/10.1080/08993400802114581
arXiv:https://doi.org/10.1080/08993400802114581

[56] Laurie Murphy, Sue Fitzgerald, Raymond Lister, and Renée McCauley. 2012.
Ability to ’explain in Plain English’ Linked to Proficiency in Computer-Based
Programming. In Proceedings of the Ninth Annual International Conference on
International Computing Education Research (Auckland, New Zealand) (ICER ’12).
Association for Computing Machinery, New York, NY, USA, 111–118. https:
//doi.org/10.1145/2361276.2361299

[57] Terence Nip, Elsa L. Gunter, Geoffrey L. Herman, JasonW.Morphew, andMatthew
West. 2018. Using a Computer-Based Testing Facility to Improve Student Learning
in a Programming Languages and Compilers Course. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (Baltimore, Maryland,
USA) (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA,
568–573. https://doi.org/10.1145/3159450.3159500

[58] Henrik Nygren, Juho Leinonen, and Arto Hellas. 2019. Non-restricted Access to
Model Solutions: A Good Idea?. In Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education. 44–50.

[59] Henrik Nygren, Juho Leinonen, Nea Pirttinen, Antti Leinonen, and Arto Hellas.
2019. Experimentingwithmodel solutions as a support mechanism. In Proceedings
of the 1st UK & Ireland Computing Education Research Conference. 1–7.

[60] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated As-
sessment in Computer Science Education: A State-of-the-Art Review. ACM
Transactions on Computing Education (TOCE) (2022).

[61] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan
Dolan-Gavitt. 2021. Can OpenAI Codex and Other Large Language Models Help
Us Fix Security Bugs? arXiv preprint arXiv:2112.02125 (2021).

[62] Hammond Pearce, Benjamin Tan, Prashanth Krishnamurthy, Farshad Khorrami,
Ramesh Karri, and Brendan Dolan-Gavitt. 2022. Pop Quiz! Can a Large Language
Model Help With Reverse Engineering? arXiv preprint arXiv:2202.01142 (2022).

[63] D. N. Perkins, Chris Hancock, Renee Hobbs, Fay Martin, and Rebecca Simmons.
1986. Conditions of Learning in Novice Programmers. Journal of Educational
Computing Research 2, 1 (1986), 37–55. https://doi.org/10.2190/GUJT-JCBJ-Q6QU-
Q9PL

[64] Robert Phillips, Dan Lockton, Sharon Baurley, and Sarah Silve. 2013. Making
Instructions for Others: Exploring Mental Models through a Simple Exercise.
Interactions 20, 5 (sep 2013), 74–79. https://doi.org/10.1145/2505290

[65] Nea Pirttinen, Vilma Kangas, Irene Nikkarinen, Henrik Nygren, Juho Leinonen,
and Arto Hellas. 2018. Crowdsourcing programming assignments with Crowd-
Sorcerer. In Proceedings of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. 326–331.

[66] Nea Pirttinen and Juho Leinonen. 2022. Can Students Review Their Peers?
Comparison of Peer and Instructor Reviews. In Proceedings of the 27th ACM
Conference on Innovation and Technology in Computer Science Education Vol 1.

[67] Leo Porter, Daniel Zingaro, Cynthia Lee, Cynthia Taylor, Kevin C. Webb, and
Michael Clancy. 2018. Developing Course-Level Learning Goals for Basic
Data Structures in CS2. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education (Baltimore, Maryland, USA) (SIGCSE ’18). As-
sociation for Computing Machinery, New York, NY, USA, 858–863. https:
//doi.org/10.1145/3159450.3159457

[68] Ruixiang Qi and Davide Fossati. 2020. Unlimited Trace Tutor: Learning Code
Tracing With Automatically Generated Programs. Association for Computing Ma-
chinery, New York, NY, USA, 427–433. https://doi.org/10.1145/3328778.3366939

[69] Emily Q Rosenzweig, Allan Wigfield, and Jacquelyne S Eccles. 2019. Expectancy-
value theory and its relevance for student motivation and learning. (2019).

[70] Sam Saarinen, Shriram Krishnamurthi, Kathi Fisler, and Preston Tunnell Wilson.
2019. Harnessing theWisdom of the Classes: Classsourcing andMachine Learning
for Assessment Instrument Generation. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19).
Association for Computing Machinery, New York, NY, USA, 606–612. https:
//doi.org/10.1145/3287324.3287504

[71] Kate Sanders, Marzieh Ahmadzadeh, Tony Clear, Stephen H Edwards, Mikey
Goldweber, Chris Johnson, Raymond Lister, Robert McCartney, Elizabeth Patitsas,
and Jaime Spacco. 2013. The Canterbury QuestionBank: Building a repository of
multiple-choice CS1 and CS2 questions. In Proceedings of the ITiCSE working group
reports conference on Innovation and technology in computer science education-
working group reports. 33–52.

[72] Kate Sanders, Jonas Boustedt, Anna Eckerdal, Robert McCartney, and Carol Zan-
der. 2017. Folk Pedagogy: Nobody Doesn’t Like Active Learning. In Proceedings of
the 2017 ACM Conference on International Computing Education Research (Tacoma,
Washington, USA) (ICER ’17). Association for Computing Machinery, New York,
NY, USA, 145–154. https://doi.org/10.1145/3105726.3106192

[73] Patrick Schramowski, Cigdem Turan, Nico Andersen, Constantin A Rothkopf,
and Kristian Kersting. 2022. Large pre-trained language models contain human-
like biases of what is right and wrong to do. Nature Machine Intelligence 4, 3
(2022), 258–268.

[74] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do we know how difficult the rainfall problem is?. In Proceedings of the
15th Koli Calling Conference on Computing Education Research. 87–96.

[75] Judy Sheard, Angela Carbone, Raymond Lister, Beth Simon, Errol Thompson, and
Jacqueline L. Whalley. 2008. Going SOLO to Assess Novice Programmers. In Pro-
ceedings of the 13th Annual Conference on Innovation and Technology in Computer
Science Education (Madrid, Spain) (ITiCSE ’08). Association for Computing Ma-
chinery, New York, NY, USA, 209–213. https://doi.org/10.1145/1384271.1384328

[76] Lee S Shulman. 2005. Signature pedagogies in the professions. Daedalus 134, 3
(2005), 52–59.

[77] Valerie J Shute. 2008. Focus on formative feedback. Review of educational research
78, 1 (2008), 153–189.

[78] Anjali Singh, Christopher Brooks, Yiwen Lin, andWarren Li. 2021. What’s In It for
the Learners? Evidence from a Randomized Field Experiment on Learnersourcing
Questions in a MOOC. In Proceedings of the Eighth ACM Conference on Learning@
Scale. 221–233.

[79] E. Soloway. 1986. Learning to Program = Learning to Construct Mechanisms and
Explanations. Commun. ACM 29, 9 (sep 1986), 850–858. https://doi.org/10.1145/
6592.6594

[80] Elliot Soloway and Kate Ehrlich. 1984. Empirical studies of programming knowl-
edge. IEEE Transactions on software engineering 5 (1984), 595–609.

[81] Ben Stephenson. 2018. An Experience Using On-Computer Programming
Questions During Exams. In Proceedings of the 23rd Western Canadian Con-
ference on Computing Education (Victoria, BC, Canada) (WCCCE ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 11, 6 pages.
https://doi.org/10.1145/3209635.3209639

[82] Zahid Ullah, Adidah Lajis, Mona Jamjoom, Abdulrahman Altalhi, Abdullah Al-
Ghamdi, and Farrukh Saleem. 2018. The effect of automatic assessment on
novice programming: Strengths and limitations of existing systems. Computer
Applications in Engineering Education 26, 6 (2018), 2328–2341. https://doi.org/10.
1002/cae.21974 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.21974

[83] Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at Tracing,
Explaining and Code Writing Skills in the Novice Programmer. In Proceedings
of the Fifth International Workshop on Computing Education Research Workshop
(Berkeley, CA, USA) (ICER ’09). Association for Computing Machinery, New York,
NY, USA, 117–128. https://doi.org/10.1145/1584322.1584336

[84] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A systematic
review of approaches for teaching introductory programming and their influ-
ence on success. In Proceedings of the tenth annual conference on International
computing education research. 19–26.

[85] Arto Vihavainen, Matti Paksula, and Matti Luukkainen. 2011. Extreme appren-
ticeship method in teaching programming for beginners. In Proceedings of the
42nd ACM technical symposium on Computer science education. 93–98.

[86] Regina Vollmeyer and Falko Rheinberg. 2005. A surprising effect of feedback on
learning. Learning and instruction 15, 6 (2005), 589–602.

[87] Lev Semenovich Vygotsky and Michael Cole. 1978. Mind in society: Development
of higher psychological processes. Harvard university press.

[88] Jacqueline L.Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins,
P. K. Ajith Kumar, and Christine Prasad. 2006. An Australasian Study of Reading
and Comprehension Skills in Novice Programmers, Using the Bloom and SOLO
Taxonomies. In Proceedings of the 8th Australasian Conference on Computing
Education - Volume 52 (Hobart, Australia) (ACE ’06). Australian Computer Society,
Inc., AUS, 243–252.

[89] Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel Maldonado, Krzysztof Z.
Gajos,Walter S. Lasecki, andNeil Heffernan. 2016. AXIS: Generating Explanations
at Scale with Learnersourcing and Machine Learning. In Proceedings of the Third
(2016) ACM Conference on Learning @ Scale (Edinburgh, Scotland, UK) (L@S ’16).
Association for Computing Machinery, New York, NY, USA, 379–388. https:
//doi.org/10.1145/2876034.2876042

[90] Laurie Williams, Robert R Kessler, Ward Cunningham, and Ron Jeffries. 2000.
Strengthening the case for pair programming. IEEE software 17, 4 (2000), 19–25.

[91] John Wrenn, Shriram Krishnamurthi, and Kathi Fisler. 2018. Who Tests the
Testers?. In Proceedings of the 2018 ACM Conference on International Comput-
ing Education Research (Espoo, Finland) (ICER ’18). Association for Computing
Machinery, New York, NY, USA, 51–59. https://doi.org/10.1145/3230977.3230999

[92] Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J. Ko. 2019.
A Theory of Instruction for Introductory Programming Skills. Computer Science
Education 29, 2-3 (2019), 205–253. https://doi.org/10.1080/08993408.2019.1565235

[93] Benjamin Xie, Greg L. Nelson, and Amy J. Ko. 2018. An Explicit Strategy
to Scaffold Novice Program Tracing. In Proceedings of the 49th ACM Tech-
nical Symposium on Computer Science Education (Baltimore, Maryland, USA)
(SIGCSE ’18). Association for ComputingMachinery, New York, NY, USA, 344–349.
https://doi.org/10.1145/3159450.3159527

[94] Lisa Yan, Annie Hu, and Chris Piech. 2019. Pensieve: Feedback on Coding
Process for Novices. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association
for Computing Machinery, New York, NY, USA, 253–259.

40

https://doi.org/10.1080/08993400802114581
https://arxiv.org/abs/https://doi.org/10.1080/08993400802114581
https://doi.org/10.1145/2361276.2361299
https://doi.org/10.1145/2361276.2361299
https://doi.org/10.1145/3159450.3159500
https://doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL
https://doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL
https://doi.org/10.1145/2505290
https://doi.org/10.1145/3159450.3159457
https://doi.org/10.1145/3159450.3159457
https://doi.org/10.1145/3328778.3366939
https://doi.org/10.1145/3287324.3287504
https://doi.org/10.1145/3287324.3287504
https://doi.org/10.1145/3105726.3106192
https://doi.org/10.1145/1384271.1384328
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/3209635.3209639
https://doi.org/10.1002/cae.21974
https://doi.org/10.1002/cae.21974
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.21974
https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1145/2876034.2876042
https://doi.org/10.1145/2876034.2876042
https://doi.org/10.1145/3230977.3230999
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1145/3159450.3159527

Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland

A SAMPLE SOLUTIONS TO PROGRAMMING
EXERCISES OUTLINED IN 3.2.1

de f speed ing_check (speed) :
i f speed > 1 2 0 :

r e t u r n " You a re f i n e d f o r $200 "
e l i f speed > 1 0 0 :

r e t u r n " You a re f i n e d f o r $100 "
e l s e :

r e t u r n " A l l good , r a c e ahead "

p r i n t (speed ing_check (8 8))
p r i n t (speed ing_check (1 1 0))
p r i n t (speed ing_check (1 3 0))

d e f f i z z _ b u z z (numbers) :
f o r number in numbers :

i f number % 3 == 0 and number % 5 == 0 :
p r i n t (" F i z zBuz z ")

e l i f number % 3 == 0 :
p r i n t (" F i z z ")

e l i f number % 5 == 0 :
p r i n t (" Buzz ")

e l s e :
p r i n t (number)

t o t a l = 0
count = 0

whi l e True :
v a l u e = i n t (i npu t (" Wri te va lue , 9999 ends . "))
i f v a l u e == 9 9 9 9 :

b reak

i f v a l u e < 0 or va lue > 1 0 0 0 :
p r i n t (" I n v a l i d i npu t ")
c on t i nue

t o t a l += va lue
count += 1

i f count == 0 :
p r i n t ("No i n pu t s ")

e l s e :
p r i n t (f " Average : { t o t a l / count } ")

c l a s s Conver t e r () :
d e f _ _ i n i t _ _ (s e l f , e x change_ r a t e s) :

s e l f . e x change_ r a t e s = ex change_ r a t e s

de f conve r t (s e l f , f rom_currency , t o_cur r ency ,
↪→ amount) :
amount_in_usd = amount / s e l f . e x change_ r a t e s [
↪→ f rom_currency]
r e t u r n amount_in_usd ∗ s e l f . e x change_ r a t e s [
↪→ t o _ cu r r en cy]

c onv e r t e r = Conver t e r ({ "USD" : 1 , "EUR" : 0 . 9 , "GBP"
↪→ : 0 . 7 5 })

p r i n t (c onv e r t e r . c onve r t ("EUR" , "GBP" , 1 0 0))

41

ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland Sarsa et al.

B SAMPLE PRIMINGS FOR PROGRAMMING
EXERCISE GENERATION

" " " E x e r c i s e 1
−−Keywords−−
c a r s
f u n c t i o n
pa rame te r s
c o n d i t i o n a l
−−Problem s ta t ement −−
Write a f u n c t i o n c a l l e d speed ing_check t h a t t a k e s

↪→ a s i n g l e paramete r speed and p r i n t s out "
↪→ You a re

f i n e d f o r $200 " i f the speed i s above 120 , " You
↪→ a r e f i n e d f o r $100 " i f the speed i s above
↪→ 100 but

below 120 and o the rw i s e p r i n t s " A l l good , r a c e
↪→ ahead " .

−−Sample s o l u t i o n −−

de f speed ing_check (speed) :
i f speed > 1 2 0 :

r e t u r n " You a re f i n e d f o r $200 "
e l i f speed > 1 0 0 :

r e t u r n " You a re f i n e d f o r $100 "
e l s e :

r e t u r n " A l l good , r a c e ahead "
−−Tes t s −−
c l a s s Te s t (u n i t t e s t . Tes tCase) :

d e f t e s t _ s p e e d i n g _ c h e c k (s e l f) :
s e l f . a s s e r t E q u a l s (speed ing_check (1 0 0) , ' A l l
↪→ good , r a c e ahead ')
s e l f . a s s e r t E q u a l s (speed ing_check (1 0 1) , ' You
↪→ a r e f i n e d f o r $100 ')
s e l f . a s s e r t E q u a l s (speed ing_check (1 2 1) , ' You
↪→ a r e f i n e d f o r $200 ')

" " " E x e r c i s e 1
−−Keywords−−
cu r r ency
c l a s s
f u n c t i o n
pa rame te r s
d i c t i o n a r y
a r i t hm e t i c s
−−Problem s ta t ement −−
Write a c l a s s c a l l e d Conver t e r t h a t i s i n i t i a l i z e d

↪→ with a d i c t i o n a r y o f exchange r a t e s f o r
↪→ c u r r e n c i e s

a g a i n s t the USD , e . g . { " USD " : 1 , "EUR " : 0 . 9 , "GBP
↪→ " : 0 . 7 5 } . The c l a s s shou ld have a method
↪→ c a l l e d

conver t , which t a k e s in t h r e e pa rame te r s :
↪→ f rom_currency , t o_cur r ency , and amount .
↪→ The f un c t i o n shou ld

r e t u r n the g iven amount conve r t ed from the f i r s t
↪→ cu r r ency (f i r s t pa ramete r) t o the second
↪→ cu r r ency

(second paramete r) u s ing the exchange r a t e
↪→ d i c t i o n a r y g iven in the c l a s s c o n s t r u c t o r .

As an example , the code
c onv e r t e r = Conver t e r ({ " USD " : 1 , "EUR " : 0 . 9 , "GBP

↪→ " : 0 . 7 5 })
i n _ eu ro s = c onv e r t e r . c onve r t (" USD " , "EUR " , 1 0 0)
p r i n t (i n _ eu ro s)
shou ld p r i n t out 9 0 . 0
−−Sample s o l u t i o n −−

c l a s s Conver t e r () :
d e f _ _ i n i t _ _ (s e l f , e x change_ r a t e s) :

s e l f . e x change_ r a t e s = ex change_ r a t e s

de f conve r t (s e l f , f rom_currency , t o_cur r ency ,
↪→ amount) :
amount_in_usd = amount / s e l f . e x change_ r a t e s [
↪→ f rom_currency]
r e t u r n amount_in_usd ∗ s e l f . e x change_ r a t e s [
↪→ t o _ cu r r en cy]

−−Tes t s −−
c l a s s Te s tConve r t e r (u n i t t e s t . Tes tCase) :

d e f t e s t _ c o n v e r t e r (s e l f) :
c o n v e r t e r = Conver t e r ({ " USD " : 1 , "EUR " : 0 . 8 })
s e l f . a s s e r t E q u a l s (c o nv e r t e r . c onve r t (" USD " , "
↪→ EUR " , 1 0 0) , 8 0)

d e f t e s t _ c o n v e r t e r 2 (s e l f) :
c o n v e r t e r = Conver t e r ({ " USD " : 1 , "EUR " : 0 . 9 , "
↪→ GBP " : 0 . 7 5 , " SEK " : 9 . 7 1 })
s e l f . a s s e r t E q u a l s (c o nv e r t e r . c onve r t (" USD " , "
↪→ USD " , 1 0 0) , 1 0 0)
s e l f . a s s e r t E q u a l s (c o nv e r t e r . c onve r t (" USD " , "
↪→ EUR " , 1 0 0) , 9 0)
s e l f . a s s e r t E q u a l s (c o nv e r t e r . c onve r t (" GBP " , "
↪→ EUR " , 1 0) , 1 2)
s e l f . a s s e r t E q u a l s (c o nv e r t e r . c onve r t (" EUR " , "
↪→ GBP " , 1 0) , 8 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2)

42

Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland

C COMPLETE PRIMING EXAMPLE WITH
TOPIC THEMING FOR PROGRAMMING
EXERCISE GENERATION

Example priming (input)
" " " E x e r c i s e 1
−−Keywords−−
c a r s
f u n c t i o n
pa rame te r s
c o n d i t i o n a l
−−Problem s ta t ement −−
Write a f u n c t i o n c a l l e d speed ing_check t h a t t a k e s

↪→ a s i n g l e paramete r speed and p r i n t s out "
↪→ You a re

f i n e d f o r $200 " i f the speed i s above 120 , " You
↪→ a r e f i n e d f o r $100 " i f the speed i s above
↪→ 100 but

below 120 and o the rw i s e p r i n t s " A l l good , r a c e
↪→ ahead " .

−−Sample s o l u t i o n −−

de f speed ing_check (speed) :
i f speed > 1 2 0 :

r e t u r n " You a re f i n e d f o r $200 "
e l i f speed > 1 0 0 :

r e t u r n " You a re f i n e d f o r $100 "
e l s e :

r e t u r n " A l l good , r a c e ahead "
−−Tes t s −−
c l a s s Te s t (u n i t t e s t . Tes tCase) :

d e f t e s t _ s p e e d i n g _ c h e c k (s e l f) :
s e l f . a s s e r t E q u a l s (speed ing_check (1 0 0) , ' A l l
↪→ good , r a c e ahead ')
s e l f . a s s e r t E q u a l s (speed ing_check (1 0 1) , ' You
↪→ a r e f i n e d f o r $100 ')
s e l f . a s s e r t E q u a l s (speed ing_check (1 2 1) , ' You
↪→ a r e f i n e d f o r $200 ')

" " " E x e r c i s e 2
−−Keywords−−
i c e hockey
−−Problem s ta t ement −−

Generated exercise (output with temperature 0)
Write a f u n c t i o n c a l l e d i c e_hockey_check t h a t

↪→ t a k e s a s i n g l e paramete r
c a l l e d s c o r e and p r i n t s out " You a re awarded a

↪→ pena l t y f o r unspo r t sman l i k e conduc t "
i f the s c o r e i s g r e a t e r than 5 and o the rw i s e

↪→ p r i n t s " A l l good , keep p l a y i ng " .
−−Sample s o l u t i o n −−

de f i c e_hockey_check (s c o r e) :
i f s c o r e > 5 :

r e t u r n " You a re awarded a p ena l t y f o r
↪→ unspo r t sman l i k e conduct "

e l s e :
r e t u r n " A l l good , keep p l a y i ng "

−−Tes t s −−
c l a s s Te s t (u n i t t e s t . Tes tCase) :

d e f t e s t _ i c e _ho c k ey _ ch e c k (s e l f) :
s e l f . a s s e r t E q u a l s (i c e_hockey_check (5) , ' A l l
↪→ good , keep p l ay ing ')
s e l f . a s s e r t E q u a l s (i c e_hockey_check (6) , ' You
↪→ a r e awarded a p ena l t y f o r un spo r t sman l i k e
↪→ conduct ')

43

	Abstract
	1 Introduction
	2 Background
	2.1 Practice and Feedback in Introductory Programming Courses
	2.2 Code Explanations and Their Assessment
	2.3 Machine Learning Models for Code Generation
	2.4 Potential of Codex in Computing Education

	3 Methodology
	3.1 Using Codex
	3.2 Creating Programming Exercises and Code Explanations
	3.3 Evaluation

	4 Results
	4.1 Programming Exercises
	4.2 Code Explanations

	5 Discussion
	5.1 Programming Exercises
	5.2 Code Explanations
	5.3 Future Work
	5.4 Threats to Validity

	6 Conclusion
	Acknowledgments
	References
	A Sample solutions to programming exercises outlined in 3.2.1
	B Sample primings for programming exercise generation
	C Complete priming example with topic theming for programming exercise generation

